GTS Global United Technology Services Co., Ltd.

Report No.: GTSL202108000286F01

TEST REPORT

Applicant:	Shenzhen JinYangHuiChuang Technology Limited
Address of Applicant: Manufacturer/Factory:	#1301,ShenXinTaifeng Building,Qianjin 1st Road No 86, Baoan District, Shenzhen, Guangdong, China Shenzhen JinYangHuiChuang Technology Limited
Address of Manufacturer/Factory:	#1301,ShenXinTaifeng Building,Qianjin 1st Road No 86, Baoan District, Shenzhen, Guangdong, China
Equipment Under Test (E	:UT)
Product Name:	XBOX BLADE CONTROLLER
Model No.:	BLADE
Trade Mark:	HEXGAMING
FCC ID:	2A3BG-BLADE
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Aug. 26,2021
Date of Test:	Aug. 26,2021-Sep. 29,2021
Date of report issued:	Sep. 29,2021
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description Original		
00	Sep. 29,2021			
8 8 8 8	6 6 8 8	2 B B B B		
6 6 2 6	2 1 2 1 2	1 2 4 4		
		0 0 0 0 0		

Prepared By:

JosentOu

Date:

Date:

Sep. 29,2021

Sep. 29,2021

Project Engineer

Check By:

thinson lun

Reviewer

GTS

Report No.: GTSL202108000286F01

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
	말 <u>에 걸 것 수</u> 가 있는 것 같아. 이 것 이 것 이 것 이 것 이 것 이 것 이 것 이 것 이 것 이	
3		19 I I I I I I I I I I I I I I I I I I I
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
P	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	
6		
0		0
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED OUTPUT POWER	
	 7.4 CHANNEL BANDWIDTH 7.5 POWER SPECTRAL DENSITY 	
	7.5 POWER SPECTRAL DENSITY	
	7.6.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	
	7.7.2 Radiated Emission Method	
8		
-	EUT CONSTRUCTIONAL DETAILS	
9	EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Peak Conducted Output Power	15.247 (b)(3)	Pass
6dB Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz	3.8039dB	(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)	

5 General Information

5.1 General Description of EUT

Product Name:	XBOX BLADE CONTROLLER
Model No.:	BLADE
Test sample(s) ID:	GTSL202108000286-1
Sample(s) Status:	Engineer sample
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	DC 3.0V From Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: CD122 Input: AC100-240V, 50/60Hz, 500mA Output: DC 5V, 2A

Operation F	Frequency eac	h of channe	0 0				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

2	Transmitting mode	Keep the EUT in continuously transmitting mode				
		Special test command provided by manufacturer				
8		he test voltage was tuned from 85% to 115% of the nominal rated supply e worst case was under the nominal rated supply condition. So the report just a.				

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

5.8 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Conducted testing:

25 ° C		
2 2 5		
51 %		
8 8		
950-1050mbar		

6 Test Instruments list

Rad	iated Emission:		6 6 6	45	la la	6 6
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	1 3m Semi- Anechoic Chamber ZhongYu Electron		9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio		CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Cond	Conducted Emission						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022	
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022	
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022	

RF C	RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022	

Gene	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022	
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022	

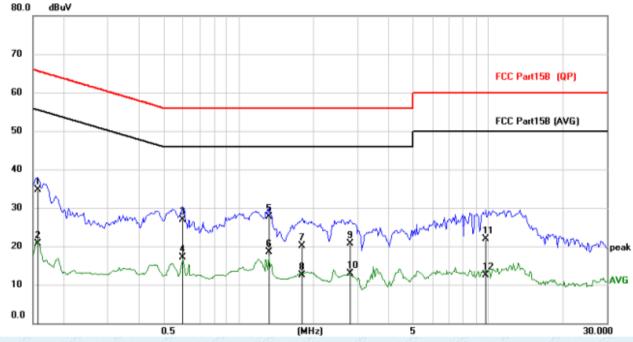
7 Test results and Measurement Data

7.1 Antenna requirement

Stan	dard requirement:	FCC Part15 C Section 15.203 /247(c)			
15.20)3 requirement:	2 1 2 1 2 2 2 2 2 2			
respo anter that a	onsible party shall be unna that uses a unique	be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an e coupling to the intentional radiator, the manufacturer may design the unit so be replaced by the user, but the use of a standard antenna jack or electrical			
15.24	47(c) (1)(i) requireme	nt: / / / / / / /			
opera maxii	ations may employ trar	e 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point insmitting antennas with directional gain greater than 6dBi provided the intentional radiator is reduced by 1 dB for every 3 dB that the nna exceeds 6dBi.			
E.U.1	Γ Antenna:				
The a	antenna is PCB anteni	na, the best case gain of the is 0dBi, reference to the appendix II for details			

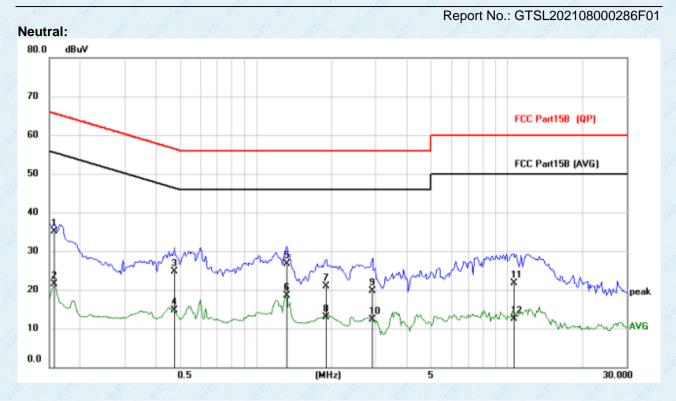
7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	7					
Test Method:	ANSI C63.10:2013	e e		6			
Test Frequency Range:	150KHz to 30MHz	- S - S - S	S	8 6			
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto	9 12	£			
Limit:		Limi	t (dBuV)				
	Frequency range (MHz)	Quasi-peak	Avera	ge			
	0.15-0.5	66 to 56*	56 to 4	6*			
	0.5-5	56	46	4			
	5-30	60	50	<u></u>			
Test setup:	* Decreases with the logarithr Reference Plane			S. C			
Test procedure:	LISN 40cm 80cm AUX E.U.T E.U.T Feature E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators	EMI Receiver	power main power th	rough a			
	 Ine impedance stabilizatio 50ohm/50uH coupling imp The peripheral devices are LISN that provides a 50oh termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10 	on network (L.I.S.N.). bedance for the meas e also connected to the m/50uH coupling imp to the block diagram checked for maximum of the maximum emis d all of the interface of	This provides a uring equipment bedance with 50 of the test setur m conducted ssion, the relative cables must be	through a bhrough a bohm p and ve			
Test Instruments:	Refer to section 6.0 for details	S	6	19 A.			
	Refer to section 5.2 for details						
Test mode:	Refer to section 5.2 for details	5					
Test mode: Test environment:		s mid.: 52%	Press.:	1012mbar			
		100 100	Press.:	1012mbar			


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

GTS

Measurement data


Report No.: GTSL202108000286F01

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz, **Line:**

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	0.1578	23.79	10.93	34.72	65.58	-30.86	QP
	0.1578	9.87	10.93	20.80	55.58	-34.78	AVG
	0.5985	15.89	10.92	26.81	56.00	-29.19	QP
	0.5985	6.15	10.92	17.07	46.00	-28.93	AVG
	1.3239	16.70	10.94	27.64	56.00	-28.36	QP
*	1.3239	7.61	10.94	18.55	46.00	-27.45	AVG
	1.8036	9.12	10.96	20.08	56.00	-35.92	QP
	1.8036	1.55	10.96	12.51	46.00	-33.49	AVG
	2.8020	9.68	11.00	20.68	56.00	-35.32	QP
	2.8020	1.83	11.00	12.83	46.00	-33.17	AVG
	9.8562	10.62	11.36	21.98	60.00	-38.02	QP
	9.8562	1.07	11.36	12.43	50.00	-37.57	AVG
	Mk.	MHz 0.1578 0.1578 0.5985 0.5985 1.3239 * 1.3239 * 1.3239 * 1.8036 1.8036 2.8020 2.8020 9.8562	Mk. Freq. Level MHz dBuV 0.1578 23.79 0.1578 9.87 0.5985 15.89 0.5985 6.15 1.3239 16.70 * 1.3239 7.61 1.8036 9.12 1.8036 1.55 2.8020 9.68 2.8020 1.83 9.8562 10.62	Mk. Freq. Level Factor MHz dBuV dB 0.1578 23.79 10.93 0.1578 9.87 10.93 0.1578 9.87 10.93 0.5985 15.89 10.92 0.5985 6.15 10.92 1.3239 16.70 10.94 * 1.3239 7.61 10.96 1.8036 9.12 10.96 1.8036 2.8020 9.68 11.00 2.8020 1.83 11.00 9.8562 10.62 11.36	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1578 23.79 10.93 34.72 0.1578 9.87 10.93 20.80 0.5985 15.89 10.92 26.81 0.5985 6.15 10.92 17.07 1.3239 16.70 10.94 27.64 * 1.3239 7.61 10.94 20.08 1.8036 9.12 10.96 20.08 1.8036 9.12 10.96 20.08 2.8020 9.68 11.00 20.68 2.8020 1.83 11.00 12.83 9.8562 10.62 11.36 21.98	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dDD dDD	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB dBuV dB 0.1578 23.79 10.93 34.72 65.58 -30.86 0.1578 9.87 10.93 20.80 55.58 -34.78 0.5985 15.89 10.92 26.81 56.00 -29.19 0.5985 6.15 10.92 17.07 46.00 -28.93 1.3239 16.70 10.94 27.64 56.00 -28.36 * 1.3239 7.61 10.94 18.55 46.00 -27.45 1.8036 9.12 10.96 20.08 56.00 -33.49 2.8020 9.68 11.00 20.68 56.00 -35.32 2.8020 1.83 11.00 20.68 56.00 -33.17 9.8562 10.62 11.36 21.98 60.00 -38.02

GTS

10	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.1578	24.14	10.93	35.07	65.58	-30.51	QP
	2		0.1578	10.54	10.93	21.47	55.58	-34.11	AVG
-	3		0.4737	13.71	10.92	24.63	56.45	-31.82	QP
	4		0.4737	3.69	10.92	14.61	46.45	-31.84	AVG
	5		1.3239	15.80	10.94	26.74	56.00	-29.26	QP
	6	*	1.3239	7.48	10.94	18.42	46.00	-27.58	AVG
	7		1.9050	9.97	10.96	20.93	56.00	-35.07	QP
	8		1.9050	2.00	10.96	12.96	46.00	-33.04	AVG
-	9		2.9151	8.79	11.00	19.79	56.00	-36.21	QP
	10		2.9151	1.26	11.00	12.26	46.00	-33.74	AVG
	11		10.6245	10.41	11.37	21.78	60.00	-38.22	QP
5	12		10.6245	1.16	11.37	12.53	50.00	-37.47	AVG

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

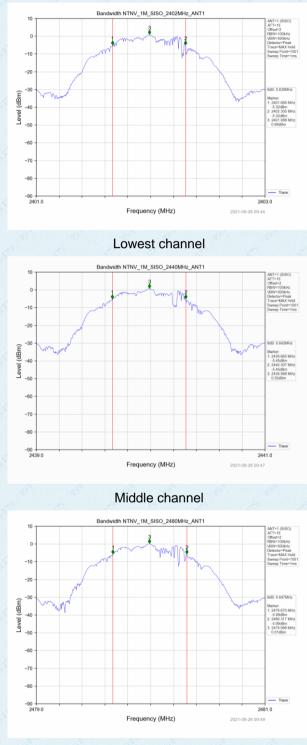
7.3 Conducted Output Power FCC Part15 C Section 15.247 (b)(3) **Test Requirement:** Test Method: ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 Limit: 30dBm Test setup: Spectrum Analyzer E.U.T 6 Non-Conducted Table **Ground Reference Plane** Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Pass Test results:

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	1.34	6 6 6	6 6
Middle	1.21	30.00	Pass
Highest	0.62	1 2 8	1 12 2

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02			
Limit:	>500KHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			


Measurement Data

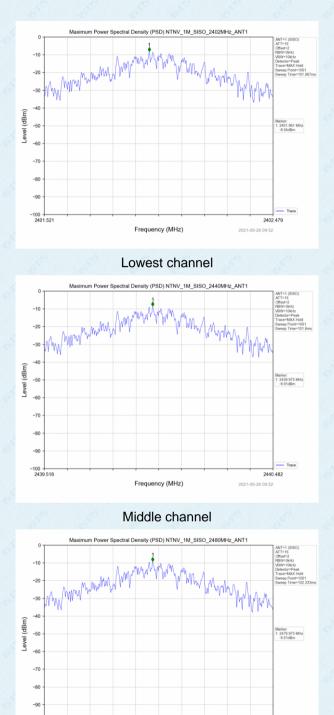
Test channel	Test channel Channel Bandwidth (MHz)		Result	
Lowest	0.639		김 씨 석이 집 선생님 성장	
Middle	0.642	>500	Pass	
Highest	0.647		8 6 8 8	

Test plot as follows:

Report No.: GTSL202108000286F01

Highest channel

7.5 Power Spectral Density Test Requirement: FCC Part15 C Section 15.247 (e) Test Method: ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02 Limit: 8dBm/3kHz Test setup: Spectrum Analyzer E.U.T 6 Non-Conducted Table **Ground Reference Plane** Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass


Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-15.37	6 6 8	8 8 8
Middle	-15.15	8.00	Pass
Highest	-15.46		

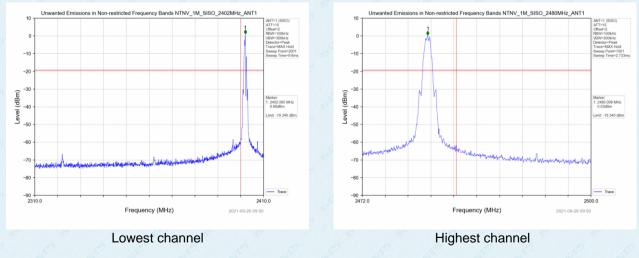
Test plot as follows:

Report No.: GTSL202108000286F01

Highest channel

Frequency (MHz)

2480.485



7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Test plot as follows:

FCC Part15 C Section 15.209 and 15.205 Test Requirement: Test Method: ANSI C63.10:2013 Test Frequency Range: All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed. Test site: Measurement Distance: 3m RBW VBW Receiver setup: Frequency Detector Value Peak 1MHz 3MHz Peak Above 1GHz RMS 1MHz 3MHz Average Limit: Limit (dBuV/m @3m) Value Frequency 54.00 Average Above 1GHz 74.00 Peak Test setup: ******** < 3m 2 Test Antenna-< 1m ... 4m >. EUT. Turn Table+ <150cm 3 Receiver+ Preamplifier Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass

7.6.2 Radiated Emission Method

Measurement Data.

Report No.: GTSL202108000286F01

est channel:			Lowes	Lowest channel						
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
2390	59.86	-5.68	54.18	74.00	-19.82	Horizontal				
2390	59.99	-5.68	54.31	74.00	-19.69	Vertical				

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390	44.83	-5.68	39.15	54.00	-14.85	Horizontal
2390	44.71	-5.68	39.03	54.00	-14.97	Vertical
Remark: Facto	r = Antenna Fac	tor + Cable Los	ss – Pre-amplifier	- 8 - 8	1 6	8

100	100	S -405	100	40	400	100 100 100 100
Test char	nnel:			Hi	ghest channel	

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	59.46	-5.85	53.61	74.00	-20.39	Horizontal
2483.5	59.62	-5.85	53.77	74.00	-20.23	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Average value:

Peak value.

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	44.35	-5.85	38.5	54.00	-15.50	Horizontal
2483.5	44.56	-5.85	38.71	54.00	-15.29	Vertical

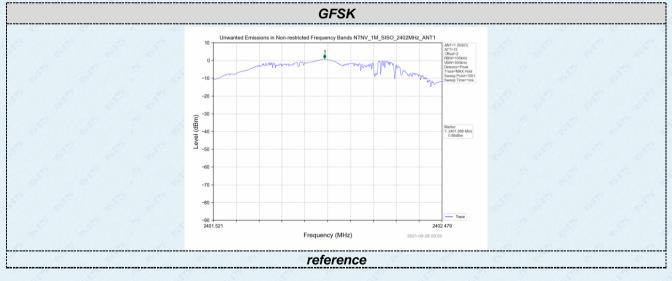
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

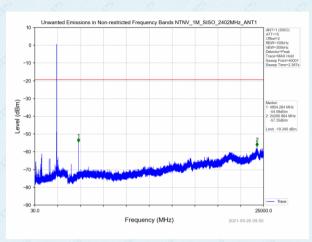
The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest 3. and highest frequencies) data was showed.

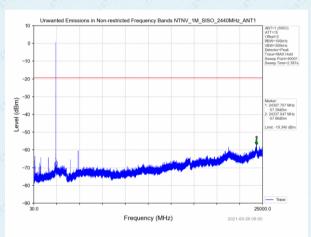


7.7 Spurious Emission

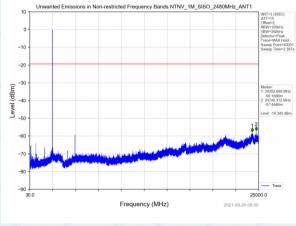
7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


Test plot as follows:



Lowest channel

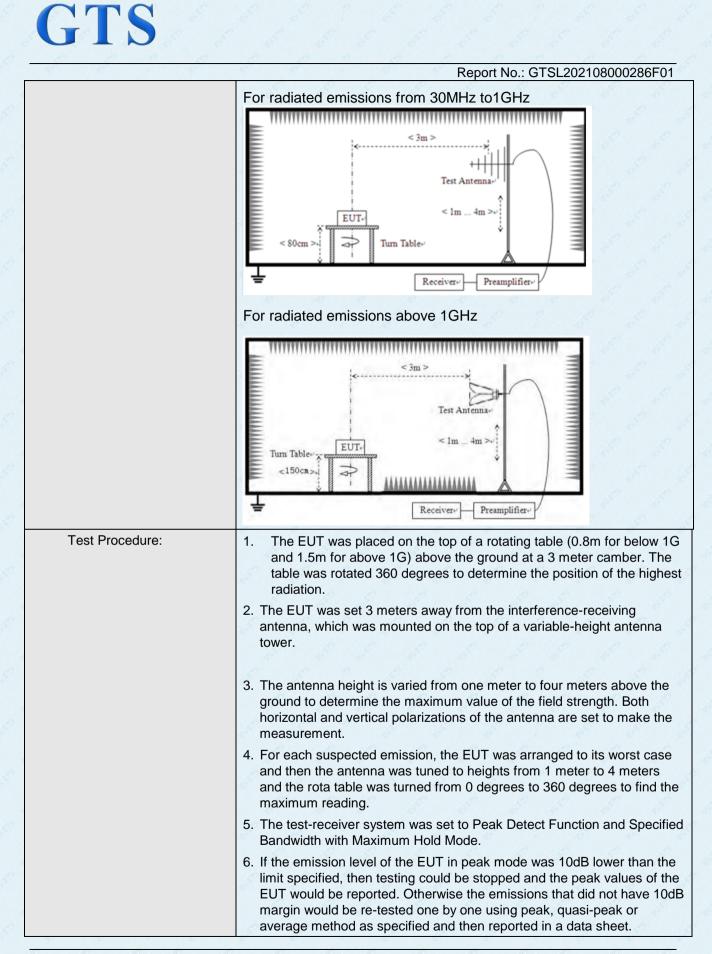

Report No.: GTSL202108000286F01

30MHz~25GHz

30MHz~25GHz

30MHz~25GHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


Middle channel

Highest channel

Test Requirement:	FCC Part15 C Section	on 15	.209	Ð	1	2 10		2 0
Test Method:	ANSI C63.10:2013		0 0	0	1	5	1	
Test Frequency Range:	9kHz to 25GHz	6	6	10 and 10			100	
Test site:	Measurement Distar	nce: 3	ßm	4 ^S	100	3		63 65
Receiver setup:	Frequency	D	etector	RBW	1	VBW	1	Value
	9KHz-150KHz	Qu	asi-peak	200H	z	600H	z	Quasi-peak
	150KHz-30MHz	Qu	asi-peak	9KH	Z	30KH	z	Quasi-peak
	30MHz-1GHz	Qu	asi-peak	120KH	łz	300KH	Ηz	Quasi-peak
	Above 1GHz		Peak	1MH	z	3MH:	z	Peak
			Peak	1MH	z	10Hz	z	Average
Limit:	Frequency	Frequency		//m)	V	alue	P	Measurement Distance
	0.009MHz-0.490MHz		2400/F(ł	(Hz)	1	QP		300m
	0.490MHz-1.705M	IHz	24000/F(KHz)		QP	30m	
	1.705MHz-30MH	lz 👘	30	Ø		QP	100	30m
	30MHz-88MHz	5	100	S.	(B)	QP		
	88MHz-216MHz	z	150	6		QP	S.	
	216MHz-960MHz		200	12	2	QP		3m
	960MHz-1GHz		500			QP		om
	Above 1GHz		200 A00		Av	verage		
		£	5000		P	Peak		E E
Test setup:	For radiated emiss		< 3m > Test Ar m Table-		MH	z		
	E Receiver-							

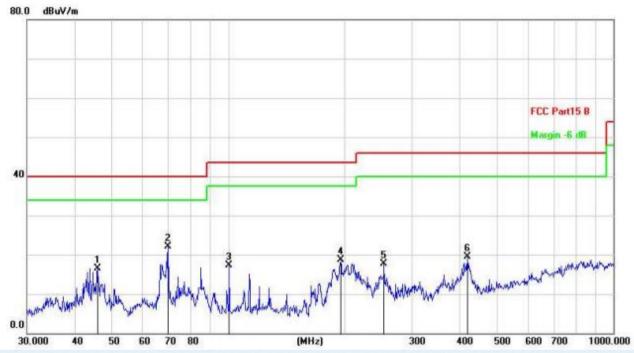
7.7.2 Radiated Emission Method

	19 19 19 19 19 19 19 19 19 19 19 19 19 1		ST	Report No.: O	STSL202108	3000286F01
Test Instruments:	Refer to s	ection 6.0 for	details			
Test mode:	Refer to s	ection 5.2 for	details	S.	2	8 6
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V,	60Hz	2 2	Ð	2 2	Q.
Test results:	Pass	10 10	e B			

Measurement data:

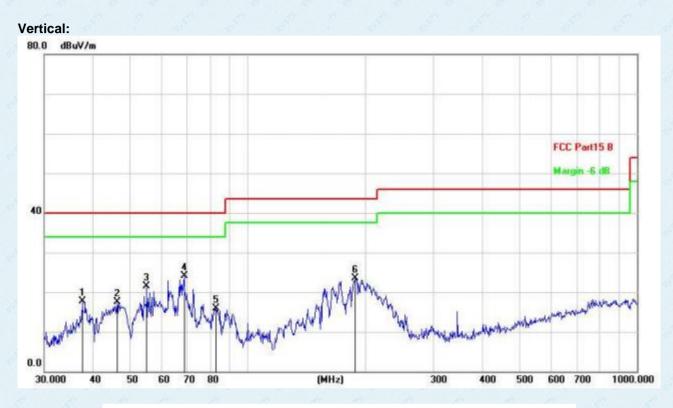
Remark: Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz

Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of 2402MHz,


Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		45.6948	34.53	-17.95	16.58	40.00	-23.42	QP
2	*	69.8450	41.96	-19.91	22.05	40.00	-17.95	QP
3		100.5806	37.80	-20.49	17.31	43.50	-26.19	QP
4		195.8220	38.68	-20.06	18.62	43.50	-24.88	QP
5		253.8367	36.87	-19.11	17.76	46.00	-28.24	QP
6		417.6411	35.93	-16.44	19.49	46.00	-26.51	QP

Measurement =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		37.5479	35.86	-18.13	17.73	40.00	-22.27	QP
2		46.1779	35.87	-18.32	17.55	40.00	-22.45	QP
3		55.0274	40.04	-18.61	21.43	40.00	-18.57	QP
4	*	68.6310	43.79	-19.77	24.02	40.00	-15.98	QP
5		82.9385	36.77	-20.96	15.81	40.00	-24.19	QP
6		189.0743	43.18	-19.71	23.47	43.50	-20.03	QP

Measurement =Receiver Read level + Correct Factor

GTS

Above 1-26GHz

Report No.: GTSL202108000286F01

Test channel:			Lowest chan	nel		
Peak value:					S	
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804	61.33	-3.61	57.72	74	-16.28	Vertical
7206	57.52	-0.85	56.67	74	-17.33	Vertical
4804	61.35	-3.61	57.74	74	-16.26	Horizontal
7206	57.38	-0.85	56.53	74	-17.47	Horizontal
4	8	8 <u>-</u> 8	S	8	£	e ² 6
8 <u></u> 8	6					<u>_</u>

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804	46.29	-3.61	42.68	54	-11.32	Vertical
7206	44.25	-0.85	43.40	54	-10.60	Vertical
4804	46.32	-3.61	42.71	54	-11.29	Horizontal
7206	44.28	-0.85	43.43	54	-10.57	Horizontal
8 8	2 - B	S 6	2 8	S S	l &	
<u>e</u>	8 <u>8</u>	8 <u></u> 8	<u></u>		<u> </u>	e e

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.
 "*", means this data is the too weak instrument of signal is unable to test.

est channel:			Middle	Middle				
eak value:		× ×	10 10 10 10 10 10 10 10 10 10 10 10 10 1					
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4880	61.92	-3.49	58.43	74	-15.57	Vertical		
7320	56.77	-0.80	55.97	74	-18.03	Vertical		
4880	61.46	-3.49	57.97	74	-16.03	Horizontal		
7320	56.28	-0.80	55.48	74	-18.52	Horizontal		
	(A)	£	2 <u></u> 8	S	(s ^a	4		
<u>_</u>	e <u>-</u>	e	<u></u>		<u> </u>	e e		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatior
4880	45.86	-3.49	42.37	54	-11.63	Vertical
7320	43.27	-0.80	42.47	54	-11.53	Vertical
4880	45.80	-3.49	42.31	54	-11.69	Horizontal
7320	43.33	-0.80	42.53	54	-11.47	Horizontal
4	8 4	8	8 <u></u> 8	e -	£ <u>-</u>	8 6
a	<u> </u>	S 6	&			<u></u>

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

est channel:	Highest					
eak value:						- A
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	61.39	-3.41	57.98	74	-16.02	Vertical
7440	56.82	-0.72	56.10	74	-17.90	Vertical
4960	61.44	-3.41	58.03	74	-15.97	Horizontal
7440	56.89	-0.72	56.17	74	-17.83	Horizontal
-	, , <i>k</i>	8 6	î jî	& &	(i	4
<u> </u>		e ⁿ		<u>_</u>	<u></u>	£ &

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Average value:	Av	era	ge	val	ue:
----------------	----	-----	----	-----	-----

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	46.20	-3.41	42.79	54	-11.21	Vertical
7440	43.77	-0.72	43.05	54	-10.95	Vertical
4960	46.19	-3.41	42.78	54	-11.22	Horizontal
7440	43.69	-0.72	42.97	54	-11.03	Horizontal
4	6 4	d d	²	S	<u> </u>	8 6
<u> </u>		, e <u></u> , e		, e , e		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

GTS

Report No.: GTSL202108000286F01

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----