Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	FCC PA	RT 15 SUBPART C TEST REPO	RT
	GIN	FCC PART 15.247	
	Report Reference No	FCC PART 15.247 CTA22102000302 2A3DJ-V7	TEST
	Compiled by (position+printed name+signature): Supervised by	File administrators Zoey Cao	Testing lechnology
	(position+printed name+signature):	Project Engineer Amy Wen	A Venz
	Approved by (position+printed name+signature):	RF Manager Eric Wang	Evic Wang
	Date of issue	Dec. 20, 2022	GTING
	Testing Laboratory Name:	Shenzhen CTA Testing Technology Co., L	td.
	Address:	Room 106, Building 1, Yibaolai Industrial Par Fuhai Street, Baoʻan District, Shenzhen, Chir	
	Applicant's name:	Shen Zhen Powerful Photoelectron Co., L	td
	Address:	5th Floor, Building 3, Zone B, Hongfa Scienc Park, Tangtou Community, Shiyan Street, Ba	
	Test specification:	TESTIN	
	Standard:	FCC Part 15.247	
	Testing Technology Co., Ltd. is ackno Testing Technology Co., Ltd. takes no	Co., Ltd. All rights reserved. whole or in part for non-commercial purposes wledged as copyright owner and source of the presponsibility for and will not assume liability ed material due to its placement and context.	e material. Shenzhen CTA
	Test item description:	PROJECTOR	
CTA	Trade Mark	N/A	
	Manufacturer	Shen Zhen Powerful Photoelectron Co., Ltd	
	Model/Type reference:	V7	
	Listed Models	AV7, BV7, CV7, DV7, EV7, FV7, GV7, HV7	ESTINO
	Modulation	GFSK, Π/4DQPSK	CTATL
	Frequency	From 2402MHz to 2480MHz	GTA CTATESTING
	Rating	AC120V, 60Hz	
	Result	PASS	
	CTATE	TING	

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Page 2 of 39

		TEST REPORT
CTATESTING		
Equipment under Test	:	PROJECTOR
Model /Type	E	V7
Listed Models	:	AV7, BV7, CV7, DV7, EV7, FV7, GV7, HV7
Applicant		Shen Zhen Powerful Photoelectron Co., Ltd
Address	TES	5th Floor, Building 3, Zone B, Hongfa Science and Technology Industrial Park, Tangtou Community, Shiyan Street, Baoan District, Shenzhen, China
Manufacturer	:	Shen Zhen Powerful Photoelectron Co., Ltd
Address	:	5th Floor, Building 3, Zone B, Hongfa Science and Technology Industrial Park, Tangtou Community, Shiyan Street, Baoan District, Shenzhen, China
Test Re	esult:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Report No.: CTA22102000302

Contents

	Conter	its
1	TEST STANDARDS	
	CTA I	
2	SUMMARY	
	and the second sec	CTA'
2.1	General Remarks	5
2.2	Product Description	5
2.3	Equipment Under Test	5
2.4	Short description of the Equipment under Test	t (EUT) 5
2.5	EUT operation mode	5
2.6	Block Diagram of Test Setup	6
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
<u>3</u>	TEST ENVIRONMENT	TESI
<u> </u>	TEST ENVIRONMENT	
		CTATESTIN
3.1	Address of the test laboratory	7
3.2	Test Facility	GV 7
3.3	Environmental conditions	7
3.4	Summary of measurement results	8
3.5	Statement of the measurement uncertainty	8
3.6	Equipments Used during the Test	9
<u>4</u>	TEST CONDITIONS AND RESULTS	
	TESI	
4.1	AC Power Conducted Emission	-ING 10
4.1	Radiated Emission	ESTING 13
4.2	Maximum Peak Output Power	19
4.4	20dB Bandwidth	CTATESTING 10 13 19 20 23
4.5	Frequency Separation	23
4.6	Number of hopping frequency	25 (
4.7	Time of Occupancy (Dwell Time)	27
4.8	Out-of-band Emissions	30
4.9	Pseudorandom Frequency Hopping Sequence	36
4.10	Antenna Requirement	37
	ESTIN.	
<u>5</u>	TEST SETUP PHOTOS OF THE EU	T 38
<u>5</u>		<u></u>
	G	TATES
<u>6</u>	PHOTOS OF THE EUT	
		TES.
		CTATEST39
	CTATESTING	
	TA '	
	CTATESTING	

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

2 SUMMARY

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample		Oct. 20, 2022
Testing commenced on		Oct. 20, 2022
Testing concluded on	:	Dec. 20, 2022

2.2 Product Description

l esting commenced on	: Oct. 20, 2022						
Testing concluded on	: Dec. 20, 2022						
2.2 Product Descrip	ption						
Product Name:	PROJECTOR						
Model/Type reference:	V7 STINE						
Power supply:	AC120V, 60Hz						
Hardware version:	V1.0						
Software version:	V1.0						
Testing sample ID:	CTA221020003-1# (Engineer sample) CTA221020003-2# (Normal sample)						
Bluetooth :							
Supported Type:	Bluetooth BR/EDR						
Modulation:	GFSK, π/4DQPSK						
Operation frequency:	2402MHz~2480MHz						
Channel number:	79 CTA						
Channel separation:	1MHz						
Antenna type:	PCB antenna						
Antenna gain:	-0.58 dBi						

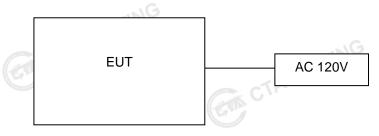
2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	Ο	230V / 50 Hz	•	120V / 60Hz	
		Ο	12 V DC	0	24 V DC	
and the second se		Ο	Other (specified in blank be	low)	NG
			Com C		TATES	5
2.4 Short description of t	he Eo	qui	pment under Test (EU	T)	GIA CT.	

2.4 Short description of the Equipment under Test (EUT)

This is a PROJECTOR. For more details, refer to the user's manual of the EUT.


2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Channel	Frequency (MHz)	
00	2402	
01	2403	
- 51 · · · · · · · · · · · · · · · · · ·	Inc.	
38	2440	
39	2441	
40	2442	
:		TE
77	2479	TAT.
78	2480	

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

TEST ENVIRONMENT 3

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

GIA CTATESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C	
TES		
Humidity:	46 %	TING
		TESI
Atmospheric pressure:	950-1050mbar	AL
conducted testing:		
		_
Temperature:	25 ° C	

enadeted teeting.	
Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATES	CTATESTING

3.4 Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
	§15.247(a)(1)	Carrier Frequency separation	GFSK ∏/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK	Middle	Compliant
	§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK	🛛 Full	GFSK	🛛 Full	Compliant
	§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK П/4DQPSK	Middle Middle	Compliant
TE	§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK II/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK ∏/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
	§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK ∏/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
	§15.247(d)	Band edgecompliance conducted	GFSK ∏/4DQPSK	☑ Lowest☑ Highest	GFSK П/4DQPSK	⊠ Lowest ⊠ Highest	Compliant
	§15.205	Band edgecompliance radiated	GFSK П/4DQPSK	⊠ Lowest ⊠ Highest	GFSK П/4DQPSK	⊠ Lowest ⊠ Highest	Compliant
	§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
	§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK	 ☑ Lowest ☑ Middle ☑ Highest 	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK II/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	Middle	Compliant
	§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	Middle	Compliant

Remark:

We tested all test mode and recorded worst case in report 2.

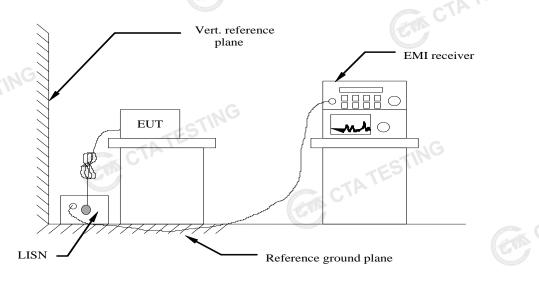
3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

<p< th=""><th>Test</th><th>Range</th><th>Measurement Uncertainty</th><th>Notes</th></p<>	Test	Range	Measurement Uncertainty	Notes
	Radiated Emission	30~1000MHz	4.06 dB	(1)
	Radiated Emission	1~18GHz	5.14 dB	(1)
	Radiated Emission	18-40GHz	5.38 dB	(1)
	Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


3.6 Equipments Used during the Test

	-ESI"						
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02	
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02	
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02	
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02	
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02	
	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02	
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02	
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02	
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02	
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02	
	Ultra-Broadband Antenna	G Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06	
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06	
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06	
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06	
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02	
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02	
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02	
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02	
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02	
CTATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02	
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02	
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02	
	G		BBV9719	TES	-	ATESTING	
G							

4 TEST CONDITIONS AND RESULTS

AC Power Conducted Emission 4.1

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

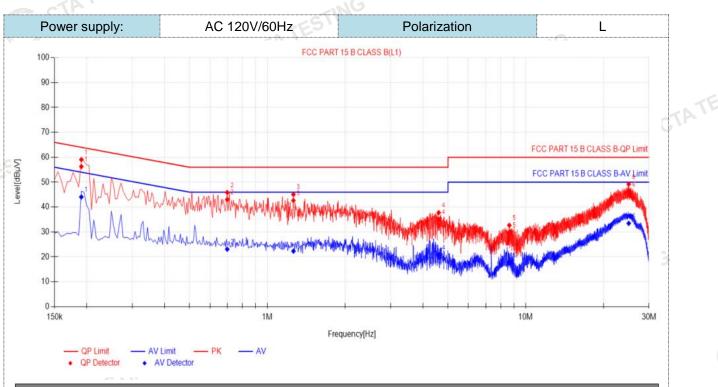
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Eroquonov rongo (MHz)	Limit (dBuV)						
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

* Decreases with the logarithm of the frequency.

TEST RESULTS

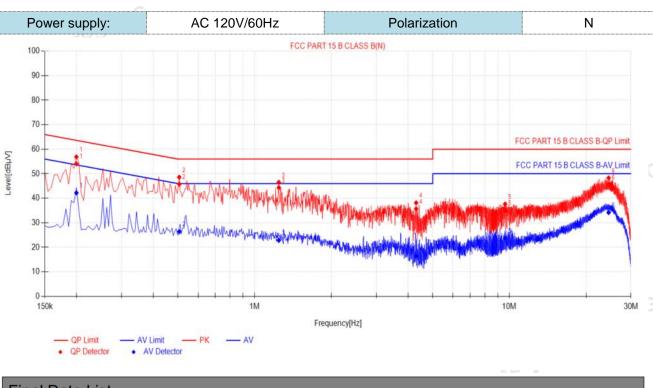

Remark:

1. All modes of GFSK, II/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

CTATESTING

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

3. We tested all Models and recorded worst case at the worst case at the V7.

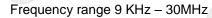


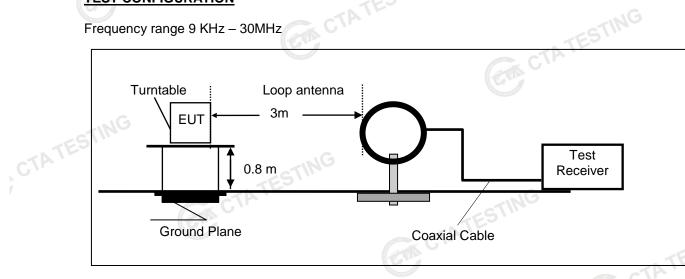
Final	Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1905	10.50	45.76	56.26	64.01	7.75	33.56	44.06	54.01	9.95	PASS
2	0.699	10.50	32.54	43.04	56.00	12.96	12.58	23.08	46.00	22.92	PASS
3	1.2615	10.50	32.15	42.65	56.00	13.35	11.80	22.30	46.00	23.70	PASS
4	4.605	10.50	24.55	35.05	56.00	20.95	10.38	20.88	46.00	25.12	PASS
5	8.6415	10.50	19.25	29.75	60.00	30.25	7.15	17.65	50.00	32.35	PASS
6	25.053	10.50	35.76	46.26	60.00	13.74	22.97	33.47	50.00	16.53	PASS

Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

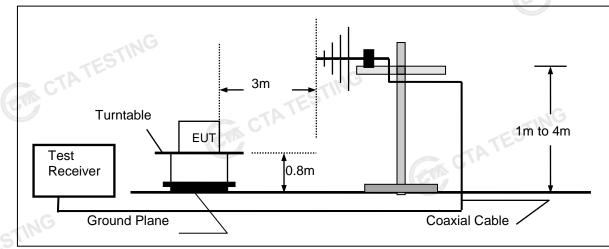
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- CTA TESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

CTATE

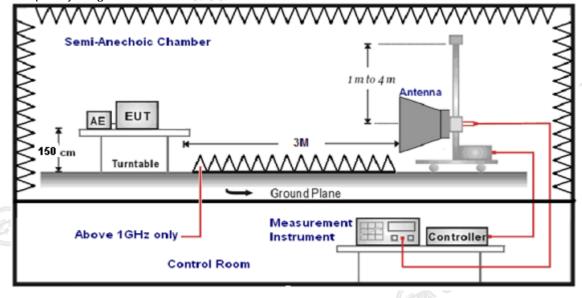



	Fina	I Data Lis	st										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.1995	10.50	43.57	54.07	63.63	9.56	31.72	42.22	53.63	11.41	PASS	
(-	2	0.5055	10.50	35.27	45.77	56.00	10.23	15.91	26.41	46.00	19.59	PASS	
	3	1.2435	10.50	33.88	44.38	56.00	11.62	12.35	22.85	46.00	23.15	PASS	
	4	4.3035	10.50	25.20	35.70	56.00	20.30	5.95	16.45	46.00	29.55	PASS	
	5	9.618	10.50	24.52	35.02	60.00	24.98	13.18	23.68	50.00	26.32	PASS	
	6	24.5265	10.50	35.16	45.66	60.00	14.34	23.68	34.18	50.00	15.82	PASS	
Note:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)												TATE	
2). Fac	tor (dB)=ir	nsertion I	oss of LI	SN (dB)	+ Cable	loss (dB))					U 1
3). QPI	Margin(dB) = QP L	imit (dBµ	V) - QP	Value (d	BμV)						

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V) 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)


4.2 **Radiated Emission**

TEST CONFIGURATION



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

6.

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.

The distance between test antenna and EUT as following table states:							
Test Frequency range	Test Antenna Type	Test Distance					
9KHz-30MHz	Active Loop Antenna	3					
30MHz-1GHz	Ultra-Broadband Antenna	3					
1GHz-18GHz	Double Ridged Horn Antenna	3					
18GHz-25GHz	Horn Anternna	1					

Setting test receiver/spectrum as following table states: 7.

betting test receiver/spectrum as following table states.								
Test Frequency range	Test Receiver/Spectrum Setting	Detector						
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP						
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP						
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP						
	Peak Value: RBW=1MHz/VBW=3MHz,	r.						
1GHz-40GHz	Sweep time=Auto	Peak						
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Реак						
	Sweep time=Auto							

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

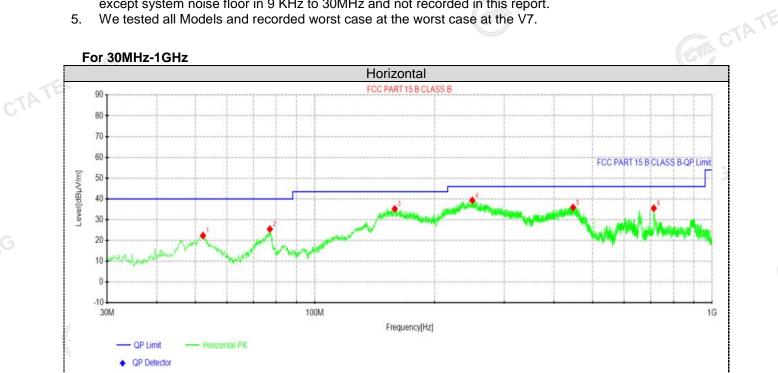
FS = RA + AF + CL - AG

sample calculation is as follows.					
FS = RA + AF + CL - AG	CTATES				
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
RA = Reading Amplitude	AG = Amplifier Gain				
AF = Antenna Factor					

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.


The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

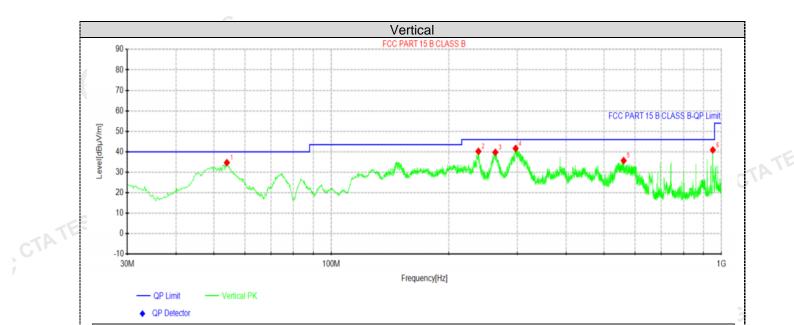
TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- We measured Radiated Emission at GFSK,π/4 DQPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 4. except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- We tested all Models and recorded worst case at the worst case at the V7. 5.

Suspected Data List

CTATE


- 1	- aspe												
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delerity			
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
	1	52.31	38.93	22.37	-16.56	40.00	17.63	100	341	Horizontal			
	2	77.045	46.68	25.48	-21.20	40.00	14.52	100	123	Horizontal			
	3	158.888	56.86	35.22	-21.64	43.50	8.28	100	164	Horizontal			
	4	249.098	57.32	39.31	-18.01	46.00	6.69	100	245	Horizontal			
	5	446.736	51.02	35.91	-15.11	46.00	10.09	100	360	Horizontal			
	6	713.243	47.08	35.51	-11.57	46.00	10.49	100	173	Horizontal			

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

CTATESTING 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

COM CTATE

Suspected Data List

ouspi	Joica Buiu	LIST								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty	
1	54.0075	51.65	34.73	-16.92	40.00	5.27	100	91	Vertical	
2	238.307	58.54	40.24	-18.30	46.00	5.76	100	3	Vertical	
3	263.285	57.51	39.78	-17.73	46.00	6.22	100	0	Vertical	
4	296.871	59.04	41.65	-17.39	46.00	4.35	100	221	Vertical	
5	561.56	48.98	35.71	-13.27	46.00	10.29	100	262	Vertical	
6	950.53	50.02	40.93	-9.09	46.00	5.07	100	100	Vertical	
lote:1)).Level (dE	3µV/m)= Re	ading (dBu	V)+ Fact	or (dB/m)					

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

For 1GHz to 25GHz

We tested all Models and recorded worst case at the worst case at the V7. Note: GFSK, $\pi/4$ DQPSK all have been tested, only worse case GFSK is reported. SK (above 1CU-)

	GFSK (above 1GHZ)												
Freque	ncy(MHz)	:	24	02	Polarity:		HORIZONTAL						
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
4804.00	60.43	PK	74	13.57	64.70	32.33	5.12	41.72	-4.27				
4804.00	44.71	AV	54	9.29	48.98	32.33	5.12	41.72	-4.27				
7206.00	53.48	PK	74	20.52	54.00	36.6	6.49	43.61	-0.52				
7206.00	42.52	AV	54	11.48	43.04	36.6	6.49	43.61	-0.52				
GTING			•		•	•		•	Course of the				

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	58.85	PK	74	15.15	63.12	32.33	5.12	41.72	-4.27
4804.00	42.67	AV	54	11.33	46.94	32.33	5.12	41.72	-4.27
7206.00	51.53	PK	74	22.47	52.05	36.6	6.49	43.61	-0.52
7206.00	40.72	AV	54	13.28	41.24	36.6	6.49	43.61	-0.52

Freque	ency(MHz):		2441		Polarity:		HORIZONTAL		NL
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	60.16	PK	74	13.84	64.04	32.6	5.34	41.82	-3.88
4882.00	46.25	AV	54	7.75	50.13	32.6	5.34	41.82	-3.88
7323.00	53.08	PK	74	20.92	53.19	36.8	6.81	43.72	-0.11
7323.00	42.96	AV	54	11.04	43.07	36.8	6.81	43.72	-0.11

Freque	ncy(MHz):		2441		Polarity:			VERTICAL	
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	58.53	PK	74	15.47	62.41	32.6	5.34	41.82	-3.88
4882.00	44.45	AV	54	9.55	48.33	32.6	5.34	41.82	-3.88
7323.00	51.73	PK	74	22.27	51.84	36.8	6.81	43.72	-0.11
7323.00	41.06	AV	54	12.94	41.17	36.8	6.81	43.72	-0.11
	ATA .					FING		-	·

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.87	PK	74	14.13	62.95	32.73	5.66	41.47	-3.08
4960.00	44.59	AV	54	9.41	47.67	32.73	5.66	41.47	-3.08
7440.00	54.36	PK	74	19.64	53.91	37.04	7.25	43.84	0.45
7440.00	43.15	PK	54	10.85	42.70	37.04	7.25	43.84	0.45
	GIN								

Freque	Frequency(MHz): 248		2480 Polarity:		VERTICAL				
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.21	PK	74	15.79	61.29	32.73	5.66	41.47	-3.08
4960.00	42.79	AV	54	11.21	45.87	32.73	5.66	41.47	-3.08
7440.00	52.84	PK	74	21.16	52.39	37.04	7.25	43.84	0.45
7440.00	41.32	PK	54	12.68	40.87	37.04	7.25	43.84	0.45

Report No.: CTA22102000302

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

				GFS	<u>r</u>				CAR UT
Freque	ncy(MHz)	:	24	02	Pola	arity:	H	IORIZONTA	4L
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.37	PK	74	13.63	70.79	27.42	4.31	42.15	-10.42
2390.00	42.58	AV	54	11.42	53.00	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.73	PK	74	15.27	69.15	27.42	4.31	42.15	-10.42
2390.00	40.45	AV	54	13.55	50.87	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	80	Pola	arity:	F	IORIZONTA	4L
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.13	PK	74	13.87	70.24	27.7	4.47	42.28	-10.11
2483.50	41.72	AV	54	12.28	51.83	27.7	4.47	6 42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.49	ΡK	74	15.51	68.60	27.7	4.47	42.28	-10.11
2483.50	39.82	AV	54	14.18	49.93	27.7	4.47	42.28	-10.11

REMARKS:

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

3. Margin value = Limit value- Emission level.

CTATESTING 4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration CTATESTING

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-0.32		TES
GFSK	39	-0.19	20.97	Pass
	78	-0.22		
	G 00	-0.56		
π/4DQPSK	39	-0.66	20.97	Pass
CTA	78	-0.07		
Note: 1.The test res	ults including the	cable lose.	CTATESTING	

20dB Bandwidth 4.4

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

<u>st Results</u>			CTA TESTING
Modulation	Channel	20dB bandwidth (MHz)	Result
-ING	CH00	1.008	
GFSK	CH39	1.005	
K CTA	CH78	0.990	- Dess
	CH00	1.266	- Pass
π/4DQPSK	CH39	1.311	STINC
	CH78	1.281	
		CTA)	GTA CT

Test plot as follows: CTATES

Report No.: CTA22102000302

Page 21 of 39

Report No.: CTA22102000302

4.5 Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

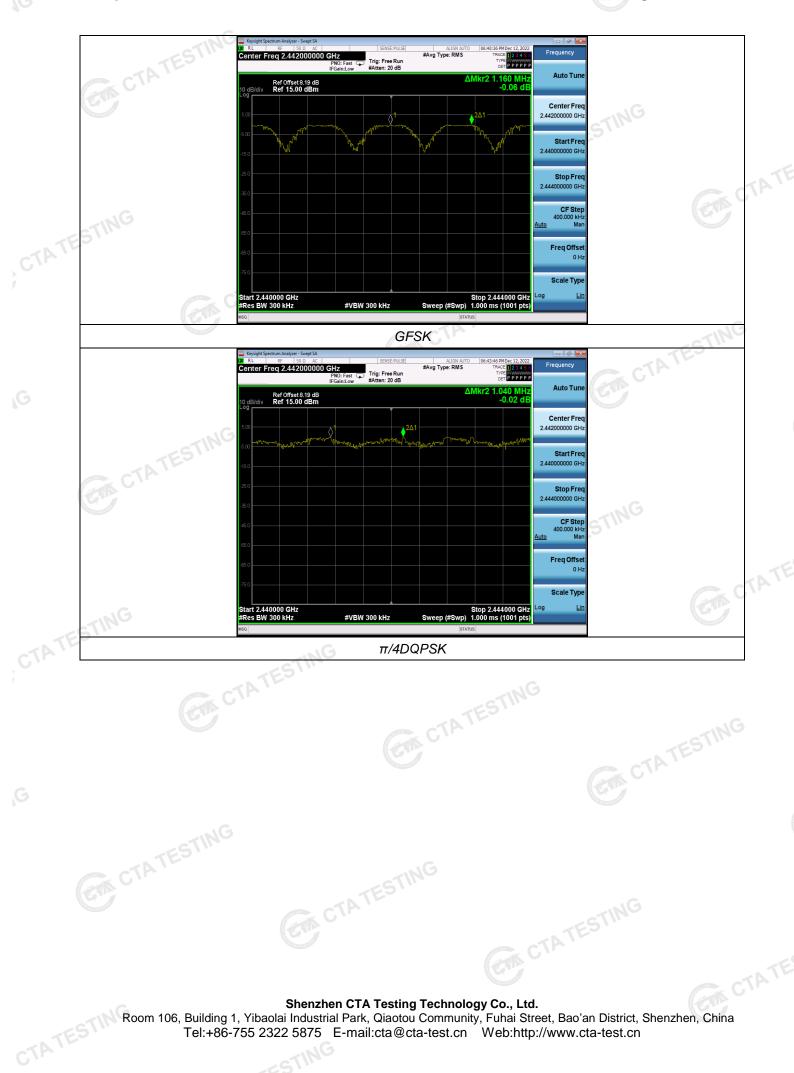
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

		ANALI	ZLIN	
TEST RESULTS				TATESTING
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	1.160	25KHz or 2/3*20dB	Pass
GFSK	CH39	1.100	bandwidth	F 855
π/4DQPSK	CH38	1.040	25KHz or 2/3*20dB	Page
II/4DQF3K	CH39	TEST.040	bandwidth	Pass


Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

Report No.: CTA22102000302

Page 24 of 39

Number of hopping frequency 4.6

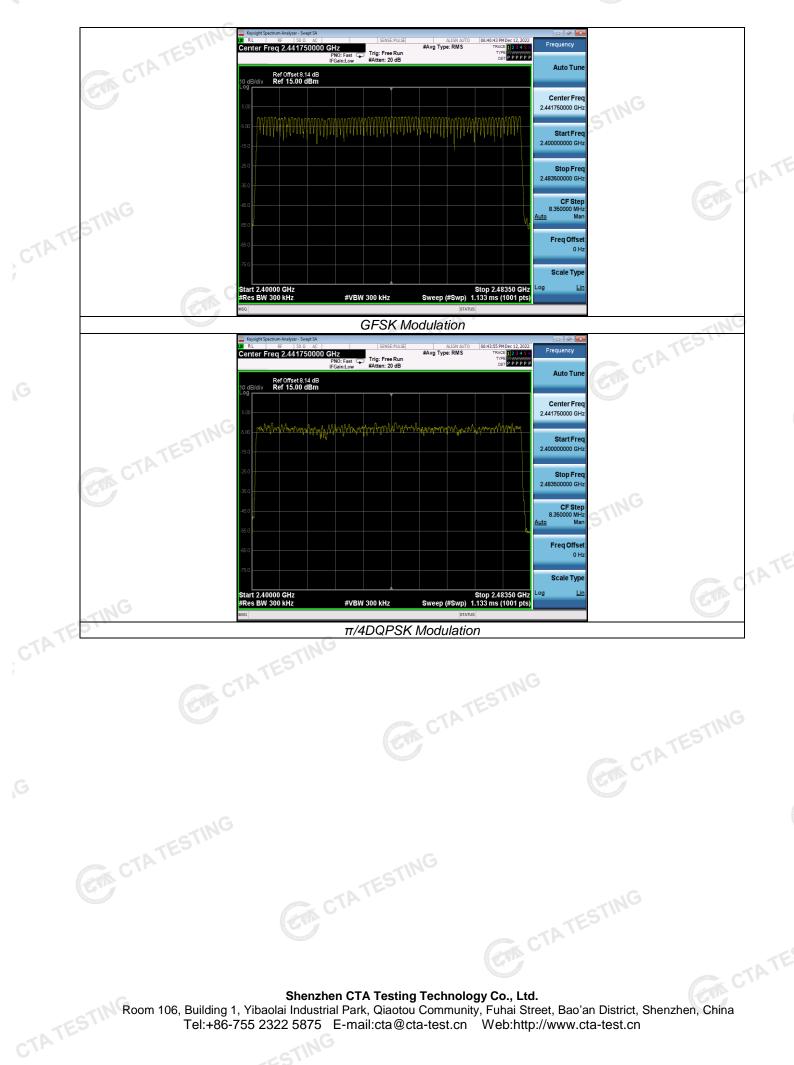
Limit C

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

GTA CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration CTATES



Test Results

Test Results			
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π/4DQPSK	79	215	F 455

Test plot as follows: CTATES

Report No.: CTA22102000302

G

4.7 Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

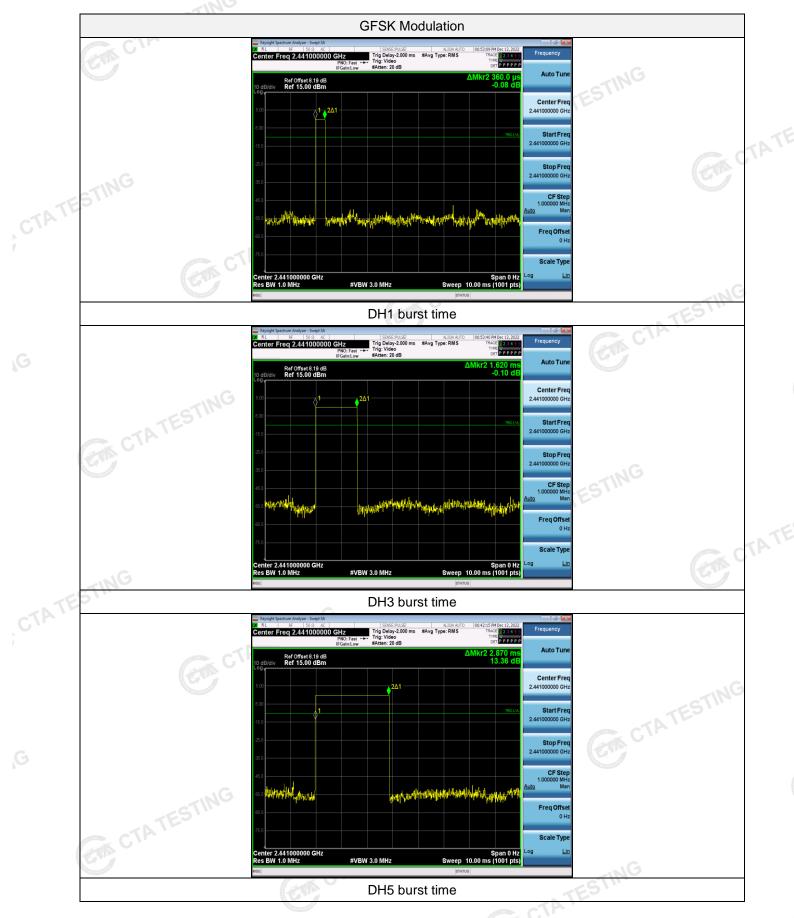
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

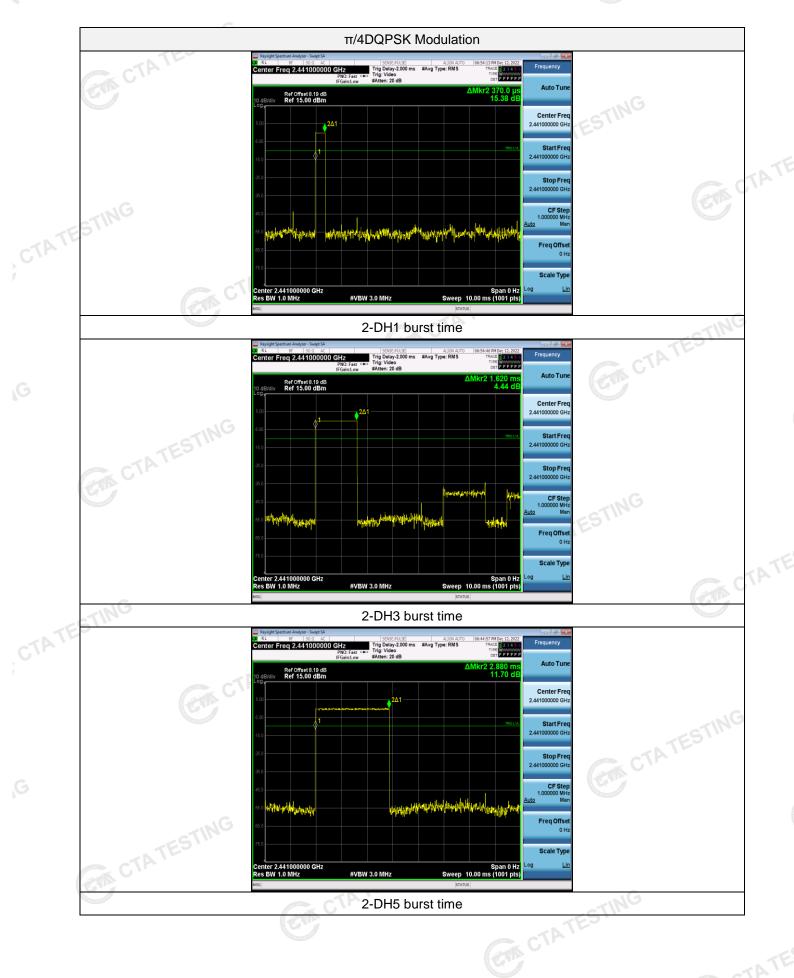
Test Configuration

Test Results

		C.	1		TES
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.36	0.119		
GFSK	CDH3	1.62	0.308	0.40	Pass
TES	DH5	2.87	0.344		
CIL	2-DH1	0.37	0.118		
π/4DQPSK	2-DH3	1.62	0.292	0.40	Pass
	2-DH5	2.88	0.173	TESTIN	


Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × $(1600 \div 2 \div 79)$ ×31.6 Second for DH1, 2-DH1 Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79)$ ×31.6 Second for DH3, 2-DH3 Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5


GA CTATESTING

Report No.: CTA22102000302

Test plot as follows:

Report No.: CTA22102000302

4.8 **Out-of-band Emissions**

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results ESTING

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. CTATES

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows: