Global United Technology Services Co., Ltd.

Report No.: GTSL202108000290F01

TEST REPORT

Applicant: Shenzhen JinYangHuiChuang Technology Limited

Address of Applicant: #1301, Shen Xin Taifeng Building, Qianjin 1st Road No 86,

Baoan District, Shenzhen, Guangdong, China

Manufacturer/Factory: Shenzhen JinYangHuiChuang Technology Limited

#1301, Shen Xin Taifeng Building, Qianjin 1st Road No 86, Address of

Manufacturer/Factory: Baoan District, Shenzhen, Guangdong, China

Equipment Under Test (EUT)

PS4 SPIKE CONTROLLER Product Name:

Model No.: SPIKE

Trade Mark: **HEXGAMING**

FCC ID: 2A3BG-SPIKE

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Aug. 26,2021

Date of Test: Aug. 26,2021-Sep. 29,2021

Date of report issued: Sep. 29,2021

PASS * Test Result:

Authorized Signature:

Robinson Luo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	Sep. 29,2021 Original	
	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1
	777777777	11111111111

Prepared By:	Trankly	Date:	Sep. 29,2021
	Project Engineer		777777
Check By:	Johnson Lun	Date:	Sep. 29,2021
	Reviewer		

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	7
	5.7 TEST LOCATION	7
	5.8 ENVIRONMENTAL CONDITIONS	7
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED OUTPUT POWER	
	7.4 CHANNEL BANDWIDTH	
	7.5 POWER SPECTRAL DENSITY	
	7.6 BAND EDGES	19
	7.6.1 Conducted Emission Method	19
	7.6.2 Radiated Emission Method	20
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	
	7.7.2 Radiated Emission Method	24
8	TEST SETUP PHOTO	32
9	EUT CONSTRUCTIONAL DETAILS	22
J	LOT CONCINCOTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Peak Conducted Output Power	15.247 (b)(3)	Pass
6dB Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz	3.8039dB	(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)	

5 General Information

5.1 General Description of EUT

Product Name:	PS4 SPIKE CONTROLLER
Model No.:	SPIKE
Test sample(s) ID:	GTSL202108000290-1
Sample(s) Status:	Engineer sample
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	DC 3.65V/1000mAh From Battery and DC 5V From External Circuit
Adapter Information	Mode: CD122
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 500mA Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
	Special test command provided by manufacturer

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Conducted testing:

Conducted testing:	
Temperature:	25 ° C
Humidity:	51 %
	7 7 7 7 7 7 7
Atmospheric pressure:	950-1050mbar

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Radi	iated Emission:	1 1 1 1 1 1		777		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Con	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022		

RF C	RF Conducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022

Gene	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

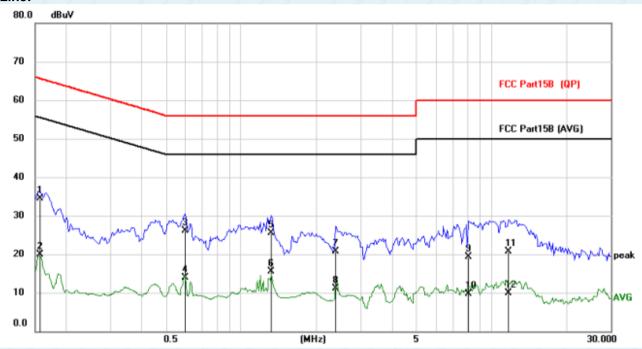
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

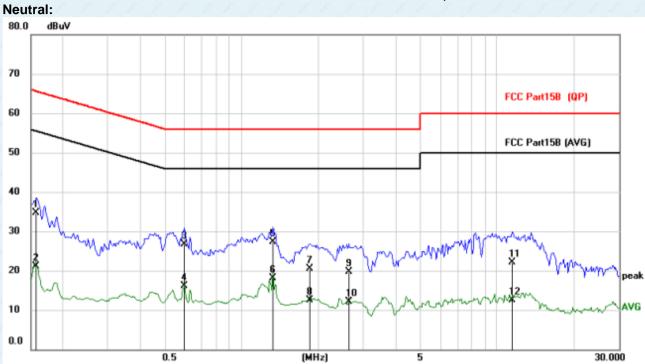
E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the is 0dBi, reference to the appendix II for details

7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz		1111	1111			
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, St	RBW=9KHz, VBW=30KHz, Sweep time=auto					
Limit:	Fragueney range (MHz)	Lim	nit (dBuV)	8 1 5 8			
	Frequency range (MHz)	Quasi-peak		erage			
	0.15-0.5	66 to 56*		to 46*			
	0.5-5	56		46			
	5-30	60		50			
Test setup:	* Decreases with the logarithm						
	Remark E.U.T Receiver Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a						
Test procedure:	Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Receiver					
Test procedure:	Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fine	are connected to the network (L.I.S.N.) edance for the mea also connected to m/50uH coupling im the block diagram checked for maximal the maximum em	This provide suring equipre the main power pedance with n of the test so um conducter ission, the re	es a ment. ver through a h 50ohm etup and d lative			
Test procedure:	Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). 3. Both sides of A.C. line are	are connected to the network (L.I.S.N.) edance for the mea also connected to m/50uH coupling important the block diagram checked for maximum em all of the interface	the main pownpedance with of the test sum conducte ission, the recables must	es a ment. ver through a h 50ohm eetup and ed lative be changed			
Test procedure: Test Instruments:	Remark: E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe 2. The peripheral devices are LISN that provides a 500hr termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and	are connected to the network (L.I.S.N.) edance for the mea also connected to m/50uH coupling important the block diagram checked for maximal the maximum em all of the interface 2009 on conducted	the main pownpedance with of the test sum conducte ission, the recables must	es a ment. ver through a h 50ohm eetup and ed lative be changed			
	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe 2. The peripheral devices are LISN that provides a 500hr termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10:	Receiver are connected to the network (L.I.S.N.) edance for the mea also connected to m/50uH coupling important the block diagram checked for maximum em all of the interface 2009 on conducted in the second conducted in th	the main pownpedance with of the test sum conducte ission, the recables must	es a ment. ver through a h 50ohm etup and d lative be changed			
Test Instruments:	Remark: E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe 2. The peripheral devices are LISN that provides a 500hr termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details	are connected to the network (L.I.S.N.) edance for the mea also connected to m/50uH coupling imported the block diagram checked for maximal all of the interface 2009 on conducted is	the main pownpedance with of the test sum conducte ission, the recables must	es a ment. ver through a h 50ohm etup and d lative be changed			
Test Instruments: Test mode:	Remark E UT: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details	are connected to the network (L.I.S.N.) edance for the mea also connected to m/50uH coupling imported the block diagram checked for maximal all of the interface 2009 on conducted is	the main pown pedance with of the test sum conducte ission, the recables must measureme	es a ment. ver through a h 50ohm etup and lative be changed nt.			

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data

Pre-scan all test modes, found worst case at 2440MHz, and so only show the test result of 2440MHz, **Line:**

No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1578	24.56	10.93	35.49	65.58	-30.09	QP
2	0.1578	10.82	10.93	21.75	55.58	-33.83	AVG
3	0.5985	15.79	10.92	26.71	56.00	-29.29	QP
4	0.5985	5.57	10.92	16.49	46.00	-29.51	AVG
5	1.3278	15.26	10.94	26.20	56.00	-29.80	QP
6 *	1.3278	7.40	10.94	18.34	46.00	-27.66	AVG
7	1.9908	9.80	10.96	20.76	56.00	-35.24	QP
8	1.9908	1.60	10.96	12.56	46.00	-33.44	AVG
9	2.5953	8.68	11.00	19.68	56.00	-36.32	QP
10	2.5953	1.15	11.00	12.15	46.00	-33.85	AVG
11	12.3912	9.75	11.41	21.16	60.00	-38.84	QP
12	12.3912	1.09	11.41	12.50	50.00	-37.50	AVG

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
Ī			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
ľ	1		0.1578	23.81	10.93	34.74	65.58	-30.84	QP
ľ	2		0.1578	10.17	10.93	21.10	55.58	-34.48	AVG
ľ	3		0.5985	15.83	10.92	26.75	56.00	-29.25	QP
ľ	4		0.5985	5.12	10.92	16.04	46.00	-29.96	AVG
ľ	5		1.3239	16.38	10.94	27.32	56.00	-28.68	QP
ľ	6	*	1.3239	7.11	10.94	18.05	46.00	-27.95	AVG
ľ	7		1.8504	9.55	10.96	20.51	56.00	-35.49	QP
ľ	8		1.8504	1.48	10.96	12.44	46.00	-33.56	AVG
ľ	9		2.6304	8.68	11.00	19.68	56.00	-36.32	QP
ľ	10		2.6304	1.15	11.00	12.15	46.00	-33.85	AVG
ľ	11		11.4630	10.77	11.39	22.16	60.00	-37.84	QP
	12		11.4630	1.16	11.39	12.55	50.00	-37.45	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

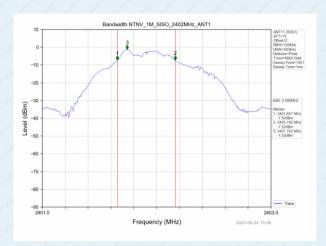
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

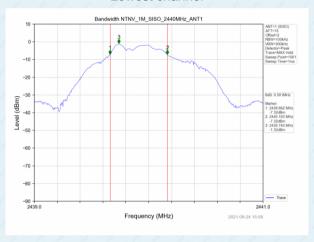
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result	
Lowest	-1.43			
Middle	-1.24	30.00	Pass	
Highest	-1.46			

7.4 Channel Bandwidth

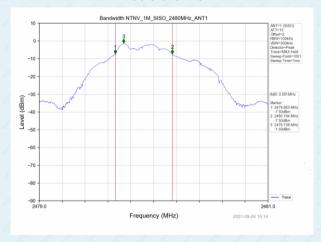
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			


Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.506	1111111	11111111
Middle	0.501	>500	Pass
Highest	0.501		



Test plot as follows:


Report No.: GTSL202108000290F01

Lowest channel

Middle channel

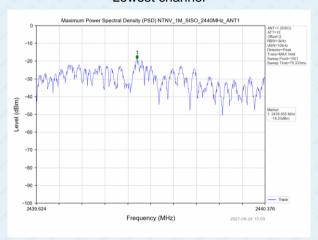
Highest channel

7.5 Power Spectral Density

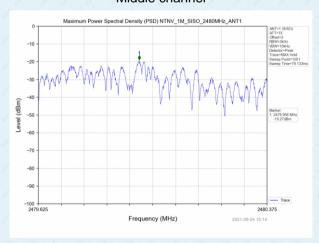
Test Requirement:	FCC Part15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02			
Limit:	8dBm/3kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-19.42	1111111	11111111
Middle	-19.23	8.00	Pass
Highest	-19.27		



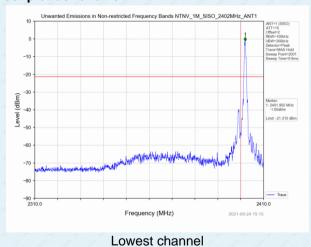
Test plot as follows:

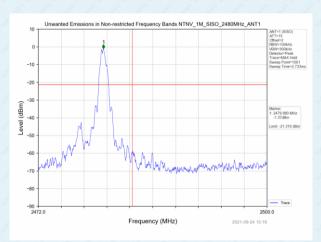

Report No.: GTSL202108000290F01

Lowest channel

Middle channel

Highest channel




7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass Pass			

Test plot as follows:

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:20)13							
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst ba	and's (2310MHz to				
Test site:	Measurement D	istance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGIIZ	RMS	1MHz	3MHz	Average				
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Value				
	Above 1	GHz -	54.0		Average				
Test setup:			74.0	0	Peak				
	Turn Table	EUT+	Test Antenna-	amplifier					
Test Procedure:				(A)	.5 meters above				
	determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Ba 6. If the emission the limit spec of the EUT w have 10dB m peak or avers sheet. 7. The radiation And found th worst case m	e position of the set 3 meters ch was mounted height is varied termine the made vertical polarit. Spected emission reading. Server system whom level of the lestified, then testified, then testified, then testified measurement e X axis position to the server of the ser	e highest race away from the don the top of	diation. The interference of a variable meter to four e of the field he antenna a was arrange was arrange was arrange was arrange was to 360 ak Detect Full Mode. The mode was 1 stopped and the emission by one used the reported in X, Y, it is worse care	re-height antenna meters above the strength. Both are set to make the ed to its worst case neter to 4 meters degrees to find inction and 10dB lower than d the peak values ions that did not sing peak, quasi-				
Test Instruments:	Refer to section								
Test mode:	Refer to section	5.2 for details	1 1 1	1 1 1	1 1 1 1 1				
Test results:	Pass								

Measurement Data.

Report No.: GTSL202108000290F01

Test channel:	Lowest channel
i i col citatilici.	Lowest charlie

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390	60.20	-5.68	54.52	74.00	-19.48	Horizontal
2390	59.98	-5.68	54.3	74.00	-19.70	Vertical
0000	000		20000		0 0 0	2 2 2

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390	46.21	-5.68	40.53	54.00	-13.47	Horizontal
2390	46.18	-5.68	40.5	54.00	-13.50	Vertical
2 2 3 2	2 35 35 3	25 35 35	ST ST ST ST ST		8 8 8	8 8 30

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Test channel:	Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	59.79	-5.85	53.94	74.00	-20.06	Horizontal
2483.5	59.66	-5.85	53.81	74.00	-20.19	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

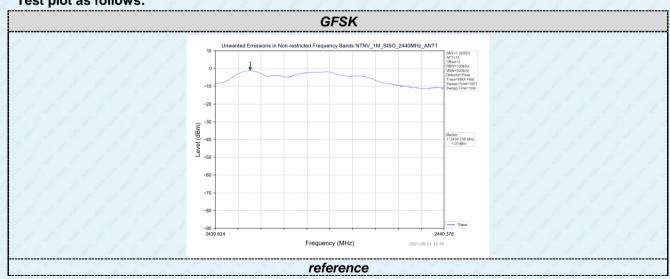
Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	46.57	-5.85	40.72	54.00	-13.28	Horizontal
2483.5	46.48	-5.85	40.63	54.00	-13.37	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

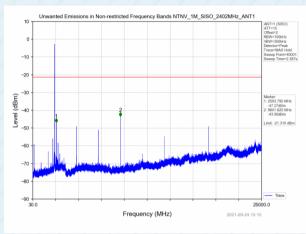
Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

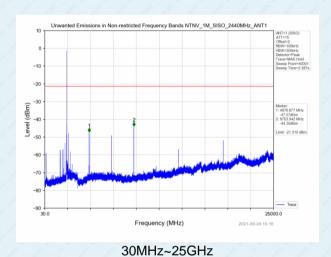


7.7 Spurious Emission

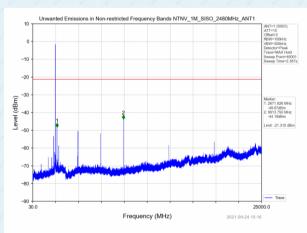
7.7.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Test plot as follows:



Lowest channel

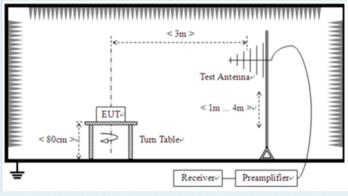


30MHz~25GHz

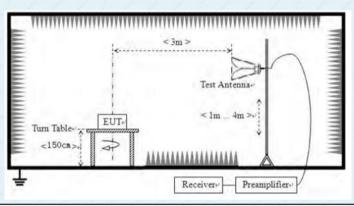
Middle channel

Highest channel

30MHz~25GHz



7.7.2 Radiated Emission Method


Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10:2013	1 1									
Test Frequency Range:	9kHz to 25GHz	J. J.	100	1 1	1 1 1						
Test site:	Measurement Distar	nce: 3n	n								
Receiver setup:	Frequency	De	etector	RBW	VBW	/ Value					
	9KHz-150KHz	Qua	si-peak	200Hz	600H	z Quasi-peak					
	150KHz-30MHz	Qua	si-peak	9KHz	30KH	z Quasi-peak					
	30MHz-1GHz	Qua	si-peak	120KH	z 300KH	Hz Quasi-peak					
	Above 1GHz	st stF	Peak	1MHz	3MH	z Peak					
	Above IGHZ	, F	Peak	1MHz	10Hz	z Average					
Limit:	Frequency		Limit (u\	//m)	Value	Measurement Distance					
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	QP	300m					
	0.490MHz-1.705M	lHz	24000/F(I	KHz)	QP	30m					
	1.705MHz-30MH	lz	z 30 100 150		QP	30m					
	30MHz-88MHz	2			QP						
	88MHz-216MHz	Z			QP						
	216MHz-960MH	Z	200		QP	3m					
	960MHz-1GHz		500 500		QP	SIII					
	Above 1GHz				Average	11111					
	Above Toriz		5000	1 1	Peak						
Test setup:	For radiated emiss	sions f	rom 9kH:	z to 30N	1Hz						
	<80cm>		Test Ar Table»	atenna lm							

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

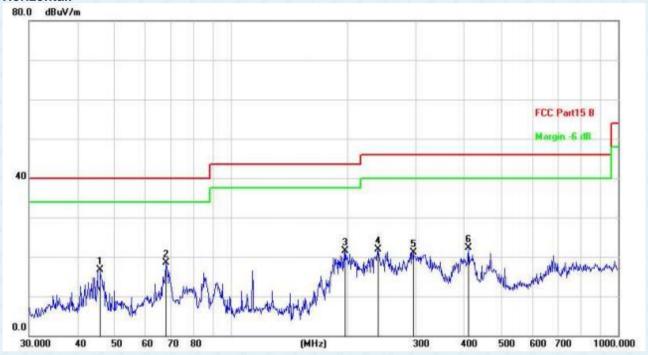
- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Instruments:	Refer to se	Refer to section 6.0 for details								
Test mode:	Refer to se	Refer to section 5.2 for details								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				
Test voltage:	AC 120V, 6	AC 120V, 60Hz								
Test results:	Pass	Pass								

Measurement data:

Remark: Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Pre-scan all test modes, found worst case at 2440MHz, and so only show the test result of 2440MHz,

Horizontal:

3	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
š			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
5	1		45.8553	34.71	-17.97	16.74	40.00	-23.26	QP
è	2	*	67.9129	38.18	-19.68	18.50	40.00	-21.50	QP
	3		197.2001	41.70	-20.11	21.59	43.50	-21.91	QP
ſ	4		239.9874	41.00	-19.19	21.81	46.00	-24.19	QP
Ī	5		295.1469	39.61	-18.45	21.16	46.00	-24.84	QP
	6		410.3825	38.56	-16.33	22.23	46.00	-23.77	QP

Measurement =Receiver Read level + Correct Factor

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		37.9450	37.16	-18.10	19.06	40.00	-20.94	QP
2	*	66.7325	46.64	-19.55	27.09	40.00	-12.91	QP
3		90.8554	41.55	-21.24	20.31	43.50	-23.19	QP
4		185.7882	46.89	-19.05	27.84	43.50	-15.66	QP
5		333.6867	38.60	-17.44	21.16	46.00	-24.84	QP
6		545.1826	35.31	-14.26	21.05	46.00	-24.95	QP

Measurement = Receiver Read level + Correct Factor

Above 1-26GHz

Report No.: GTSL202108000290F01

Test channel: Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804	62.04	-3.61	58.43	74	-15.57	Vertical
7206	57.89	-0.85	57.04	74	-16.96	Vertical
4804	61.96	-3.61	58.35	74	-15.65	Horizontal
7206	58.03	-0.85	57.18	74	-16.82	Horizontal
	11-11	1-11		1151	1-11	/ /- //
-2	/ // /	1 1-1	75-77	/		

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804	46.33	-3.61	42.72	54	-11.28	Vertical
7206	45.20	-0.85	44.35	54	-9.65	Vertical
4804	46.73	-3.61	43.12	54	-10.88	Horizontal
7206	45.33	-0.85	44.48	54	-9.52	Horizontal
11-11	/ / - / /	1-1-1			/ / - //	
		11-11				

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
 "*", means this data is the too weak instrument of signal is unable to test.

Page 30 of 32

Test channel: Middle

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880	62.30	-3.49	58.81	74	-15.19	Vertical
7320	58.92	-0.80	58.12	74	-15.88	Vertical
4880	62.11	-3.49	58.62	74	-15.38	Horizontal
7320	58.73	-0.80	57.93	74	-16.07	Horizontal
	/ / - / /	1-1-1	7-4-7-7	11-11		7-7
		1 1 -1 1	7/2-7/7			1 -

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

- verage value	S. S. S. S.			11.00	0 1: :	
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880	46.33	-3.49	42.84	54	-11.16	Vertical
7320	45.20	-0.80	44.40	54	-9.60	Vertical
4880	46.72	-3.49	43.23	54	-10.77	Horizontal
7320	45.62	-0.80	44.82	54	-9.18	Horizontal
-					//-//	
/-/	//-//	1 -1	71-17	//-//	11-11	7-

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
 "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	61.82	-3.41	58.41	74	-15.59	Vertical
7440	57.92	-0.72	57.20	74	-16.80	Vertical
4960	61.86	-3.41	58.45	74	-15.55	Horizontal
7440	57.99	-0.72	57.27	74	-16.73	Horizontal
1171	/ / - / /	1-1	(//-//	// / //	11 <u>-</u> 11	1-1
-		15-11	11-11	11-11		1-1

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	46.32	-3.41	42.91	54	-11.09	Vertical
7440	44.58	-0.72	43.86	54	-10.14	Vertical
4960	46.25	-3.41	42.84	54	-11.16	Horizontal
7440	44.60	-0.72	43.88	54	-10.12	Horizontal
1 7 1	/ / - / /	11-11		111-11	((-/)	
	/ - /	1 1-11	7 -7 7	/		<u></u>

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----