

FCC Test Report

Report No.: AGC00408240102FR03

FCC ID	:	2A3DR-AGMP2
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	4G smart PAD, Tablet
BRAND NAME	:	AGM
MODEL NAME	:	AGM_PAD_P2, AGM_PAD_P2W
APPLICANT	:	AGM MOBILE LIMITED
DATE OF ISSUE	:	Mar. 01, 2024
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Mar. 01, 2024	Valid	Initial Release

Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	6
2.2 Table of Carrier Frequency	7
2.3 IEEE 802.11n Modulation Scheme	
2.4 Related Submittal(S) / Grant (S)	9
2.5 Test Methodology	9
2.6 Special Accessories	9
2.7 Equipment Modifications	9
2.8 Antenna Requirement	9
2.9 Description of Test Software	
3. Test Environment	11
3.1 Address of The Test Laboratory	11
3.2 Test Facility	11
3.3 Environmental Conditions	
3.4 Measurement Uncertainty	
3.5 List of Equipment Used	
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used in Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	
6. Duty Cycle Measurement	
7. RF Output Power Measurement	
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup (Block Diagram of Configuration)	
7.4 Measurement Result	21
8. 6dB Bandwidth Measurement	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup (Block Diagram of Configuration)	
8.4 Measurement Result	23
9. Power Spectral Density Measurement	

9.1 Provisions Applicable	
9.2 Measurement Procedure	
9.3 Measurement Setup (Block Diagram of Configuration)	
9.4 Measurement Result	
10. Conducted Band Edge and Out-of-Band Emissions	
10.1 Provisions Applicable	
10.2 Measurement Procedure	
10.3 Measurement Setup (Block Diagram of Configuration)	
10.4 Measurement Result	
11. Radiated Spurious Emission	
11.1 Measurement Limits	
11.2 Measurement Procedure	
11.3 Measurement Setup (Block Diagram of Configuration)	
11.4 Measurement Result	
12. AC Power Line Conducted Emission	
12.1 Measurement Limits	
12.2 Block Diagram of Line Conducted Emission Test	
12.3 Preliminary Procedure of Line Conducted Emission Test	
12.4 Final Procedure of Line Conducted Emission Test	
12.5 Test Result of Line Conducted Emission Test	
Appendix I: Photographs of Test Setup	
Appendix II: Photographs of Test EUT	

1. General Information

Applicant	AGM MOBILE LIMITED
Address	FLAT/RM 2253 22/F HOI TAI FACTORY ESTATE TSING YEUNG CIRCUIT TUEN
Addie35	MUN NT HONG KONG, CHINA
Manufacturer	Guangdong Aijiemo Electronic Industry Co., Ltd
Address	AGM Technology Park, No. 187 Lianfa Road, Tongqiao Town, Zhongkai High-tech
	District, Huizhou City, Guangdong, China
Factory	Guangdong Aijiemo Electronic Industry Co., Ltd
Address	AGM Technology Park, No. 187 Lianfa Road, Tongqiao Town, Zhongkai High-tech
	District, Huizhou City, Guangdong, China
Product Designation	4G smart PAD, Tablet
Brand Name	AGM
Test Model	AGM_PAD_P2
Series Model(s)	AGM_PAD_P2W
Difference Description	In addition to the different model names between the main test and the series, there are also different headphone plate layouts, and corresponding antenna types and gains. There are no differences in the other PCB layouts and RF
	parameters.
Date of receipt of test item	Jan. 22, 2024
Date of Test	Jan. 22, 2024~Feb. 27, 2024
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-2.4GWLAN-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By

Bibo zhang

Bibo Zhang (Project Engineer)

Mar. 01, 2024

Reviewed By

Lin in ·

Calvin Liu (Reviewer)

Mar. 01, 2024

Approved By

Max Zha

Max Zhang Authorized Officer

Mar. 01, 2024

2. Product Information

2.1 Product Technical Description

Equipment Type	WLAN 2.4G
Frequency Band	2400MHz ~ 2483.5MHz
Operation Frequency	2412MHz ~ 2462MHz
Output Power (Average)	IEEE 802.11b:13.93dBm; IEEE 802.11g:12.12dBm;
	IEEE 802.11n(HT20):11.99dBm; IEEE 802.11n(HT40):11.15dBm
Output Power (Peak)	IEEE 802.11b:16.22dBm; IEEE 802.11g:19.61dBm;
	IEEE 802.11n(HT20):19.42dBm; IEEE 802.11n(HT40):19.01dBm
Modulation	802.11b:(DQPSK, DBPSK, CCK) DSSS
	802.11g/n:(64-QAM,16-QAM, QPSK, BPSK) OFDM
	802.11b:1/2/5.5/11Mbps
Data Rate	802.11g: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 300Mbps
Number of channels	11
Hardware Version	V1.0
Software Version	M193_P9901_V1
Antenna Designation	Internal Antenna
Antonno Coin	AGM_PAD_P2: 2.50dBi
Antenna Gain	AGM_PAD_P2W: 2.36dBi
Power Supply	DC 3.85V by battery

2.2 Table of Carrier Frequency

For 2412-2462MHz:

11 channels are provided for 802.11b/g/n(HT20):

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

7 channels are provided for 802.11n(HT40):

Channel	Frequency	Channel	Frequency	Channel	Frequency
01		02		03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10		11			

2.3 IEEE 802.11n Modulation Scheme

						Ν	NI		Data Rate(Mbps)	
MCS Index	Nss	Modulation	R	N _{BPSC}	N _{BPSC} N _{CBPS}	BPS	N _{DBPS}		800nsGI	
Index					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	Guard interval

2.4 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2A3DR-AGMP2**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.5 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title	
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations	
2	FCC 47 CFR Part 15	Radio Frequency Devices	
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices	

2.6 Special Accessories

Refer to section 4.4.

2.7 Equipment Modifications

Not available for this EUT intended for grant.

2.8 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. For the antenna gain is 2.50dBi(AGM_PAD_P2) and 2.36dBi(AGM_PAD_P2W)

2.9 Description of Test Software

For IEEE 802.11 mode:

The test software is through engineering commands. EUT can be set to a separate test mode.

Test Mode	Channel	Power Index
802.11b	L/M/H	19
802.11g	L/M/H	17
802.11n-HT20	L/M/H	17
802.11n-HT40	L/M/H	16

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106

3.4 Measurement Uncertainty

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty	
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$	
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$	
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$	
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$	
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$	
Uncertainty of spurious emissions, conducted	U _c = ±2 %	
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$	

3.5 List of Equipment Used

RF Conducted Test System							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\square	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023-06-01	2024-05-31
\boxtimes	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2023-03-03	2024-03-02
\boxtimes	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2023-03-03	2024-03-02
\boxtimes	AGC-EM-A152	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08
	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2023-06-01	2024-05-31
	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A
\boxtimes	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A

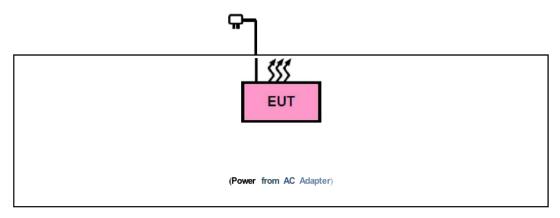
• F	Radiated Spurious Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2023-02-18	2024-02-17	
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023-06-03	2024-06-02	
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31	
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2022-03-12	2024-03-11	
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2023-03-23	2024-03-22	
	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2021-10-31	2023-10-30	
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03	
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2023-06-01	2024-05-31	
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08	
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08	

• A	AC Power Line Conducted Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023-06-03	2024-06-02		
\boxtimes	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023-06-03	2024-06-02		
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2024-06-08		

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test Software						
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information	
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71	
	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A	
\boxtimes	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6	
\square	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0	

4.System Test Configuration


4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

- Test Accessories Come From The Laboratory
- ☑ Test Accessories Come From The Manufacturer

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1	Adapter	FX202E	HUNAN GAOYUAN BATTERY CO.,LTD	Input: AC 100-240V 50/60Hz, 0.7A DC: 5V3A 9V2.22A 12V1.67A	
2	Battery	AGM_PAD_P2	SHENZHEN Fangxin Technology Co. ,Ltd	DC 3.85V 8000mAh	
3	USB Cable	N/A	N/A	N/A	1.2m unshielded

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(1)	RF Output Power	Pass
3	§15.247 (a)(1)	6 dB Bandwidth	Pass
4	§15.247 (e)	Power Spectral Density	Pass
5	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
6	§15.247 (d)&15.209	Radiated Spurious Emission	Pass
7	§15.207	AC Power Line Conducted Emission	Pass

5. Description of Test Modes

Summary table of Test Cases					
Test Item	Data Rate / Modulation				
Test nem	2.4G WLAN – 802.11b/g/n (DSSS/OFDM)				
	Mode 1: 802.11b_TX CH01_2412 MHz_1 Mbps				
	Mode 2: 802.11b_TX CH06_2437 MHz_1 Mbps				
	Mode 3: 802.11b_TX CH11_2462 MHz_1 Mbps				
	Mode 4: 802.11g_TX CH01_2412 MHz_6 Mbps				
	Mode 5: 802.11g_TX CH06_2437 MHz_6 Mbps				
Radiated & Conducted	Mode 6: 802.11g_TX CH11_2462 MHz_6 Mbps				
Test Cases	Mode 7: 802.11n-HT20_TX CH01_2412 MHz_MCS0 Mbps				
	Mode 8: 802.11n-HT20_TX CH06_2437 MHz_ MCS0 Mbps				
	Mode 9: 802.11n-HT20_TX CH11_2462 MHz_ MCS0 Mbps				
	Mode 10: 802.11n-HT40_TX CH03_2422 MHz_MCS0 Mbps				
	Mode 11: 802.11n-HT40_TX CH06_2437 MHz_ MCS0 Mbps				
	Mode 12: 802.11n-HT40_TX CH09_2452 MHz_ MCS0 Mbps				
AC Conducted Emission	Mode 1: 2.4G WLAN Link + Battery + USB Cable (Charging from AC Adapter)				
Note:					
1. The battery is full-charged during the test.					

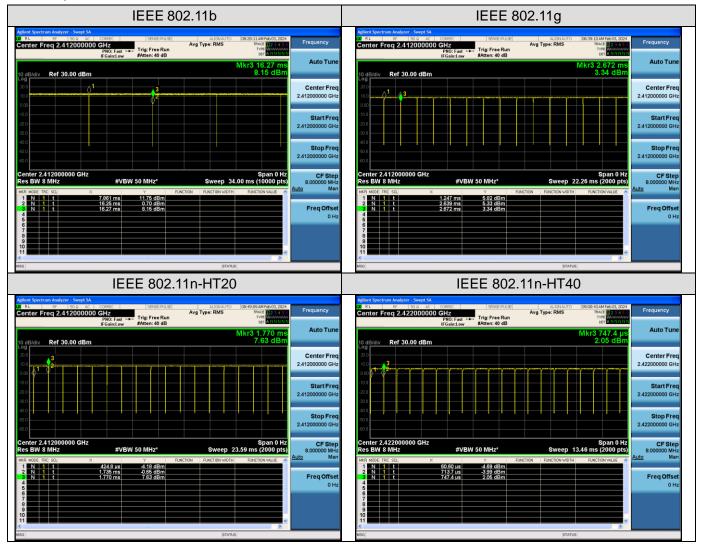
2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

4. The test software is through engineering commands. EUT can be set to a separate test mode.

6. Duty Cycle Measurement

2.4GHz WLAN (DTS) operation is possible in 20MHz, and 40MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:


Operating mode	Data rates (Mbps)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11b	1	100	-	-	-
IEEE 802.11g	6	98	0.09	0.72	-0.18
IEEE 802.11n-HT20	MCS0	97	0.13	0.76	-0.26
IEEE 802.11n-HT40	MCS0	95	0.22	1.53	-0.45

Remark:

- 1. Duty Cycle factor = 10 * log (1/ Duty cycle)
- 2. Average factor = 20 log10 Duty Cycle
- 3. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value.

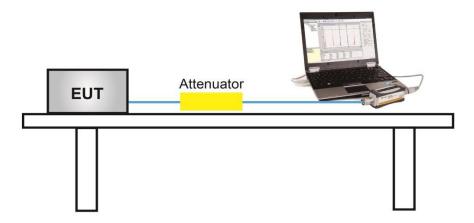
The test plots as follows:

7. RF Output Power Measurement

7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.

7.2 Measurement Procedure


Method PM is Measurement using an RF Peak power meter. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 11.9.1.3
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

Method PM is Measurement using an RF average power meter. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 11.9.2.3
- 2. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:
- 3. The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
- 4. At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 5. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 6. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below.
- 7. Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- 8. Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle {e.g., [10 log (1 / 0.25)], if the duty cycle is 25%}.
- 9. Record the test results in the report.

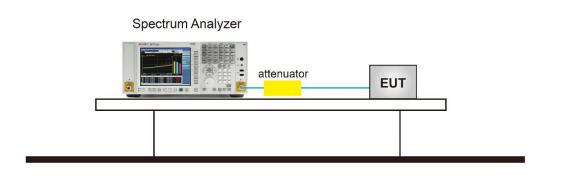
7.3 Measurement Setup (Block Diagram of Configuration)

7.4 Measurement Result

Test Data of Conducted Output Power						
Test Mode	Test Frequency (MHz)	Average Power (dBm)	Peak Power (dBm)	Limits (dBm)	Pass or Fail	
	2412	13.20	15.62	≤30	Pass	
802.11b	2437	13.93	16.20	≤30	Pass	
	2462	13.80	16.22	≤30	Pass	
	2412	11.45	19.15	≤30	Pass	
802.11g	2437	12.12	19.61	≤30	Pass	
	2462	12.08	19.55	≤30	Pass	
	2412	11.36	18.96	≤30	Pass	
802.11n20	2437	11.99	19.42	≤30	Pass	
	2462	11.87	19.31	≤30	Pass	
	2422	10.95	18.74	≤30	Pass	
802.11n40	2437	11.15	18.93	≤30	Pass	
	2452	11.06	19.01	≤30	Pass	

8. 6dB Bandwidth Measurement

8.1 Provisions Applicable

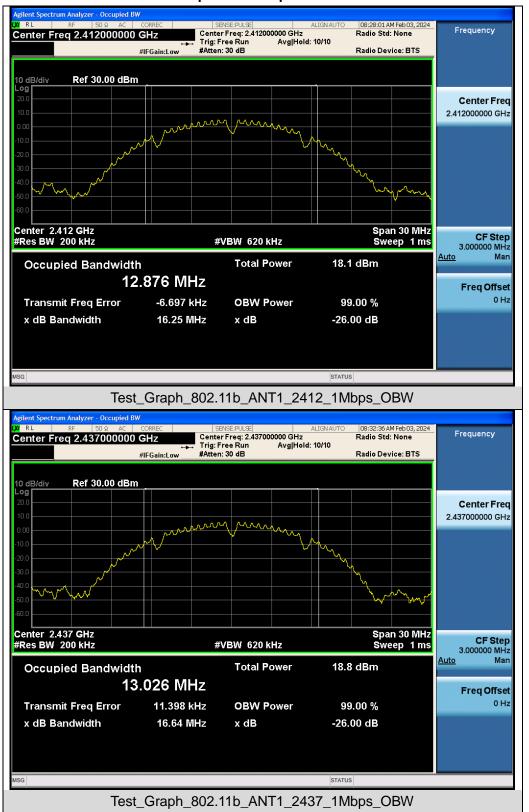

The minimum 6dB bandwidth shall be 500 kHz.

8.2 Measurement Procedure

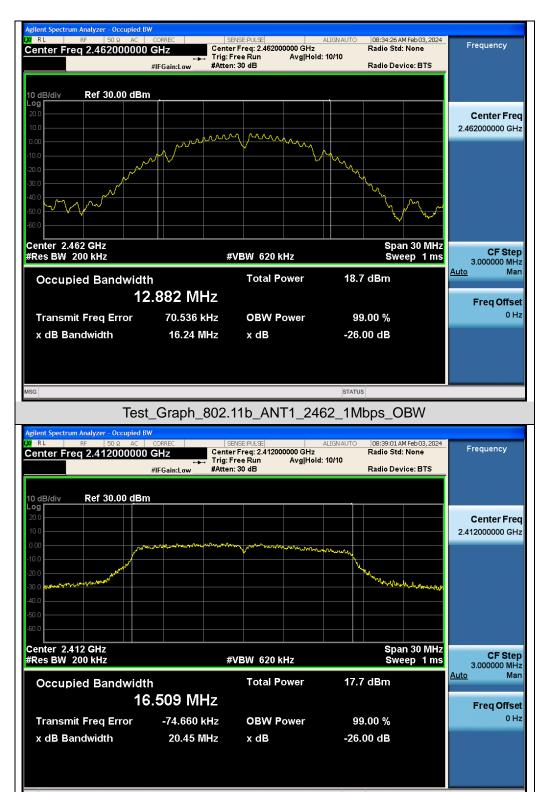
The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. For 6dB Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Detector = peak
- 6. Trace mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize.
- 9. Measure and record the results in the test report.

8.3 Measurement Setup (Block Diagram of Configuration)



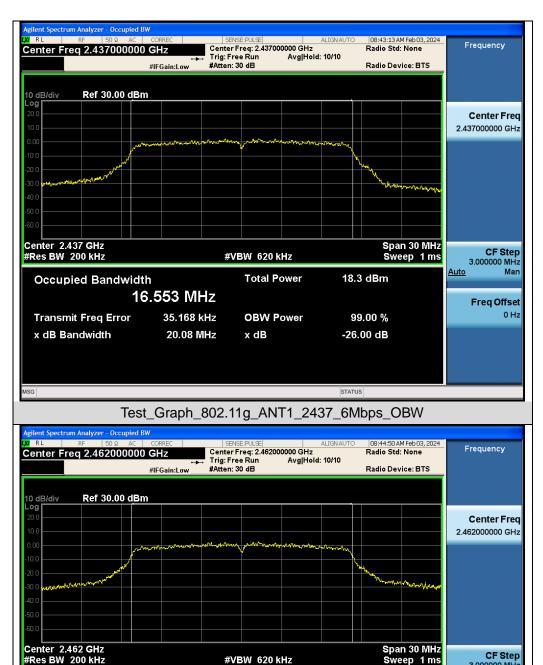
8.4 Measurement Result


Test Data of Occupied Bandwidth and DTS Bandwidth							
Test Mode	Test Frequency (MHz)	99% Occupied Bandwidth (MHz)	DTS Bandwidth (MHz)	DTS Bandwidth Limits (MHz)	Pass or Fail		
	2412	12.876	8.052	≥0.5	Pass		
802.11b	2437	13.026	7.564	≥0.5	Pass		
	2462	12.882	8.073	≥0.5	Pass		
	2412	16.509	15.684	≥0.5	Pass		
802.11g	2437	16.553	15.442	≥0.5	Pass		
	2462	16.502	15.116	≥0.5	Pass		
	2412	17.597	16.295	≥0.5	Pass		
802.11n20	2437	17.669	15.452	≥0.5	Pass		
	2462	17.609	15.124	≥0.5	Pass		
	2422	35.963	35.023	≥0.5	Pass		
802.11n40	2437	36.091	35.432	≥0.5	Pass		
	2452	36.000	35.105	≥0.5	Pass		

Test Graphs of Occupied Bandwidth

Test_Graph_802.11g_ANT1_2412_6Mbps_OBW

CF Step


Man

3.000000 MHz

Freq Offset 0 Hz

Auto

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

#VBW 620 kHz

x dB

Total Power

OBW Power

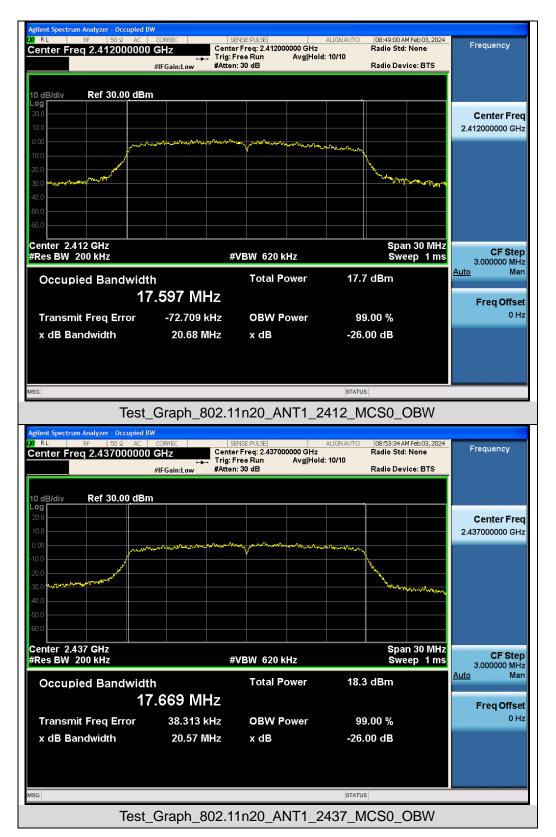
Test_Graph_802.11g_ANT1_2462_6Mbps_OBW

18.4 dBm

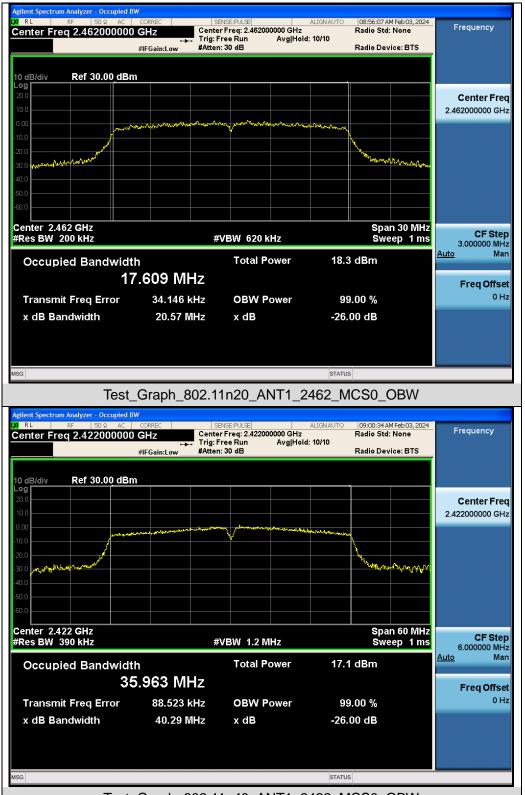
99.00 %

-26.00 dB

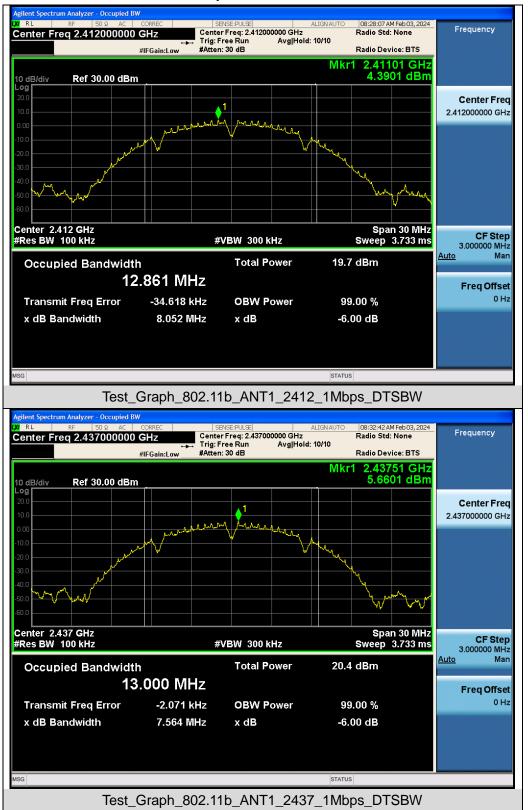
Occupied Bandwidth

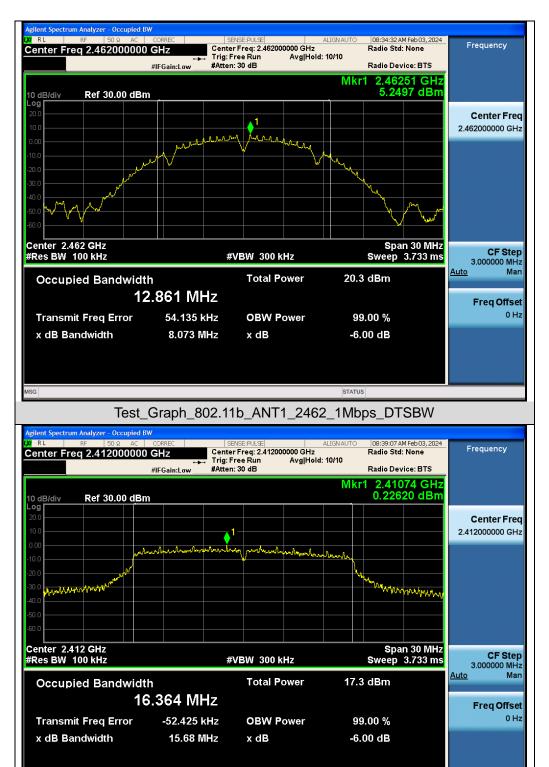

Transmit Freq Error x dB Bandwidth

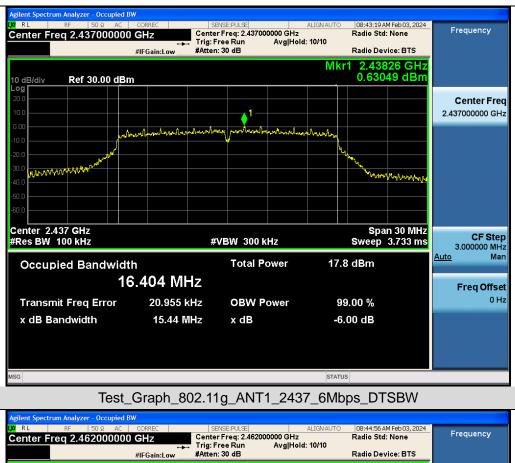
16.502 MHz

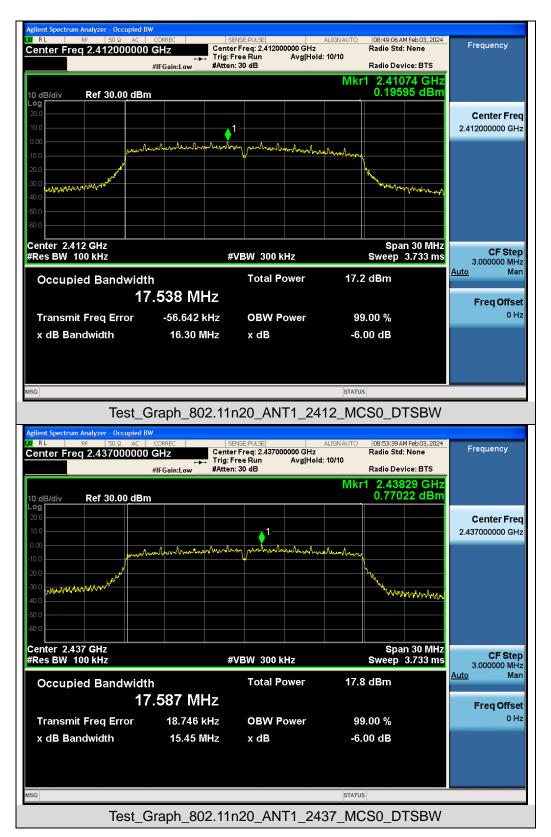

41.175 kHz

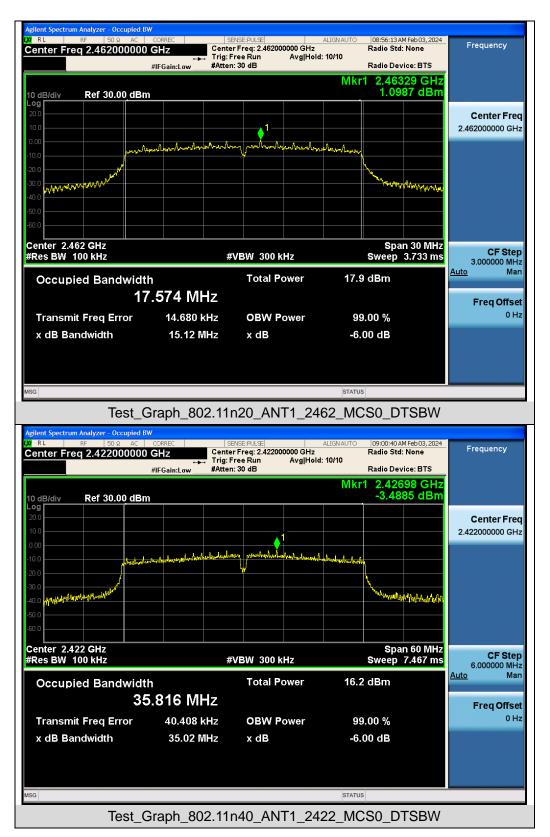
20.37 MHz

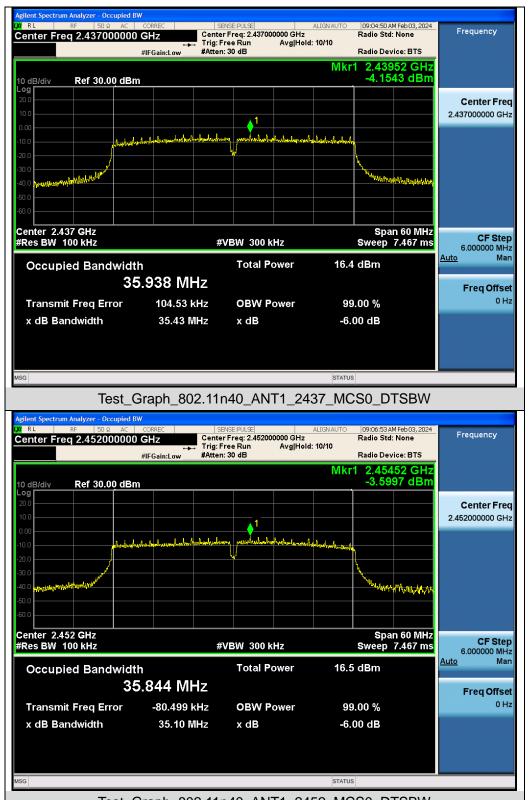

Test_Graph_802.11n40_ANT1_2422_MCS0_OBW


Test_Graph_802.11n40_ANT1_2452_MCS0_OBW


Test Graphs of DTS Bandwidth


Test_Graph_802.11g_ANT1_2412_6Mbps_DTSBW





Test_Graph_802.11n40_ANT1_2452_MCS0_DTSBW

9. Power Spectral Density Measurement

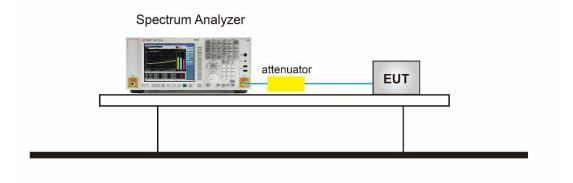
9.1 Provisions Applicable

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than

8 dBm in any 3 kHz band during any time interval of continuous transmission.

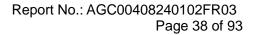
9.2 Measurement Procedure

⊠For Peak power spectral density test:

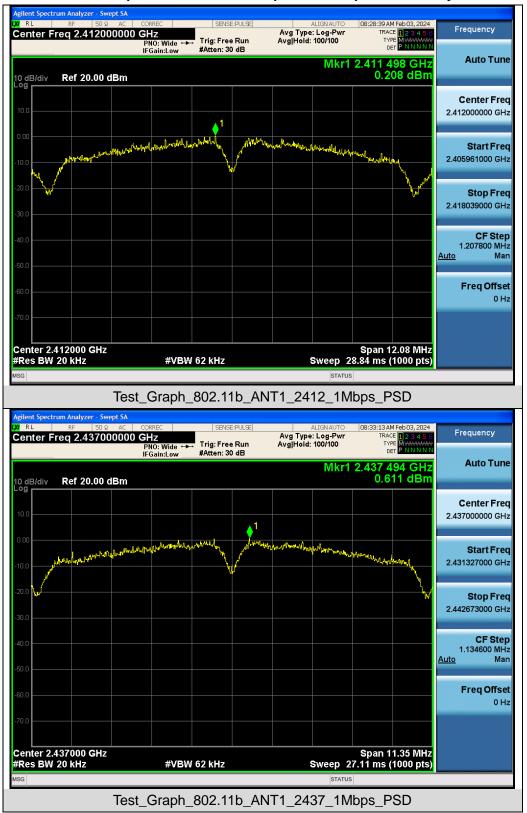

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the RBW = 20 kHz.
- 4. Set the VBW \geq [3 × RBW].
- 5. Set the Span \geq [1.5 × DTS bandwidth].
- 6. Sweep time=Auto couple.
- 7. Detector function=Peak.
- 8. Trace Mode=Max hold.
- When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result.
- 10. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
- 11. The indicated level is the peak output power, after any corrections for external attenuators and cables.

For Average power spectral density test:

- 1. The testing follows the ANSI C63.10 Section 11.10.5 Method AVPSD.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 3. Set Span to at least 1.5 times the OBW.
- 4. Set RBW to:3 kHz \leq RBW \leq 100 kHz.
- 5. Set VBW≥[3×RBW].
- 6. Sweep Time=Auto couple.
- 7. Detector function=RMS (i.e., power averaging).
- 8. Trace average at least 100 traces in power averaging (rms) mode.
- When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result.
- 10. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below.
- 11. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.
- 12. Record the test results in the report.

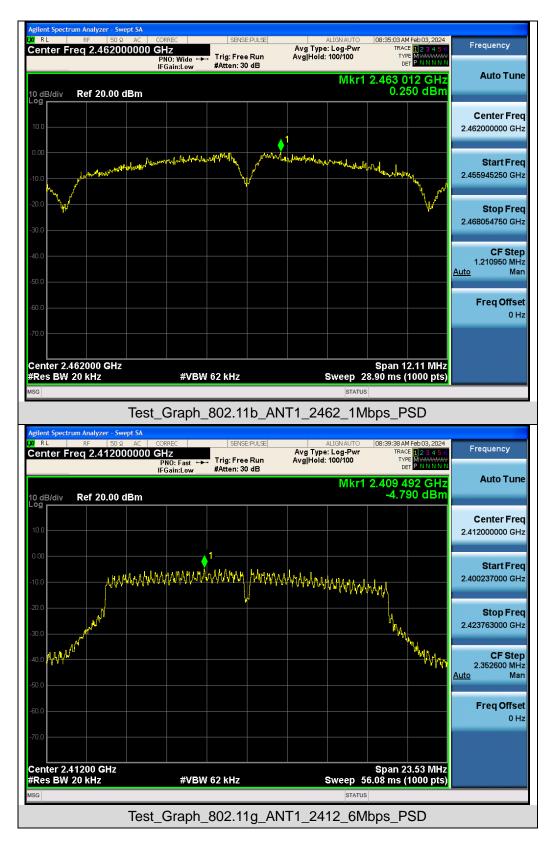


9.3 Measurement Setup (Block Diagram of Configuration)



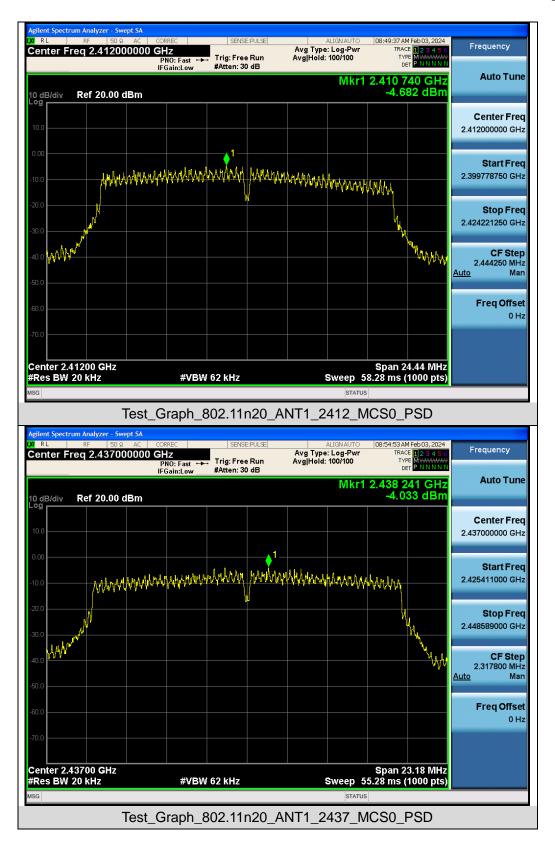
9.4 Measurement Result

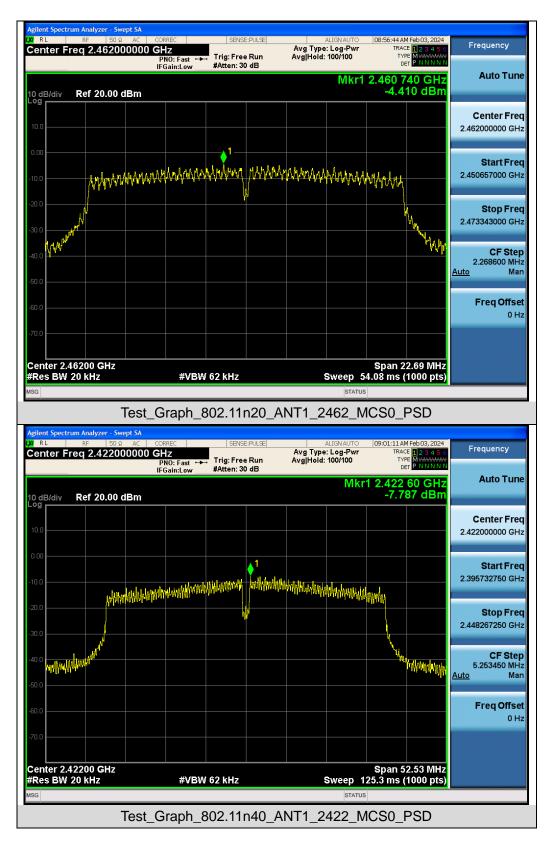
	Test Dat	ta of Conducted Outpu	ut Power Spectral Den	sity	
Test Mode	Test Frequency (MHz)	Power Spectral density (dBm/20kHz)	Power Spectral density (dBm/3kHz)	Limit (dBm/3kHz)	Pass or Fail
	2412	0.208	-8.031	≤8	Pass
802.11b	2437	0.611	-7.628	≪8	Pass
	2462	0.250	-7.989	≤8	Pass
	2412	-4.790	-13.029	≪8	Pass
802.11g	2437	-3.328	-11.567	≪8	Pass
	2462	-4.013	-12.252	≪8	Pass
	2412	-4.682	-12.921	≪8	Pass
802.11n20	2437	-4.033	-12.272	≪8	Pass
	2462	-4.410	-12.649	≪8	Pass
	2422	-7.787	-16.026	≪8	Pass
802.11n40	2437	-8.682	-16.921	≪8	Pass
	2452	-8.569	-16.808	≪8	Pass

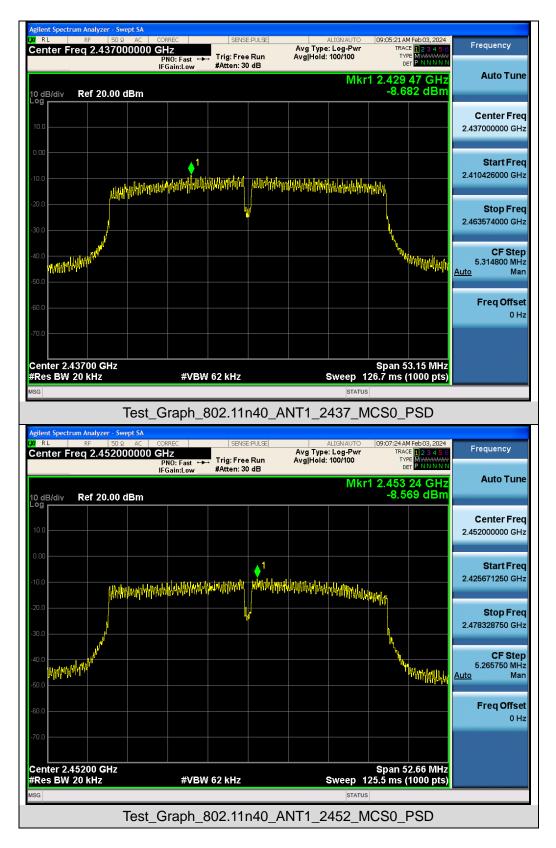




Test Graphs of Conducted Output Power Spectral Density





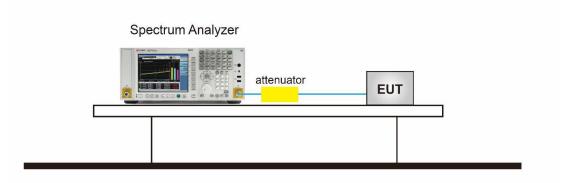


10. Conducted Band Edge and Out-of-Band Emissions

10.1 Provisions Applicable

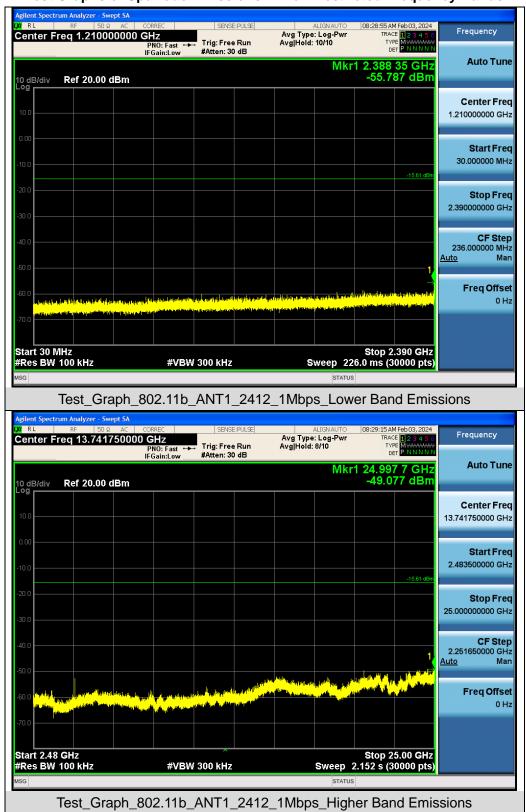
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

10.2 Measurement Procedure

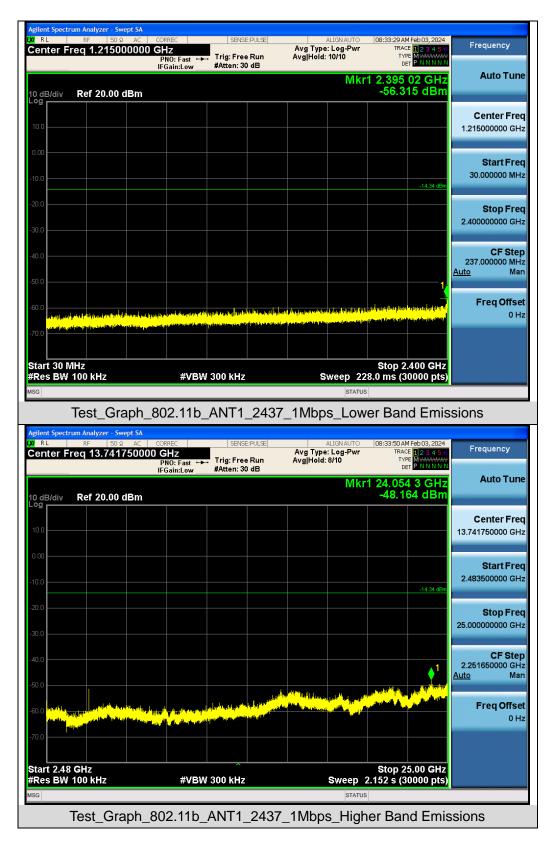

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

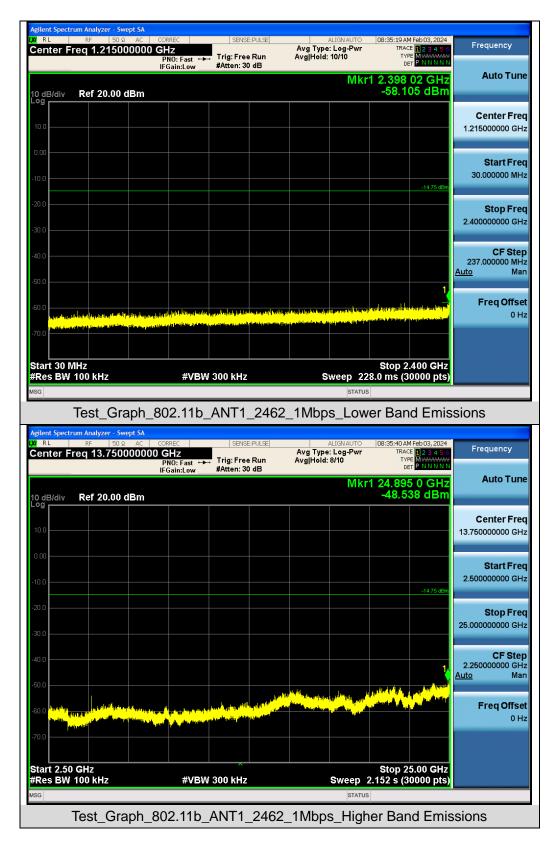
- Step 1: Measurement Procedure In-Band Reference Level
 - 1. Set instrument center frequency to DTS channel center frequency.
 - 2. Set the span to \geq 1.5 times the DTS bandwidth.
 - 3. Set the RBW = 100 kHz.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum PSD level.
 - 10. Note that the channel found to contain the maximum PSD level can be used to establish the reference level.
- Step 2: Measurement Procedure Out of Band Emission
 - 1. Set RBW = 100 kHz.
 - 2. Set VBW \ge 300 kHz.
 - 3. Detector = peak.
 - 4. Sweep = auto couple.
 - 5. Trace Mode = max hold.
 - 6. Allow trace to fully stabilize.
 - 7. Use the peak marker function to determine the maximum amplitude level.


Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

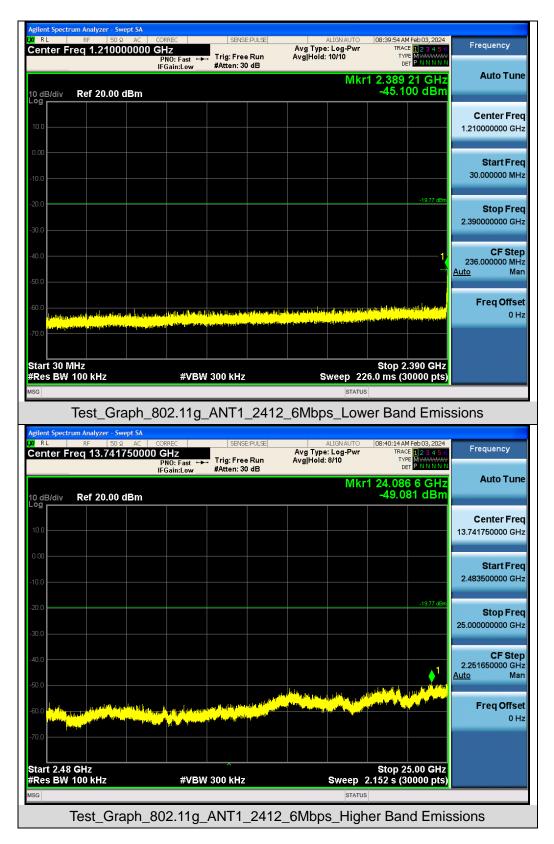
10.3 Measurement Setup (Block Diagram of Configuration)

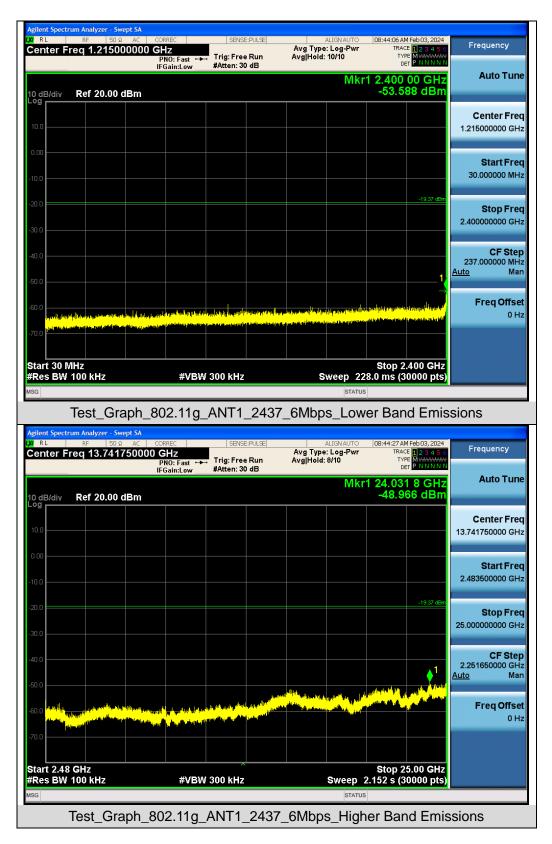


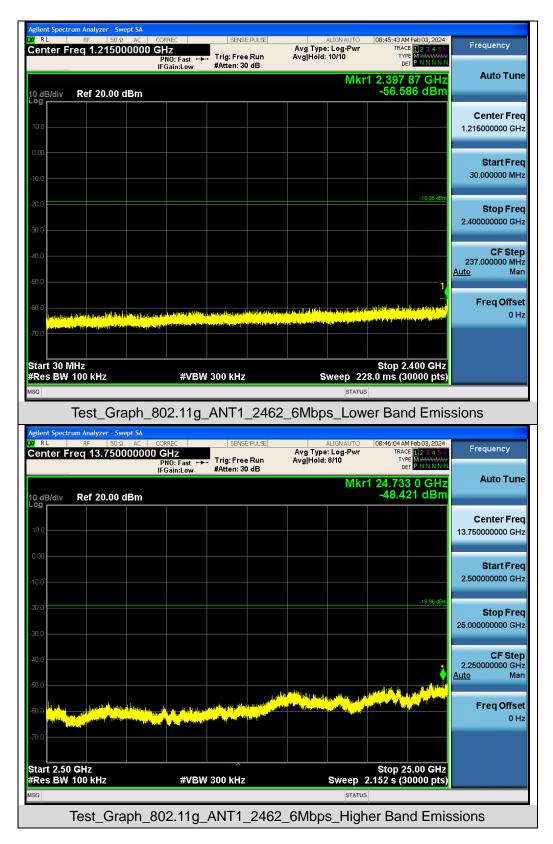
10.4 Measurement Result

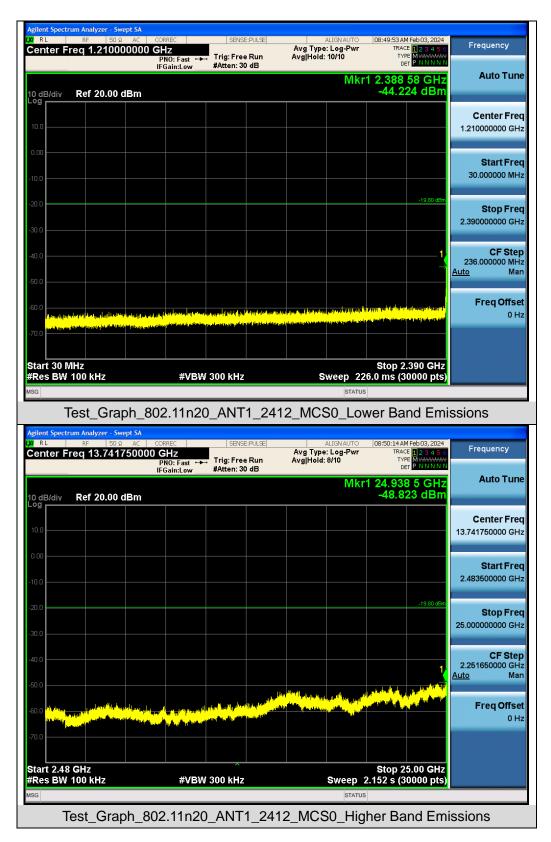


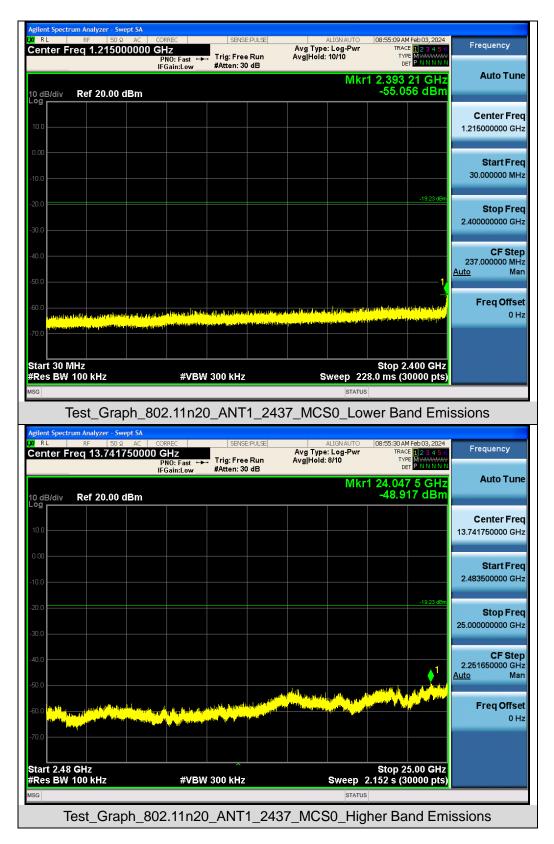
Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands

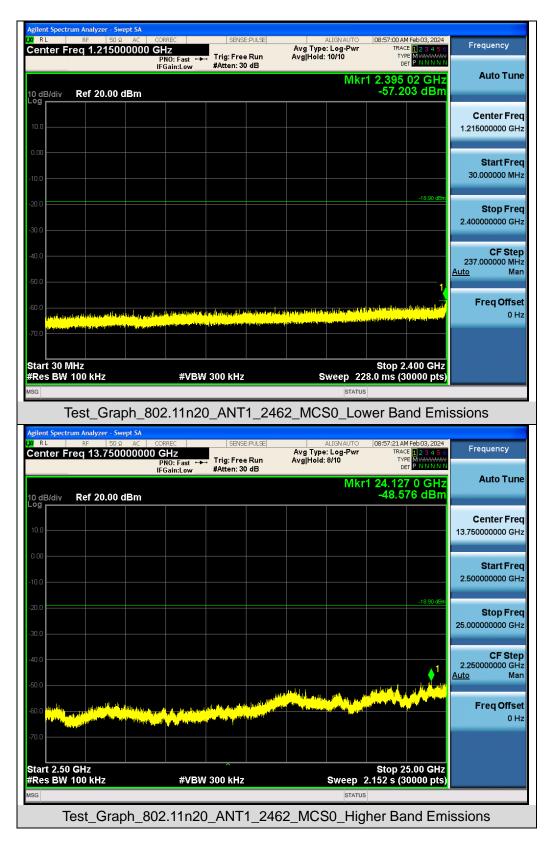


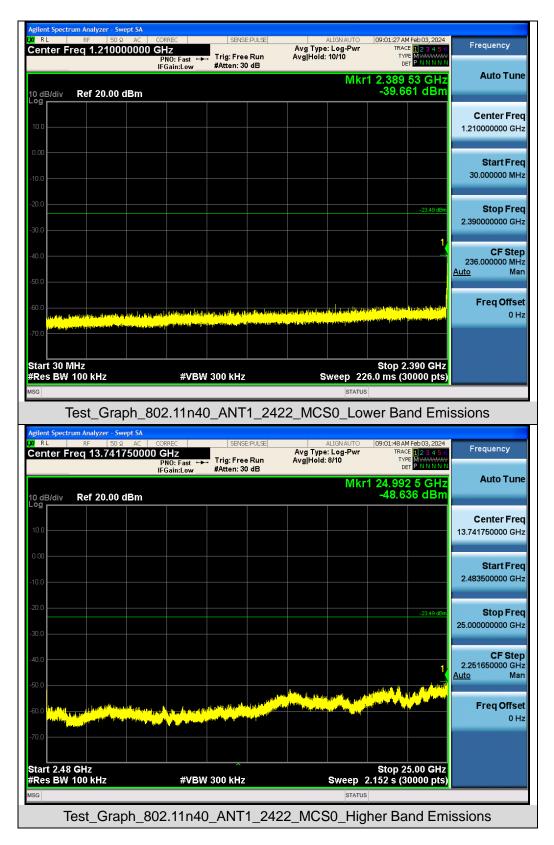


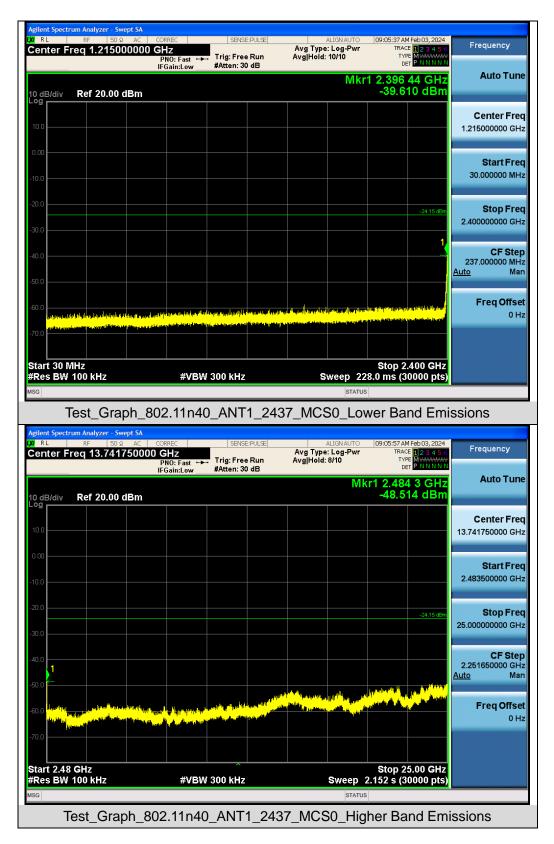


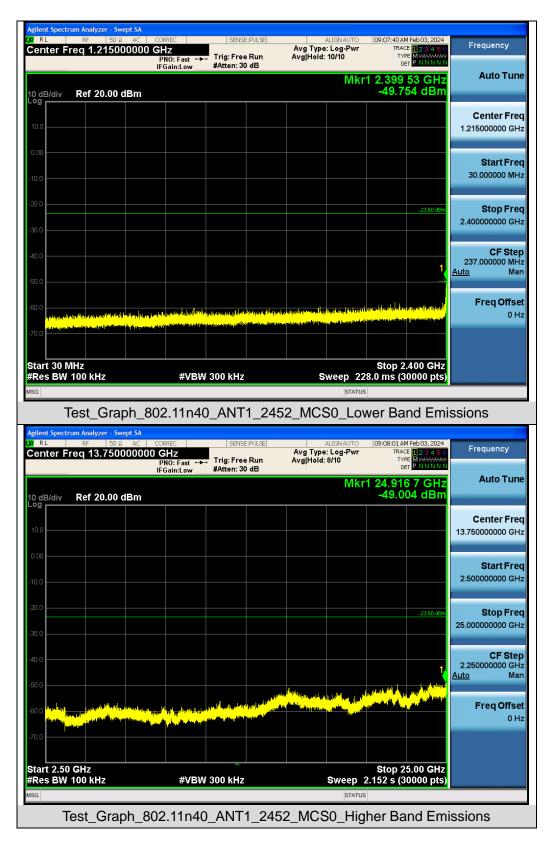


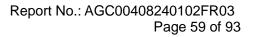












Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands

11. Radiated Spurious Emission

11.1 Measurement Limits

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.
 Any redshan alternative (provided the transmitter operates for longer than 0.1 seconds), or pin cases where the

Stamp" is deemed to be invalid. Copying or excerpting portion of, or latering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz
Start ~Stop Trequency	1MHz/3MHz for Peak, 1MHz/3MHz for Average

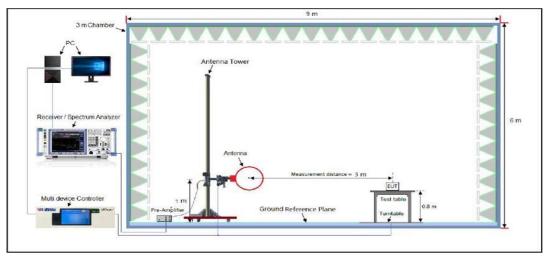
Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

• Quasi-Peak Measurements below 1GHz

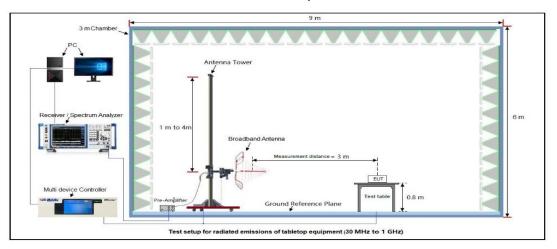
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

• Peak Measurements above 1GHz

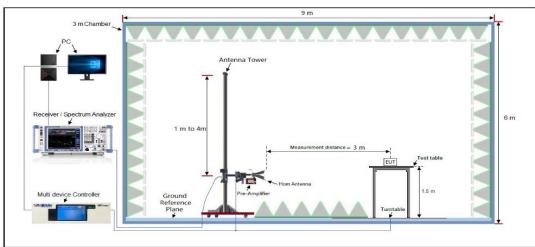
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize


• Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW setting requirements are as follows:
- 4. If the EUT is configured to transmit with duty cycle \ge 98%, set VBW = 10 Hz.
- 5. If the EUT duty cycle is < 98%, set VBW \ge 1/T. T is the minimum transmission duration.
- 6. Detector = Peak
- 7. Sweep time = auto
- 8. Trace mode = max hold



11.3 Measurement Setup (Block Diagram of Configuration)



Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/

11.4 Measurement Result

Radiated Emission at 9kHz-30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

			Radiat	ed Emiss	ion Test Res	ults at 30MHz	-1GHz		
EUT N	ame	4G s	smart PAD			Model Nam	e	AGM_PAI	D_P2
Tempe	erature	25°C	0			Relative Hu	umidity	55.4%	
Pressu	ıre	960ł	nPa			Test Voltag	е	DC 3.85V	by battery
Test M	ode	Mod	le 2			Antenna Po	olarity	Horizonta	l
	130 120 110 90 80 70 60 50 40 30 20 10 0 -10 30M	- OP Limit QP Detect	— Horizontal PK	100M	FCC Part 150	***			16
Final D	Data List _	Peak	<u> </u>						
NO.	Freq. [MHz]		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	31.94	↓	24.84	12.71	40.00	15.16	100	300	Horizontal
2	155.13	3	25.10	17.50	43.50	18.40	100	150	Horizontal
3	237.5	8	22.79	15.61	46.00	23.21	100	340	Horizontal
4	459.7	1	28.02	24.69	46.00	17.98	100	110	Horizontal
5	618.7	9	31.02	25.79	46.00	14.98	100	320	Horizontal
6	892.3	3	35.03	29.93	46.00	10.97	100	100	Horizontal

			Radiate	ed Emissi	on Test Resu	Its at 30MHz-	1GHz		
EUT N	ame	4G s	smart PAD			Model Nan	ne	AGM_PAD	D_P2
Tempe	rature	25°C)			Relative H	umidity	55.4%	
Pressu	ire	960ł	nPa			Test Voltag	je	DC 3.85V	by battery
Test M	Pressure 960hPa Test Voltage DC 3.85V by battery Test Mode Mode 2 Antenna Polarity Vertical Image: Pressure in the image: pressure in th								
	130				FCC Part 15C				
	p 60 50								
	1		* ² * ³	* ⁴					
	F S	\sim		him	man	mm which	and the second of the second o	me were the	Ser
						and the second of	***		
				100M	Frequency[1]				1G
					Frequency[Hz]				
		QF Deleci							
Final D	ata List_	Peak							
NO.			Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	31.94	1	33.12	12.71	40.00	6.88	100	100	Vertical
2	58.13	3	33.45	17.38	40.00	6.55	100	60	Vertical
3	62.98	3	33.50	16.92	40.00	6.50	100	320	Vertical
4	79.47	7	35.25	12.06	40.00	4.75	100	200	Vertical
5	95.96	6	29.25	15.85	43.50	14.25	100	240	Vertical
6	863.2	3	34.66	29.90	46.00	11.34	100	240	Vertical

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 2 is the worst case and recorded in the report.

			Radiat	ted Emiss	ion Test Res	ults at 30MHz	-1GHz		
EUT Na	ame	4G s	smart PAD			Model Nam	ne	AGM_PA	D_P2W
Tempe	rature	25°C	C			Relative Hu	umidity	55.4%	
Pressu	ire	960	hPa			Test Voltag	e	DC 3.85V	by battery
Test M	ode	Mod	le 2			Antenna Po	olarity	Horizonta	l
	130 120				FCC Part 150				
	110								
	100								
	90 80								
	To To 60 50								
	50 40								
	30		4 ²	* ³				5	-
	20	$\wedge \!$	\sim		Am Annon	ummer Man marine	white and a start a sta	and a set of the set o	
	10								
	-10								
	30M			100M	Frequency[H:	z]			1G
	-	QP Limit QP Detecto	Horizontal PK						
Final D	ata List _	Peak	ζ						
NO.	Freq. [MHz		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	35.82	2	27.99	11.52	40.00	12.01	100	280	Horizontal
2	54.25	5	27.26	16.35	40.00	12.74	100	80	Horizontal
3	102.7	5	30.30	16.93	43.50	13.20	100	300	Horizontal
4	462.6	2	28.25	24.11	46.00	17.75	100	130	Horizontal
5	612		29.66	25.03	46.00	16.34	100	240	Horizonta
6	870.9	9	35.42	29.64	46.00	10.58	100	270	Horizonta

			Radiate	ed Emissio	on Test Resu	Its at 30MHz-	1GHz		
EUT N	ame	4G sr	mart PAD			Model Nam	ne	AGM_PAD)_P2W
Tempe	erature	25°C				Relative H	umidity	55.4%	
Press	ure	960h	Pa			Test Voltag	je	DC 3.85V	by battery
Test M	lode	Mode	92			Antenna P	olarity	Vertical	
	130				FCC Part 15C	-			
	120 110 100 90 80 70 60 50 40 30 20 10 0 -10 30M * QP Limit * QP Detec		*2 //	100M	Frequency[Hz]			1G	
Final [Data List_	Peak							
NO.	Freq [MHz		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	35.82	2	35.49	11.52	40.00	4.51	100	120	Vertical
2	56.19)	34.82	16.87	40.00	5.18	100	160	Vertical
3	101.7	8	34.68	16.98	43.50	8.82	100	20	Vertical
4	459.7	1	28.13	24.69	46.00	17.87	100	0	Vertical
5	623.6	4	30.29	25.40	46.00	15.71	100	120	Vertical
	857.4		35.78						

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 2 is the worst case and recorded in the report.

EUT Name		4G smart	PAD		Мос	lel Name	AGM_PAD	D_P2
Temperature		25°C			Rela	ative Humidity	55.4%	
Pressure		960hPa			Test	t Voltage	DC 3.85V	by battery
Test Mode		Mode 1			Ante	enna Polarity	Horizontal	
Frequency	FrequencyMeter Reading(MHz)(dBµV)		Factor	Emission Level		Limits	Margin	Value Type
(MHz)			(dB)	(dBµV/	m)	(dBµV/m)	(dB)	
4824.000		51.04	0.08	51.12	2	74.00	-22.88	peak
4824.000		42.33	0.08	42.41		54.00	-11.59	AVG
7236.000		48.77	2.21	50.98	3	74.00	-23.02	peak
7236.000		41.06	2.21	43.27	7	54.00	-10.73	AVG
Factor = Anten	na Fa	actor + Cab	le Loss – Pre-ar	nplifier.				
EUT Name		4G smart	PAD		Мос	lel Name	AGM_PAD)_P2
Temperature		25°C			Rela	ative Humidity	55.4%	
Pressure		960hPa			Test	t Voltage	DC 3.85V	by battery
Test Mode		Mode 1			Ante	enna Polarity	Vertical	
Frequency (MHz)	F	Meter Reading (dBµV)	Factor (dB)	Emissi Leve (dBµV/	I	Limits (dBµV/m)	Margin (dB)	Value Type
4824.000		52.04	0.08	52.12		74.00	-21.88	peak
4824.000		41.97	0.08	42.05		54.00	-11.95	AVG
7236.000	1	49.74	2.21	51.95	5	74.00	-22.05	peak
7236.000		40.25	2.21	42.46	6	54.00	-11.54	AVG

Radiated Emissions Test Results above 1 GHz

RESULT: Pass

Remark:

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

EUT Name		4G smart	PAD		Мос	lel Name	AGM_PAI	D_P2
Temperature		25°C			Rela	ative Humidity	55.4%	
Pressure		960hPa			Test	t Voltage	DC 3.85V	by battery
Test Mode		Mode 2			Ante	enna Polarity	Horizonta	
Frequency		Meter Reading	Factor	Emissi Leve		Limits	Margin	Value Type
(MHz)	((dBµV)	(dB)	(dBµV/	m)	(dBµV/m)	(dB)	
4874.00		49.85	0.08	49.93	3	74.00	-24.07	peak
4874.00		40.12	0.08	40.20)	54.00	-13.80	AVG
7311.00		49.34	2.21	51.55	5	74.00	-22.45	peak
7311.00		39.17	2.21	41.38	3	54.00	-12.62	AVG
Remark: Factor = Anten	na Fa	actor + Cab	le Loss – Pre-a	mplifier.				
EUT Name		4G smart	PAD		Mod	lel Name	AGM_PAI	D_P2
Temperature		25°C			Rela	ative Humidity	55.4%	
Pressure		960hPa			Test	t Voltage	DC 3.85V	by battery
Test Mode		Mode 2			Ante	enna Polarity	Vertical	
	1			<u> </u>		1		
Frequency		Meter Reading	Factor	Emissi Leve		Limits	Margin	Value Type
(MHz)	((dBµV)	(dB)	(dBµV/	m)	(dBµV/m)	(dB)	
4874.00		50.25	0.08	50.33	3	74.00	-23.67	peak
4874.00		41.36	0.08	41.44	1	54.00	-12.56	AVG
7311.00		50.14	2.21	52.35	5	74.00	-21.65	peak
7311.00		38.74	2.21	40.95	5	54.00	-13.05	AVG
Remark: Factor = Anten	na Fa	actor + Cab	le Loss – Pre-a	molifier				

Radiated Emissions Test Results above 1GHz

RESULT: Pass

Radiated Emissions Test Results above 1GHz

EUT Name		4G smart	PAD		Mode	el Name	AGM_PAD	_P2		
Temperature		25°C			Relat	tive Humidity	55.4%	y battery Value Type peak AVG peak AVG Peak AVG		
Pressure		960hPa			Test	Voltage	DC 3.85V k	by battery		
Test Mode		Mode 3			Ante	nna Polarity	Horizontal			
Frequency		Meter Reading	Factor	Emiss Leve	-	Limits	Margin	Value Type		
(MHz)	(MHz) (dBµV)		(dB)	(dBµV	/m)	(dBµV/m)	(dB)			
4924.000	50.36 0.14 50.5		0	74.00	-23.50	peak				
4924.000		41.88	0.14	42.0	2	54.00	-11.98	AVG		
7386.000		49.37	2.36	51.7	3	74.00	-22.27	peak		
7386.000		38.11	2.36	40.4	7	54.00	-13.53	AVG		
Remark: Factor = Anten	na Fa	actor + Cab	le Loss – Pre-a	mplifier.						
EUT Name		4G smart	PAD		Mode	el Name	AGM_PAD	_P2		
		25°C			Relat	tive Humidity	55.4%			
Temperature		25 0				•				
Temperature Pressure		960hPa			Test	Voltage	DC 3.85V k	by battery		
-						Voltage nna Polarity	DC 3.85V k Vertical	by battery		
Pressure		960hPa Mode 3		F acion	Ante			by battery		
Pressure		960hPa	Factor	Emiss	Ante					
Pressure Test Mode	R	960hPa Mode 3 Meter	Factor (dB)		Anter ion	nna Polarity	Vertical			
Pressure Test Mode Frequency	R (960hPa Mode 3 Meter Reading		Leve	Anter ion el /m)	nna Polarity Limits	Vertical Margin	Value Type		
Pressure Test Mode Frequency (MHz)	R (960hPa Mode 3 Meter Reading (dBµV)	(dB)	Leve (dBµV	Ante ion el /m) 8	Limits	Vertical Margin (dB)	Value Type		
Pressure Test Mode Frequency (MHz) 4924.000	R (960hPa Mode 3 Meter Reading (dBµV) 51.74	(dB) 0.14	Leve (dBµV 51.8	Ante	Limits (dBµV/m) 74.00	Vertical Margin (dB) -22.12	Value Type		
Pressure Test Mode Frequency (MHz) 4924.000 4924.000	(960hPa Mode 3 Meter Reading (dBµV) 51.74 40.85	(dB) 0.14 0.14	Leve (dBµV 51.8 40.9	Ante	Limits (dBµV/m) 74.00 54.00	Vertical Margin (dB) -22.12 -13.01	Value Type peak AVG		
Pressure Test Mode Frequency (MHz) 4924.000 4924.000 7386.000	(960hPa Mode 3 Meter Reading (dBµV) 51.74 40.85 49.33	(dB) 0.14 0.14 2.36	Leve (dBµV 51.8 40.9 51.6	Ante	Limits (dBµV/m) 74.00 54.00 74.00	Vertical Margin (dB) -22.12 -13.01 -22.31	Value Type peak AVG peak		

RESULT: Pass

Note:

- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.
- 4. All test modes had been pre-tested, the mode 1, 2, 3 are the worst case and recorded in the report

EUT Name	JT Name 4G smart PAD			Model Name	AGM_PAI	AGM_PAD_P2W	
Temperature 25°C				Relative Humidi	ty 55.4%	55.4%	
Pressure 960hPa			Test Voltage		DC 3.85V	DC 3.85V by battery	
Test Mode	Mode 1			Antenna Polarit	y Horizonta	Horizontal	
Frequency	Meter Reading	Factor		n Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m	ı) (dBµV/m)	(dB)		
4824.000	50.25	0.08	50.33	74.00	-23.67	peak	
4824.000	39.45	0.08	39.53	54.00	-14.47	AVG	
7236.000	49.22	2.21	51.43	74.00	-22.57	peak	
7236.000	40.23	2.21	42.44	54.00	-11.56	AVG	
EUT Name 4G smart		t PAD		Model Name Relative Humidi	AGM_PA	D_P2W	
Temperature	25°C				.,		
Pressure 960hPa			Test Voltag		DC 3.85V	DC 3.85V by battery	
Test Mode Mode				Antenna Polarit	y Vertical		
Frequency	Meter Reading	Factor	Emission Level	n Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m	ı) (dBµV/m)	(dB)		
4824.000	51.99	0.08	52.07	74.00	-21.93	peak	
4824.000	40.15	0.08	40.23	54.00	-13.77	AVG	
7236.000	49.21	2.21	51.42	74.00	-22.58	peak	
7236.000	38.85	2.21	41.06	54.00	-12.94	AVG	
Remark:	na Factor + Cab	le Loss – Pre-a					

RESULT: Pass

EUT Name		4G smart PAD			Mod	lel Name	AGM_PAD_P2W	
Temperature		25°C			Relative Humidity		55.4%	
Pressure	ire 960hPa			Test Voltage		DC 3.85V	DC 3.85V by battery	
Test Mode	Mode Mode 2			Antenna Polarity		Horizontal	Horizontal	
Frequency		leter eading	Factor			Limits	Margin	Value Type
(MHz)	(d	lBμV)	(dB)	(dBµV/i	m)	(dBµV/m)	(dB)	
4874.00	5	0.86	0.14	51.00)	74.00	-23.00	peak
4874.00	4	1.28	0.14	41.42	2	54.00	-12.58	AVG
7311.00	4	8.74	2.36	51.10)	74.00	-22.90	peak
7311.00	4	0.58	2.36	42.94	ł	54.00	-11.06	AVG
Factor = Anteni EUT Name		tor + Cab	le Loss – Pre-ar	nplifier.	Med			
			PAD		Model Name AGM_PAD_P2W		J_P2VV	
Temperature		25°C			Relative Humidity		55.4%	
Pressure	re 960hPa			Test Voltage DC 3.85V by bat		by battery		
Test Mode	Mode 2			Ante	Antenna Polarity Vertical			
Frequency		leter eading	Factor	Emissio Level		Limits	Margin	Value Type
(MHz)	(d	lBμV)	(dB)	(dBµV/i	m)	(dBµV/m)	(dB)	
4874.00		0.51	0.14	50.65		74.00	-23.35	peak
4874.00	4	2.51	0.14	42.65	5	54.00	-11.35	AVG
7311.00	4	9.85	2.36	52.21		74.00	-21.79	peak
7311.00	3	9.51	2.36	41.87	,	54.00	-12.13	AVG

Radiated Emissions Test Results above 1GHz

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

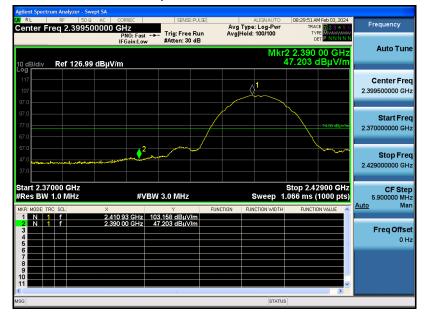
RESULT: Pass

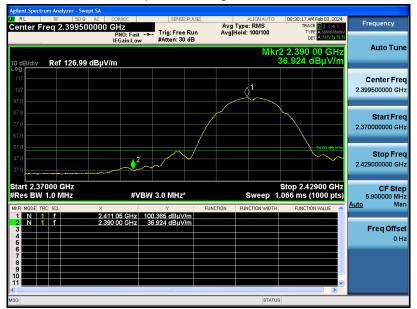
Radiated Emissions Test Results above 1GHz

EUT Name 4G smart PAD			PAD		Model Name		AGM_PAD_P2W	
Temperature 25°C			Relat	Relative Humidity 55.4%				
Pressure 960hPa				Test Voltage		Voltage	DC 3.85V by battery	
Test Mode Mode 3		de 3		Ante		nna Polarity	Horizontal	
Frequency	Meter Reading		Factor	Emission Level		Limits	Margin	Value Type
(MHz)	(dBµ	V)	(dB)	(dBµV	′/m)	(dBµV/m)	(dB)	
4924.000	52.0)5	0.22	52.27		74.00	-21.73	peak
4924.000	41.3	9	0.22	41.6	61	54.00	-12.39	AVG
7386.000	49.3	80	2.64	51.9)4	74.00	-22.06	peak
7386.000	40.2	28	2.64	42.9)2	54.00	-11.08	AVG
Remark: Factor = Anten	na Factor	+ Cab	le Loss – Pre-a	mplifier.				
EUT Name 4G					1			
EUT Name	4G	smart	PAD		Mode	el Name	AGM_PAD	_P2W
EUT Name Temperature	4G 25°		PAD			el Name tive Humidity	AGM_PAD 55.4%	_P2W
	25°		PAD		Relat			
Temperature	25°	С	PAD		Relat Test	tive Humidity	55.4%	
Temperature Pressure	25° 960 Mo	C)hPa de 3	PAD		Relat Test Ante	tive Humidity Voltage	55.4% DC 3.85V I	
Temperature Pressure	25°	C DhPa de 3 er	PAD	Emiss	Relat Test Ante	tive Humidity Voltage	55.4% DC 3.85V I	by battery
Temperature Pressure Test Mode	25° 960 Mo	C DhPa de 3 er ing			Relat Test Ante	tive Humidity Voltage nna Polarity	55.4% DC 3.85V k Vertical	by battery
Temperature Pressure Test Mode Frequency	25° 960 Mo Met Read	C DhPa de 3 er ing V)	Factor	Leve	Relat Test Ante sion el	tive Humidity Voltage nna Polarity Limits	55.4% DC 3.85V k Vertical Margin	by battery
Temperature Pressure Test Mode Frequency (MHz)	25° 960 Mo Met Read (dBµ	C DhPa de 3 er ing V) 55	Factor (dB)	Leve (dBµV	Relat Test Ante sion el (/m)	tive Humidity Voltage nna Polarity Limits (dBµV/m)	55.4% DC 3.85V b Vertical Margin (dB)	value Type
Temperature Pressure Test Mode Frequency (MHz) 4924.000	25° 960 Mo Met Read (dBµ 51.8	C DhPa de 3 er ing V) 35 74	Factor (dB) 0.22	Leve (dBµV 52.0	Relat Test Ante sion el (/m) 07	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74.00	55.4% DC 3.85V b Vertical Margin (dB) -21.93	value Type
Temperature Pressure Test Mode Frequency (MHz) 4924.000 4924.000	25° 960 Mo Met Read (dBµ 51.8 40.7	C DhPa de 3 er ing V) 35 74 28	Factor (dB) 0.22 0.22	Levo (dBµV 52.0 40.9	Relat Test Ante sion el (/m) 07 06 02	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74.00 54.00	55.4% DC 3.85V b Vertical Margin (dB) -21.93 -13.04	Value Type peak AVG
Temperature Pressure Test Mode Frequency (MHz) 4924.000 4924.000 7386.000	25° 960 Mo Met Read (dBµ 51.8 40.7 49.2	C DhPa de 3 er ing V) 35 74 28	Factor (dB) 0.22 0.22 2.64	Leve (dBµV 52.0 40.9 51.9	Relat Test Ante sion el (/m) 07 06 02	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74.00 54.00 74.00	55.4% DC 3.85V b Vertical Margin (dB) -21.93 -13.04 -22.08	Value Type Peak AVG peak

RESULT: Pass

Note:


- 5. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 6. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 7. The "Factor" value can be calculated automatically by software of measurement system.
- 8. All test modes had been pre-tested, the mode 1, 2, 3 are the worst case and recorded in the report


Band Edge Emission Test Results for Restricted Bands

EUT Name	4G smart PAD	Model Name	AGM_PAD_P2
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.85V by battery
Test Mode	Mode 1	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

Band Edge Emission Test Results for Restricted Bands

EUT Name	4G smart PAD	Model Name	AGM_PAD_P2
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.85V by battery
Test Mode	Mode 1	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass

Band Edge Emission Test Results for Restricted Bands

EUT Name	4G smart PAD	Model Name	AGM_PAD_P2
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	DC 3.85V by battery
Test Mode	Mode 3	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: Pass