Maximum Permissible Exposure Report

Product Information

EUT : Air WiFi Feeder

Model Number : PLAF108

Model Declaration : N/A

Test Model : PLAF108

Power Supply : DC 3.6V by battery charged from adapter

: PLAY108-M-V0.3 Hardware version

Software version : V1.0

Sample ID : TZ230804776-2#&TZ230804776-4#

Bluetooth

Bluetooth Version : V5.0

Operation Frenquency : 2402- 2480 MHz

Channel Number : 40 Channels for BLE (DTS)

Modulation Technology : GFSK for BLE (DTS) **Data Rates** : BLE (DTS): 1/2Mbps

Internal Antenna:

Antenna Type And Gain 3.37dBi

WiFi

WLAN : Supported IEEE 802.11b/g/n

IEEE 802.11b:2412-2462MHz

WLAN FCC Operation

IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz

IEEE 802.11n HT40: 2422-2452MHz

11 Channels for 2412-2462MHz(IEEE 802.11b/g/n HT20) WLAN Channel Number

7 Channels for 2422-2452MHz(IEEE 802.11n HT40)

WLAN Modulation

IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)

Technology

Frequency

: IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)

Antenna Type And Gain

Internal Antenna:

3.37dBi (Max.), for TX/RX (WLAN 2.4G Band)

Note 1: Antenna position refer to EUT Photos.

Note 2: the above information was supplied by the applicant.

2. Evaluation Method

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from

henzhen Tongzhou Testing Co.,Ltd	FCC ID: 2A3DE-PLAF108		
pply when MPE is estimated using simple calculations he antenna installation and operating requirements fo	e used to determine the MPE ratios. Spatial averaging does sulations based on far-field plane-wave equivalent conditions nents for the host device must meet the minimum test n both standalone and simultaneous transmission operation		

3. Limit

3. 1 Refer evaluation method

<u>ANSI C95.1–1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

FCC KDB publication 447498 D01 General 1 RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices

3. 2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
	Limits for Oc	cupational/Control	led Exposure	
0.3 - 3.0	614	1.63	(100) *	6
3.0 - 30	1842/f	4.89/f	(900/f ²)*	6
30 - 300	61.4	0.163	1.0	6
300 – 1500	/	/	f/300	6
1500 – 100,000	/	/	5	6

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
	Limits for Oc	cupational/Control	led Exposure	
0.3 - 3.0	614	1.63	(100) *	30
3.0 - 30	824/f	2.19/f	(180/f ²)*	30
30 – 300	27.5	0.073	0.2	30
300 – 1500	/	/	f/1500	30
1500 – 100,000	/	/	1.0	30

F=frequency in MHz

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR²

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

5. Antenna Information

This Product can only use antennas certificated as follows provided by manufacturer;

Antenna Gain and type refer to Product information

^{*=}Plane-wave equivalent power density

6. Conducted Power

Bluetooth(BLE)

TestMode	Antenna	Channel	Result[dBm]
		2402	4.38
BLE_1M	Ant1	2440	5.0
		2480	5.03
		2402	4.5
BLE_2M	Ant1	2440	5.06
		2480	5.18

WiFi 2.4GHz Band

TestMode	Antenna	Channel	Result[dBm]
		2412	15.93
11B	Ant1	2437	16.19
		2462	14.23
		2412	12.35
11G	Ant1	2437	12.60
		2462	10.50
		2412	13.08
11N20SISO	Ant1	2437	12.77
		2462	11.03
		2422	11.65
11N40SISO	Ant1	2437	11.28
		2452	11.42

7. Manufacturing Tolerance

Bluetooth(BLE)

	GFSK(1N	Mbps) (Peak)			
Channel Channel 0 Channel 39 Channel					
Target (dBm)	4.0	4.5	4.5		
Tolerance ±(dB)	1.0	1.0	1.0		
GFSK(2Mbps) (Peak)					
Channel	Channel 0	Channel 39	Channel 78		
Target (dBm)	4.0	4.5	4.5		
Tolerance ±(dB)	1.0	1.0	1.0		

WiFi 2.4GHz Band - Antenna 1

	IEEE 802.11b(Average)						
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	15.5	15.5	13.5				
Tolerance ±(dB)	1.0	1.0	1.0				
	IEEE 802.	11g (Average)					
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	12.0	12.0	10.0				
Tolerance ±(dB)	1.0	1.0	1.0				
	IEEE 802.11n HT20 (Average)						
Channel	Channel 1	Channel 6	Channel 11				
Target (dBm)	12.5	12.5	10.5				
Tolerance ±(dB)	1.0	1.0	1.0				
	IEEE 802.11n HT40 (Average)						
Channel	Channel 3	Channel 6	Channel 9				
Target (dBm)	11.0	11.0	11.0				
Tolerance ±(dB)	1.0	1.0	1.0				

8. Measurement Results

8.1 Standalone MPE

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r =20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

Bluetooth(BLE)

Modulation Type	Output power		Antenna Gain (dBi)	Antenna Gain (linear)	Duty Cycle	MPE (mW/cm²)	MPE Limits
	dBm	mW					(mW/cm ²)
GFSK(1Mbps)	5.5	3.5481	3.37	2.1727	100%	0.0015	1.0000
GFSK(2Mbps)	5.5	3.5481	3.37	2.1727	100%	0.0015	1.0000

WiFi 2.4GHz Band - Ant 1

Modulation Type	Output power		Antenna Gain (dBi)	Antenna Gain (linear)	Duty Cycle	MPE (mW/cm²)	MPE Limits
	dBm	mW					(mW/cm ²)
IEEE 802.11b	16.5	44.6684	3.37	2.1727	100%	0.0193	1.0000
IEEE 802.11g	13.0	19.9526	3.37	2.1727	100%	0.0086	1.0000
IEEE 802.11n HT20	13.5	22.3872	3.37	2.1727	100%	0.0097	1.0000
IEEE 802.11n HT40	12.0	15.8489	3.37	2.1727	100%	0.0069	1.0000

Remark:

- 1. Output power including tune-up tolerance;
- 2. MPE evaluate distance is 20cm from user manual provide by manufacturer;

he measurement resobile device.	sults comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure
	THE END OF REPORT

Shenzhen Tongzhou Testing Co.,Ltd

FCC ID: 2A3DE-PLAF108