

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT FCC PART 15 SUBPART C REQUIREMENT

OF

Smart Tank Meter

Model No.: TM1001

Trademark: Shyion

FCC ID: 2A3BE-TM1001

Report No.: E01A22100207F00101

Issue Date: October 26, 2022

Prepared for

Wuhu Youfan E-Commerce Co.,Ltd.

No. 369 industrial Road, Anhui Xinwu Economic Development Zone, Wuhu County, Wuhu City, China

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

TRF No.: 01-R001-3A-LE Web: www.gtggroup.com

TRF Originator: GTG E-mail: info@gtggroup.com Tel.: 86-400 755 8988

TRF Date: 2022-06-29

Wuhu Youfan E-Commerce Co.,Ltd.	
No. 369 industrial Road, Anhui Xinwu Economic Development Zone,	
Wuhu County, Wuhu City, China	
Wuhu Youfan E-Commerce Co.,Ltd.	
No. 369 industrial Road, Anhui Xinwu Economic Development Zone,	
Wuhu County, Wuhu City, China	
Smart Tank Meter	
Shyion	
TM1001	

VERIFICATION OF COMPLIANCE

We hereby certify that:

The above equipment was tested by Dong Guan Anci Electronic Technology Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247(2022).

Date of Test :

October 18, 2022 to October 25, 2022

Prepared by :

Duke Liu / EMC Engineer

Approved & Authorized Signer :

Tiger Xu / Supervisor

Modified Information

Version	Summary	Revision Date	Report No.
Ver.1.0	Original Report	/	E01A22100207F00101

1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION	5
1.2 Test Methodology	
2. TEST FACILITY	
3. DESCRIPTION OF TEST MODES	
4. SUMMARY OF TEST RESULTS	
6DB BANDWIDTH MEASUREMENT	9
5. TEST SYSTEM UNCERTAINTY	
6. CONDUCTED EMISSIONS TEST	11
6.1MEASUREMENT PROCEDURE:	
6.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
6.3MEASUREMENT EQUIPMENT USED:	
6.4 CONDUCTED EMISSION LIMIT	
6.5 MEASUREMENT RESULT:	
7. RADIATED EMISSION TEST	
7.1Measurement Procedure	
7.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
7.3MEASUREMENT EQUIPMENT USED:	
7.4 RADIATED EMISSION LIMIT	
7.5 MEASUREMENT RESULT	
7.6 RADIATED MEASUREMENT PHOTOS:	
8. 6DB BANDWIDTH MEASUREMENT	
8.1MEASUREMENT PROCEDURE	
8.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
8.3 MEASUREMENT EQUIPMENT USED:	
8.4 LIMIT	
9. MAXIMUM PEAK OUTPUT POWER TEST	
9.1MEASUREMENT PROCEDURE	-
9.2TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3 MEASUREMENT EQUIPMENT USED.	
9.5 MEASUREMENT RESULTS:	
10. POWER SPECTRAL DENSITY MEASUREMENT	
10.1 MEASUREMENT PROCEDURE	
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 10.3 MEASUREMENT EQUIPMENT USED:	
	31

11.1 Measurement Procedure	35
11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	35
11.3 MEASUREMENT EQUIPMENT USED:	
11.4 MEASUREMENT RESULTS:	
12 ANTENNA APPLICATION	
12.1 ANTENNA REQUIREMENT	
12.2 RESULT	44
APPENDIX (PHOTOS OF EUT) (7 PAGES)	

1. GENERAL INFORMATION

1.1 Product Description

Characteristics	Description	
Product Name	Smart Tank Meter	
Model number	TM1001	
Input Rating	2 Saft LS14500 3.6V AA Batteries	
Power Supply	Battery 3.6V*2 AA	
Kind of Device	Bluetooth Ver.5.0 BLE	
Modulation	GFSK	
Operating Frequency Range	2402-2480MHz	
Number of Channels	40	
Transmit Power Max(PK)	2.43 dBm(0.0018W)	
Antenna Type	PCB antenna	
Antenna Gain	1.37 dBi	
Date of Sample Received	October 18, 2022	

1.2 Test Methodology

All the test program has follow FCC new test procedure KDB 558074 D01 DTS Meas Guidance v05 and in accordance with the procedures given in ANSI C63.10-2013.

Site Description		
Name of Firm	:	Dong Guan Anci Electronic Technology Co., Ltd.
Site Location	:	1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hi-tech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

3. Description of test modes

The EUT has been tested under its typical operating condition and fully-charged battery for EUT tested alone. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

For Radiated: The EUT's antenna was pre-tested under the following modes:

Test Mode	Description
Mode A	X-Y axis
Mode B	Y-Z axis
Mode C	X-Z axis

From the above modes, the worst case was found in Mode C. Therefore only the test data of the mode was recorded in this report.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonics of the highest fundamental frequency or to 40 GHz, whichever is lower).

Configuration of Tested System

EUT

Equipment Used in Tested System

Item	Equipment	Trademark	Model No.	FCC ID	Note
1.	Smart Tank Meter	Shyion	TM1001	2A3BE-TM1001	EUT

 $$8 \mbox{ of } 51$$ The EUT has been tested under TX operating condition. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

Note:

1. Test of channel was included the lowest 2402MHz, middle 2440MHz and highest frequency 2480MHz in highest data rate and to perform the test, then record on this report.

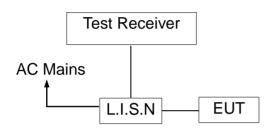
4. Summary of Test Results

FCC Rules	Description Of Test	Result		
§15.207	AC Power Conducted Emission	N/A		
§15.247(d),§15.209	Radiated Emission	Compliant		
§15.247(a)(2)	6dB Bandwidth Measurement	Compliant		
§15.247(b) MAXIMUM PEAK OUTPUT POWER TEST		Compliant		
§15.247(e)	Power Spectral Density Measurement	Compliant		
§15.247(d)	Band EDGE test	Compliant		
§15.203	Antenna Requirement	Compliant		
Remark: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits. Note 1: EUT powered by battery.				

5. TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%


Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%

6. Conducted Emissions Test

6.1 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Calibrated until
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-669	2023-05-12
10 db attenuator	JFW	50FP-010-H4	4360846-427-1	2023-05-12
RF Cable	N/A	N/A	2#	2023-05-12
EMI Test Receiver	ROHDE&SCHWAR Z	ESCI	101358	2023-05-12
Test Software	Farad	EZ-EMC (Ver.ANCI-3A1)	N/A	N/A

6.4 Conducted Emission Limit

(7) Conducted Emission		
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

1. The lower limit shall apply at the transition frequencies

2.The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

6.5 Measurement Result:

N/A.

7. Radiated Emission Test

7.1 Measurement Procedure

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 5. For measurement below 1GHz, if the emission level of the EUT measured by the peak detector is 3dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
 - 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
 - 2) Change the antenna polarization and repeat 1) with vertical polarization.
 - 3) Make a hardcopy of the spectrum.
 - 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
 - 5) Change the analyser mode to Clear/Write and found the cone of emission.
 - 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
 - 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
 - 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Use the following spectrum analyzer settings:

When spectrum scanned from 30MHz to 1GHz setting resolution bandwidth 120KHz and video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	120KHz
VB	300KHz
Detector	QP
Trace	Max hold

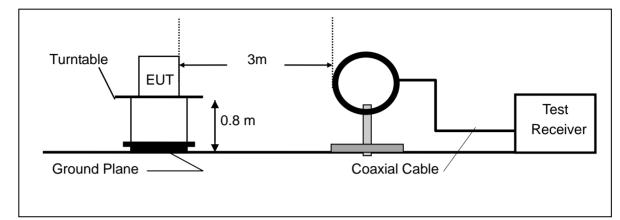
When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max hold

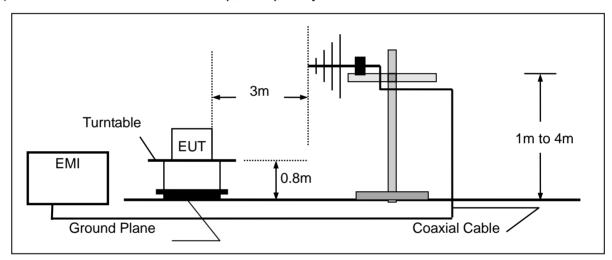
When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 10Hz:

EMI Test Receiver	Setting
Attenuation	Auto
RB	1MHz
VB	10Hz
Detector	Average
Trace	Max hold

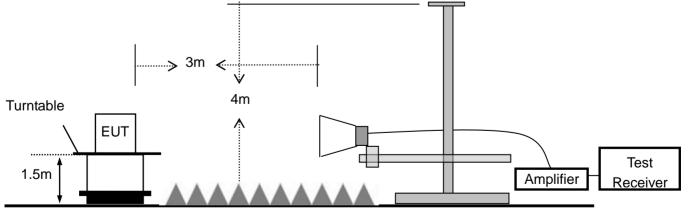
For Average Measurement:


VBW=10Hz, when duty cycle is no less than 98 percent.

VBW ≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.


Band	Duty Cycle(%)	Τ(μ s)	1/T(KHz)	Average Correction Factor	VBW Setting
2402-2480	100	-	-	0	10Hz

7.2 Test SET-UP (Block Diagram of Configuration)


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.3 Measurement Equipment Used:

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1.	EMI Test Receiver	Rohde & Schwarz	ESPI	100502	2022-11-12
2.	Pre-Amplifier	HP	8447D	2727A06172	2023-05-12
3.	Bilog Antenna	Schwarzbeck	VULB9163	VULB9163-588	2023-05-12
4.	Loop Antenna	Schwarzbeck	FMZB 1516	1516-141	2022-11-12
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
6.	Low noise Amplifiers	A-INFO	LA1018N4009	J101313052400 1	2023-05-12
7.	Horn antenna	A-INFO	LB-10180-SF	J203109061212 3	2023-05-12
8.	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX10 0KHz-40GHz	J101313052400 1	2022-11-12
9.	DRG Horm Antenna	A.H.SYSTEMS	SAS-574	J203109061212 3	2022-11-12
10.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-2m	N/A	2022-11-12
11.	RF Cable	Gigalink Microwave	ZT40-2.92J-2. 92J-0.3m	N/A	2022-11-12
12.	RF Cable	N/A	N/A	6#	2023-05-12
13.	RF Cable	N/A	N/A	1-1#	2023-05-12
14.	RF Cable	N/A	N/A	1-2#	2023-05-12
15.	RF Cable	N/A	N/A	7#	2023-05-12
16.	3m Semi-anechoic Chamber	chengyu	9m*6m*6m	N/A	2023-05-12
17.	Test Software	Farad	EZ-EMC Ver:ANCI-3A1	N/A	N/A

7.4 Radiated emission limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 15.209(a):

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

15.205 Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

Remark 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

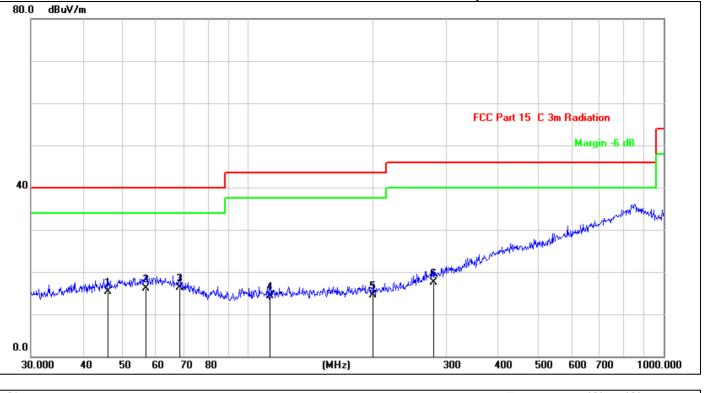
3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

:

7.5 Measurement Result

Below 30MHz:

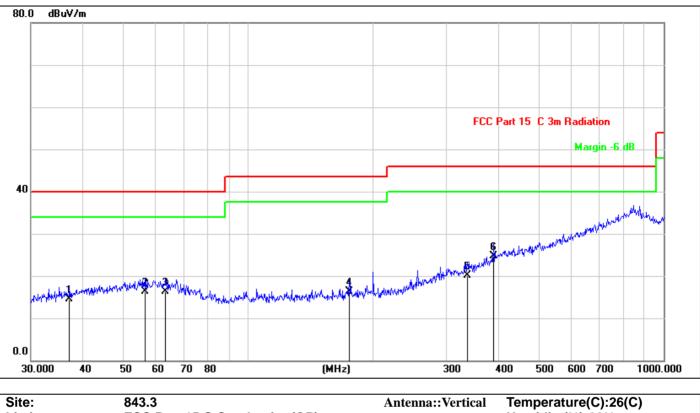
Operation Mode:	ТХ	Test Date :	2022-10-21
Frequency Range:	9KHz~30MHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best


Freq.	Ant.Pol.	Emission Limit 3m		Over
		Level		
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)

Note: The low frequency, which started from 9KHz-30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Below 1000MHz:

Pass.


The data of the mode (GFSK 2402MHz) are recorded in the following pages.

Site:	843.3	Antenna::Horizontal	Temperature(C):26(C)
Limit:	FCC Part 15 C Conduction(QP)		Humidity(%):60%
EUT:	Smart Tank Meter	Test Time:	2022-10-21
M/N.:	TM1001	Power Rating:	Battery 7.2V
Mode:	TX2402	Test Engineer:	Sunshine
Note:		•	

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	46.0164	25.43	-10.11	15.32	40.00	-24.68	QP	
2	56.7917	25.19	-9.14	16.05	40.00	-23.95	QP	
3 *	68.3908	26.34	-10.13	16.21	40.00	-23.79	QP	
4	112.9196	26.06	-11.79	14.27	43.50	-29.23	QP	
5	199.9856	25.81	-11.29	14.52	43.50	-28.98	QP	
6	280.0237	25.52	-8.01	17.51	46.00	-28.49	QP	

*:Maximum data x:Over limit !:over margin

Site:	843.3	Antenna::Vertical	Temperature(C):26(C)
Limit:	FCC Part 15 C Conduction(QP)		Humidity(%):60%
EUT:	Smart Tank Meter	Test Time:	2022-10-21
M/N.:	TM1001	Power Rating:	Battery 7.2V
Mode:	TX2402	Test Engineer:	Sunshine
Note:		5	

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Over (dB)	Detector	Comment
1	37.1550	25.43	-10.94	14.49	40.00	-25.51	QP	
2	56.5929	25.47	-9.14	16.33	40.00	-23.67	QP	
3	63.3132	25.33	-8.97	16.36	40.00	-23.64	QP	
4	175.0368	27.50	-11.24	16.26	43.50	-27.24	QP	
5	337.2155	25.72	-5.67	20.05	46.00	-25.95	QP	
6 *	389.3549	28.09	-3.45	24.64	46.00	-21.36	QP	

*:Maximum data x:Over limit !:over margin

Above 1000MHz~10th Harmonics:

Operation Mode:	TX Mode (CH00: 2402MHz)	Test Date :	2022-10-21
Frequency Range:	1-25GHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

Freq.	Ant. Pol.	Reading Level(dBuV/m)		Correct Factor	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4804	V	94.02	74.48	-32.3	62.32	42.18	74	54	-11.68	-11.82
7206	V	96.34	76.56	-37.2	59.14	39.36	74	54	-14.86	-14.64
9608	V	98.12	77.97	-39.8	58.32	38.17	74	54	-15.68	-15.83
12010	V	96.82	76.64	-40.5	56.32	36.14	74	54	-17.68	-17.86
14412	V	97.17	77.95	-41.7	55.47	36.25	74	54	-18.53	-17.75
16814	V	95.39	76.41	-40	55.39	36.41	74	54	-18.61	-17.59
4804	H	93.62	74.34	-31.6	62.02	42.74	74	54	-11.98	-11.26
7206	H	95.63	75.75	-35.5	60.13	40.25	74	54	-13.87	-13.75
9608	Н	97.62	78.42	-38.3	59.32	40.12	74	54	-14.68	-13.88
12010	Н	95.14	75.25	-39	56.14	36.25	74	54	-17.86	-17.75
14412	Н	97.41	78.47	-42	55.41	36.47	74	54	-18.59	-17.53
16814	Н	94.66	75.55	-39.3	55.36	36.25	74	54	-18.64	-17.75

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

Operation Mode:	TX Mode (CH19: 2440MHz)	Test Date :	2022-10-21
Frequency Range:	1-25GHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

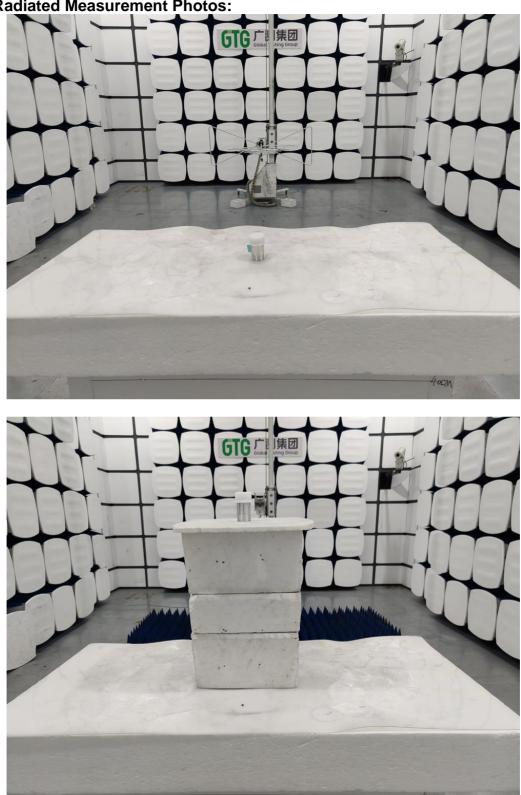
Freq.	Ant. Pol.		Reading Correc Level(dBuV/m) Factor		Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Margin(dB)	
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV
4880	V	95.57	75.58	-32.3	63.27	43.28	74	54	-10.73	-10.72
7320	V	97.22	77.45	-37.2	60.02	40.25	74	54	-13.98	-13.75
9760	V	98.12	79.03	-39.8	58.32	39.23	74	54	-15.68	-14.77
12200	V	96.82	77.72	-40.5	56.32	37.22	74	54	-17.68	-16.78
14640	V	96.14	77.14	-41	55.14	36.14	74	54	-18.86	-17.86
17080	V	95.46	76.57	-41.1	54.36	35.47	74	54	-19.64	-18.53
4880	Н	94.38	75.12	-31.6	62.78	43.52	74	54	-11.22	-10.48
7320	Н	95.64	76	-35.5	60.14	40.5	74	54	-13.86	-13.5
9760	Н	96.49	77.71	-38.3	58.19	39.41	74	54	-15.81	-14.59
12200	Н	95.5	76.52	-39	56.5	37.52	74	54	-17.5	-16.48
14640	Н	97.17	78.44	-42	55.17	36.44	74	54	-18.83	-17.56
17080	Η	96.82	77.64	-41.5	55.32	36.14	74	54	-18.68	-17.86

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.

(4) Measuring frequencies from 1GHz to 25GHz.


Operation Mode:	TX Mode (CH39: 2480MHz)	Test Date :	2022-10-21
Frequency Range:	1-25GHz	Temperature :	25 ℃
Test Result:	PASS	Humidity :	58 %
Measured Distance:	3m	Test By:	Best

Freq.	Ant. Pol.	Rea Level(d	ding BuV/m)	Correct Factor							in(dB)
(MHz)	H/V	PK	AV	dB	PK	AV	PK	AV	PK	AV	
4960	V	94.48	75.56	-32.3	62.18	43.26	74	54	-11.82	-10.74	
7440	V	97.22	77.39	-37.2	60.02	40.19	74	54	-13.98	-13.81	
9920	V	98.43	77.82	-39.8	58.63	38.02	74	54	-15.37	-15.98	
12400	V	96.82	78.46	-40.5	56.32	37.96	74	54	-17.68	-16.04	
14880	V	96.41	77.47	-41	55.41	36.47	74	54	-18.59	-17.53	
17360	V	96.39	77.35	-41.1	55.29	36.25	74	54	-18.71	-17.75	
4960	Н	94.18	74.6	-31.6	62.58	43	74	54	-11.42	-11	
7440	Н	95.73	75.75	-35.5	60.23	40.25	74	54	-13.77	-13.75	
9920	Н	96.77	77.63	-38.3	58.47	39.33	74	54	-15.53	-14.67	
12400	Н	95.32	76.52	-39	56.32	37.52	74	54	-17.68	-16.48	
14880	Н	97.36	78.14	-42	55.36	36.14	74	54	-18.64	-17.86	
17360	Н	96.64	77.52	-41.5	55.14	36.02	74	54	-18.86	-17.98	

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss.
- (3) The average measurement was not performed when the peak measured data under the limit of average detection.
- (4) Measuring frequencies from 1GHz to 25GHz.

7.6 Radiated Measurement Photos:

8. 6dB Bandwidth Measurement

8.1 Measurement Procedure

The EUT was operating in Bluetooth mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

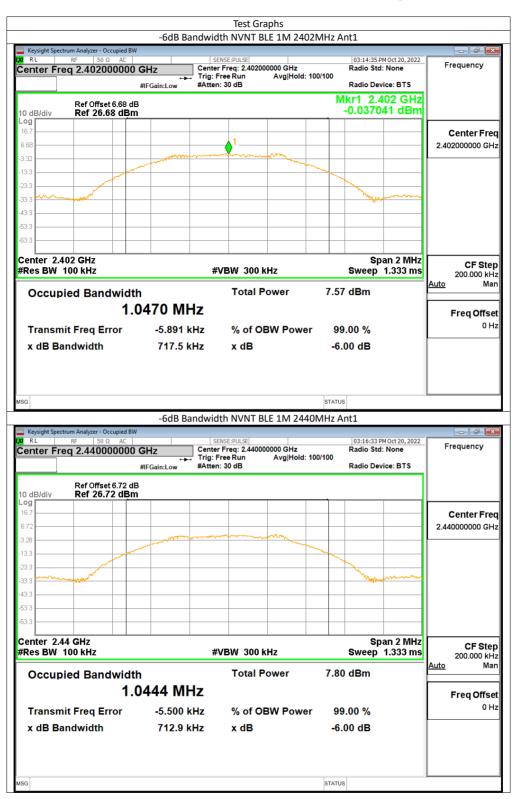
8.2 Test SET-UP (Block Diagram of Configuration)

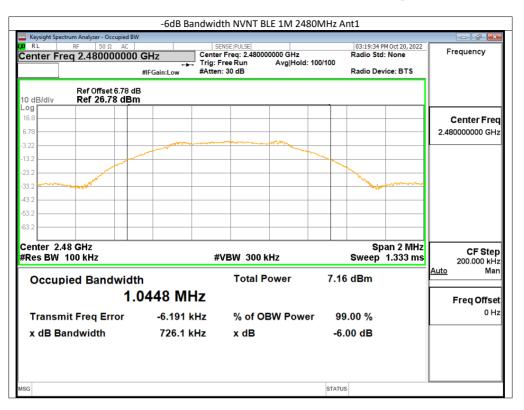
8.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	KEYSIGHT	N9020A	MY51281878	2023-10-08
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

8.4 Limit


The minimum 6dB bandwidth shall be at least 500kHz.


8.5 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	2022-10-20
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

Channel number	Channel	Measurement level	Required Limit
	frequency (MHz)	(KHz)	(KHz)
00	2402	717	>500
19	2440	713	>500
39	2480	726	>500

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1 Measurement Procedure

a. The Transmitter output (antenna port) was connected to the spectrum Analyzer.

28 of 51

- b. Turn on the EUT and then record the peak power value.
- c. Repeat above procedures on all channels needed to be tested.

9.2 Test SET-UP (Block Diagram of Configuration)

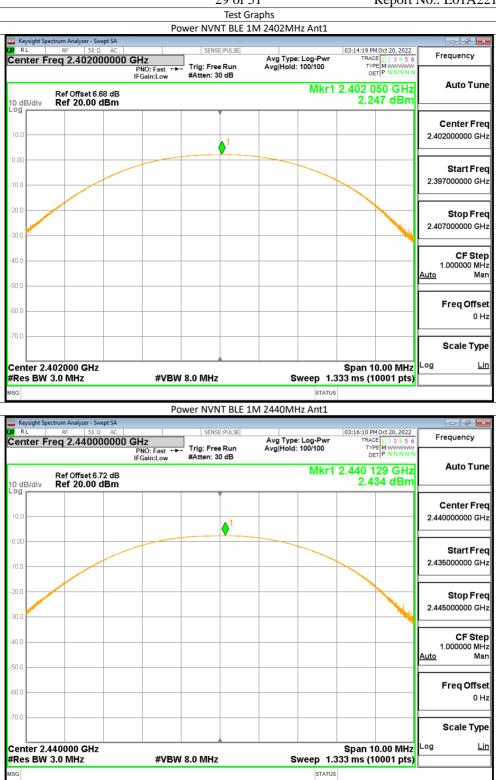
EUT	Spectrum Analyzer
	•

9.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	KEYSIGHT	N9020A	MY51281878	2023-10-08
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

9.4 Peak Power output limit


The maximum peak power shall be less 1Watt.

9.5 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	2022-09-08
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

Channel number	Channel Frequency (MHz)	Peak Power output(dBm)	Peak Power output(mW)	Peak Power Limit(W)	Pass/Fail
0	2402	2.250	1.679	1W(30dBm)	PASS
19	2440	2.430	1.750	1W(30dBm)	PASS
39	2480	1.720	1.486	1W(30dBm)	PASS

Keysight Spectrum Analyzer - Swept SA				
α RL RF 50 Ω AC Center Freq 2.480000000 G	PNO: Fast ++++ Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 100/100	03:19:09 PM Oct 20, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
Ref Offset 6.78 dB 0 dB/div Ref 20.00 dBm	FGain:Low #Atten: 30 dB	Mkr1	2.480 369 GHz 1.723 dBm	Auto Tune
10.0				Center Freq 2.48000000 GHz
0.00				Start Freq 2.475000000 GHz
20.0				Stop Freq 2.485000000 GHz
40.0				CF Step 1.000000 MHz <u>Auto</u> Man
50.0				Freq Offset 0 Hz
			On on 10 00 Mills	Scale Type
Center 2.480000 GHz Res BW 3.0 MHz	#VBW 8.0 MHz	Sweep 1.3	Span 10.00 MHz 33 ms (10001 pts)	

10. Power Spectral Density Measurement

10.1Measurement Procedure

The EUT was operating in Bluetooth mode or could be controlled its channel. Printed out the test result from the spectrum by hard copy function.

10.2 Test SET-UP (Block Diagram of Configuration)

EUI	Spectrum Analyzer

10.3 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	KEYSIGHT	N9020A	MY51281878	2023-10-08
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

10.4 Measurement Procedure

10.4.1 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

10.4.2. Set to the maximum power setting and enable the EUT transmit continuously.

10.4.3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)

10.4.4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.

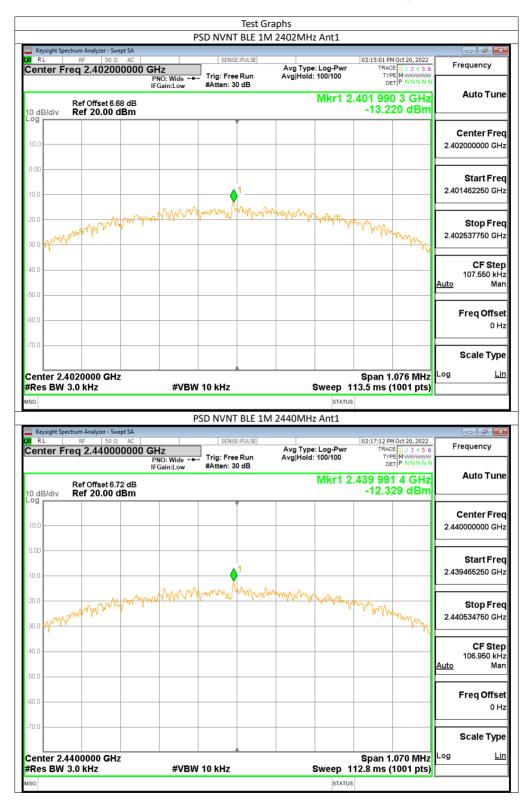
10.4.5. Measure and record the results in the test report.

10.4.6. The Measured power density (dBm)/ 100KHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

10.5 Measurement Results:

The following table is the setting of spectrum analyzer.

Spectrum analyzer	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS bandwidth.
RB	3KHz
VB	10KHz
Detector	Peak
Trace	Max hold
Sweep Time	Automatic


Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	2022-10-20
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

Channel	Channel	Measurement level	Required	Pass/Fail
number	frequency	(dBm)	Limit	
	(MHz)	PSD/3kHz	(dBm/3kHz)	
00	2402	-13.22	8	PASS
19	2440	-12.33	8	PASS
39	2480	-13.63	8	PASS

Note:

- 1. Measured power density(dBm) has offset with cable loss.
- 2. The measured power density(dBm)/100KHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

		PSD NVNT BLE 1	M 2480MHz Ant1		
	Spectrum Analyzer - Swept SA				- đ <mark>×</mark>
Center I	RF 50 Ω AC Freq 2.480000000	PNO: Wide +++ Trig: Free Run	Avg Type: Log-Pwr Avg Hold: 100/100	03:20:03 PM Oct 20, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWW	Frequency
10 dB/div	Ref Offset 6.78 dB Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr1 2	.479 991 3 GHz -13.625 dBm	Auto Tune
10.0					Center Fred 2.480000000 GHz
10.00		1			Start Free 2.479455500 GH
20.0	WWWWWWWWWW	how poter a present prestor	And and a start and a stranger and a	www.m.m.m.m.m.	Stop Fred 2.480544500 GH:
40.0					CF Step 108.900 kH <u>Auto</u> Mar
50.0					Freq Offse 0 H
70.0					Scale Type
	2.4800000 GHz V 3.0 kHz	#VBW 10 kHz	Sweep 1	Span 1.089 MHz 14.9 ms (1001 pts)	Log <u>Lir</u>
ISG			STATUS		

11.1 Measurement Procedure

For Conducted Test

- 1. The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100KHz. The video bandwidth is set to 300KHz.
- 2. The spectrum from 30MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold

For Radiated emission Test

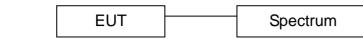
The EUT was placed on a styrofoam table which is 1.5m above ground plane.

The measurement procedure at the ban edges was simplified by performing the measurement in just one plot. Both, the in-band-emission and the unwanted emission were be encompassed by the span. After trace stabilization, the maximum peak was be determined by a peak detector and the value was marked by an appropriate limit line. The second limit line, which is 20dB below the first, marks the limit for the emissions in the unrestricted band. A maximum-peak-detector marks the highest emission in the unrestricted band next to the band edge.

The measurements were performed at the lower end of the 2.4GHz band. Use the following spectrum analyzer settings:

For Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 1MHz, video bandwidth 3MHz:

Setting
Auto
1MHz
3MHz
Peak
Max hold


For Non-Restricted Band, When spectrum scanned above 1GHz setting resolution bandwidth 100KHz, video bandwidth 300KHz:

EMI Test Receiver	Setting
Attenuation	Auto
RBW	100KHz
VBW	300KHz
Detector	Peak
Trace	Max hold


11.2 Test SET-UP (Block Diagram of Configuration)

For Conducted Test

36 of 51

For Radiated emission Test

11.3 Measurement Equipment Used:

For Conducted Test

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	CALIBRATED UNTIL
Spectrum Analyzer	KEYSIGHT	N9020A	MY51281878	2023-10-08
Coaxial Cable	Gigalink Microwave	ZT40	19022092	2022-11-12
Antenna Connector	ARTHUR-YANG	2244-N1TG1	N/A	2022-11-12

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

For Radiated emission Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Signal Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-11-12
2	Broadband RF Power Amplifier	AEROFLEX	AEROFLEX100KHz-40G Hz	J1013130524 001	2022-11-12
3	DRG Horm Antenna	A.H.SYSTEMS	SAS-574	J2031090612 123	2022-11-12
4	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-2m	N/A	2022-11-12
5	RF Cable	Gigalink Microwave	ZT40-2.92J-2.92J-0.3m	N/A	2022-11-12

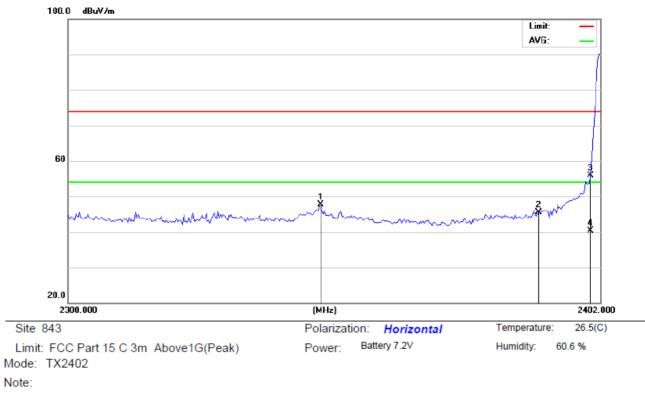
11.4 Measurement Results:

Refer to attached data chart.

Spectrum Detector:	PK	Test Date :	2022-09-08
Test By:	Best	Temperature :	24 °C
Test Result:	PASS	Humidity :	53 %

1. Conducted Test

Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
BLE	2402	Ant1	-47.75	-20	Pass
BLE	2480	Ant1	-49.23	-20	Pass

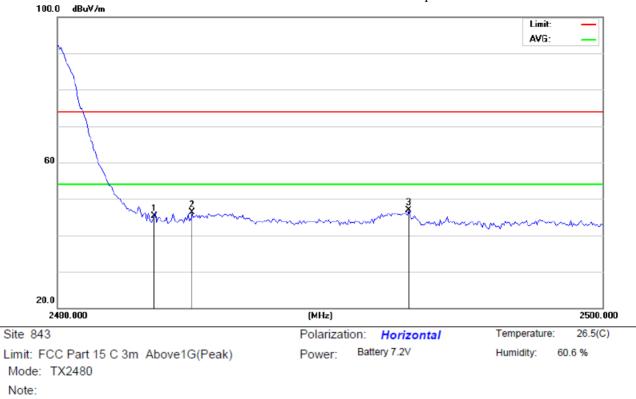

38 of 51

		Rand		Graphs 1M 2402MHz Ant1 R	lef	
Keysight S	pectrum Analyzer - Swept SA	Dailu	Luge INVINT DLE			
RL RL	RF 50 Ω AC		SENSE:PULSE		03:15:07 PM Oct 20, 2022	[
enter F	Freq 2.4020000	0 GHz PNO: Wide ↔ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N	Frequency
10 dB/div	Ref Offset 6.68 dB Ref 20.00 dBm			Mkr1	2.402 248 GHz 0.845 dBm	Auto Tune
10.0			1			Center Fred 2.402000000 GHz
-10.0			/ m			Start Fred 2.398000000 GHz
-20.0						Stop Fred 2.406000000 GHz
-40.0	a a a materia	- mark		1 Winter And	m. Manana	CF Stej 800.000 kH <u>Auto</u> Ma
-50.0						Freq Offse 0 H
-70.0						Scale Type
Center 2	.402000 GHz				Span 8.000 MHz	Log <u>Lii</u>
	/ 100 kHz	#VBM	1 200 KU-			
			/ 300 kHz	Sweep 1	.000 ms (1001 pts)	
ISG			2 300 KH2	Sweep 1	,	
Keysight S	pectrum Analyzer - Swept SA	Band Edg	ge NVNT BLE 1		ssion	
X/RL	pectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.35600000	Band Ed	ge NVNT BLE 1N	STATUS		Frequency
Keysight Si RL Center F	RF 50 Ω AC	Band Edg 0 GHz PNO: Fast ↔ IFGain:Low	ge NVNT BLE 1N	STATUS A 2402MHz Ant1 Emi Avg Type: Log-Pwr Avg Hold: 100/100	SSION	í
Keysight Sj XI RL Center F	RF 50 Ω AC Freq 2.35600000 Ref Offset 6.68 dB	Band Edg 0 GHz PNO: Fast ↔ IFGain:Low	ge NVNT BLE 1N	STATUS A 2402MHz Ant1 Emi Avg Type: Log-Pwr Avg Hold: 100/100	03:15:10 PM Oct 20, 2022 TRACE [] : 3 4 5 6 TYPE MWWWW DET P NNNN CT 2.402 2 GHz	Frequency Auto Tune Center Free
Keysight Sj RL Center F 10 dB/div 0.0	RF 50 Ω AC Freq 2.35600000 Ref Offset 6.68 dB	Band Edg 0 GHz PNO: Fast ↔ IFGain:Low	ge NVNT BLE 1N	STATUS A 2402MHz Ant1 Emi Avg Type: Log-Pwr Avg Hold: 100/100	03:15:10 PM Oct 20, 2022 TRACE [] : 3 4 5 6 TYPE MWWWW DET P NNNN CT 2.402 2 GHz	Frequency Auto Tun Center Free 2.356000000 GH
Keysight Sg RL Center F Conter F Cog 10.0 .00 .00 .00 .00 .00 .00	RF 50 Ω AC Freq 2.35600000 Ref Offset 6.68 dB Ref 20.00 dBm	Band Edg 0 GHz PNO: Fast ↔ IFGain:Low	ge NVNT BLE 1N SENSE:PULSE Trig: Free Run #Atten: 30 dB	STATUS A 2402MHz Ant1 Emi Avg Type: Log-Pwr Avg Hold: 100/100	03:15:10 PM Oct 20, 2022 TRACE []: 3 4 5 6 TYPE []: 3 4 5 6 TYPE MWWWWW OET P NNNN r1 2.402 2 GHz 0.876 dBm	Frequency Auto Tun Center Fre 2.356000000 GH Start Fre 2.306000000 GH
Keysight Sr RL Center F Conter F Conter S Conter	Ref Offset 6.68 dB Ref 20.00 dBm	Band Edg	ge NVNT BLE 1N	Avg Type: Log-Pwr Avg Type: Log-Pwr Avg Hold: 100/100	03:15:10 PMOct 20, 2022 TRACE []: 3 4 5 6 TYPE []: 3 4 5 6 TYPE MWWWWW DET [P NNNN r1 2.402 2 GHz 0.876 dBm 0.119 8	Frequency Auto Tun Center Fre 2.356000000 GH Start Fre 2.306000000 GH Stop Fre 2.406000000 GH
Keysight Sg RL Center F 10 10.0 0.00 10.0 0.00 10.0 0.00 -20.0 -30.0 -30.0 -40.0 -50.0 -40.0 -60.0 -40.0 -70.0	Ref Offset 6.68 dB Ref 20.00 dBm	Band Edg	ge NVNT BLE 1N	Sweep 9	03:15:10 PMOct 20, 2022 TRACE []: 3 4 5 6 TYPE []: 3 4 5 6 TYPE MWWWWW DET [P NNNN r1 2.402 2 GHz 0.876 dBm 0.119 8	Frequency Auto Tune Center Freq 2.356000000 GH Start Freq 2.306000000 GH Stop Freq 2.406000000 GH CF Step 10.000000 MH Auto Main Freq Offse
Keysight Sj RL Center F Conter F Conter S Conter	Ref 0ffset 6.68 dB Ref 0ffset 6.68 dB Ref 20.00 dBm α	Band Edg O GHz PNO: Fast → IFGain:Low white a standard and a	ge NVNT BLE 1N	Sweep 9	03:15:10 PMOct 20, 2022 TRACE []: 3 4 5 6 TYPE []: 3 4 5 6 TYPE MWWWWW DET [P NNNN r1 2.402 2 GHz 0.876 dBm 0.119 8	Frequency Auto Tune Center Free 2.35600000 GH: 2.306000000 GH: 2.406000000 GH: 2.406000000 GH: CF Step 10.000000 MH:
Keysight Sg RL Center F 10 dB/div 0	Ref 0ffset 6.68 dB Ref 0ffset 6.68 dB Ref 20.00 dBm α	Band Edg O GHz PNO: Fast → IFGain:Low white a standard and a	ge NVNT BLE 1N	Sweep 9	03:15:10 PMOct 20, 2022 TRACE []: 3 4 5 6 TYPE []: 3 4 5 6 TYPE MWWWWW DET [P NNNN r1 2.402 2 GHz 0.876 dBm 0.119 8	Frequency Auto Tune Center Free 2.35600000 GH Start Free 2.30600000 GH Stop Free 2.406000000 GH CF Step 10.000000 MH Auto Ma Freq Offse 0 H

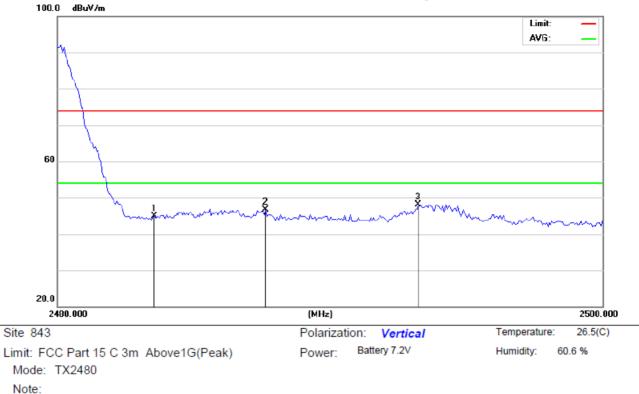
39 of 51

				Edge NVN		1240011		\EI		
	ectrum Analyzer - Sw			Lonver	Source!	1		02,20,00 2	M.Oct.20, 2022	
X RL Center F	RF 50 Ω		Hz		PULSE	Avg Type	: Log-Pwr	103:20:09 PI TRAC	M Oct 20, 2022 E 1 2 3 4 5 6 E M WWWWW	Frequency
			NO: Wide ↔ Gain:Low	Trig: Free #Atten: 30		Avg Hold	: 100/100	TYP		
	Bof Offeet 67						Mkr1	2.480 2	48 GHz	Auto Tun
10 dB/div	Ref Offset 6.7 Ref 20.00 (0.3	29 dBm	
										Comton Eng
10.0										Center Free 2.480000000 GH
					_1					2.40000000000
0.00				~	<u> </u>					
										Start Fre
10.0					- \					2.476000000 G⊢
-20.0										Stop Fre
-30.0			0	1		0.75				2.484000000 GH
			1 5	4		1° 1				
40.0			+							CF Ste 800.000 k⊢
			man			La han	hr .		0	<u>Auto</u> Ma
-50.0 ml M	monton	$\gamma \gamma $	w .				" www.	- www.	Marrow	
-60.0										Freq Offse
-80.0										он
-70.0										
										Scale Typ
Center 2	480000 GHz							Snan 9	.000 MHz	Log <u>Li</u>
#Res BW			#VBW	/ 300 kHz			Sweep 1		1001 pts)	
ISG							STATUS	3		L
			<u> </u>							
			Band Edg	ze NVNT E		480MHz	Ant1 Emi	ission		
	ectrum Analyzer - Sw		Band Edg			480MHz	Ant1 Emi			
RL	RF 50 Ω	AC			E:PULSE			03:20:12 P	M Oct 20, 2022	-
RL		AC 00000 GI	Hz NO: Fast ↔	SENSE	E:PULSE		e: Log-Pwr	03:20:12 PI TRAC		Frequency
RL	RF 50 Ω req 2.52600	AC 00000 GI F IF	Hz	SENSE	E:PULSE	Avg Type	e: Log-Pwr : 100/100	03:20:12 P TRAC TYF DE	E 1 2 3 4 5 6 E M WWWWW T P N N N N N	Frequency
Center F	RF 50 Ω req 2.52600 Ref Offset 6.	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔	SENSE	E:PULSE	Avg Type	e: Log-Pwr : 100/100	03:20:12 PI TRAC TYF DE	E 1 2 3 4 5 6 E M WWWWW T P N N N N N	Frequency
Center F	RF 50 Ω req 2.52600	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔	SENSE	E:PULSE	Avg Type	e: Log-Pwr : 100/100	03:20:12 PI TRAC TYF DE	E 1 2 3 4 5 6 MWWWWW T P N N N N N 4 3 GHz	Frequency
Center F	RF 50 Ω req 2.52600 Ref Offset 6.	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔	SENSE	E:PULSE	Avg Type	e: Log-Pwr : 100/100	03:20:12 PI TRAC TYF DE	E 1 2 3 4 5 6 MWWWWW T P N N N N N 4 3 GHz	Auto Tun
2 RL 2 enter F 10 dB/div - 0 g 10.0 0.00	RF 50 Ω req 2.52600 Ref Offset 6.	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔	SENSE	E:PULSE	Avg Type	e: Log-Pwr : 100/100	03:20:12 PI TRAC TYF DE	E 1 2 3 4 5 6 MWWWWW T P N N N N N 4 3 GHz	Auto Tun
10 dB/div 29 10.0 0.00 -10.0	RF 50 Ω req 2.52600 Ref Offset 6.	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔	SENSE	E:PULSE	Avg Type	e: Log-Pwr : 100/100	03:20:12 PI TRAC TYF DE	E 1 2 3 4 5 6 E M WWWWW T P N N N N N 4 3 GHz 08 dBm	Auto Tun
10 dB/div Center F 10.0 0.00 -10.0 -20.0	RF 50 Ω req 2.52600 Ref Offset 6.	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔	SENSE	E:PULSE	Avg Type	e: Log-Pwr : 100/100	03:20:12 PI TRAC TYF DE	E 1 2 3 4 5 6 MWWWWW T P N N N N N 4 3 GHz	Auto Tun Center Fre 2.52600000 GF Start Fre
2 RL 2 enter F 10 dB/div 0.00 -10.0 -20.0 -30.0	RF 50 Ω req 2.52600 Ref Offset 6.	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔	SENSE	E:PULSE	Avg Type	e: Log-Pwr : 100/100	03:20:12 PI TRAC TYF DE	E 1 2 3 4 5 6 E M WWWWW T P N N N N N 4 3 GHz 08 dBm	Auto Tun Center Fre 2.52600000 GF Start Fre
Image: Number of State Image: Numero Image: Number of State	RF 50 Ω req 2.52600 Ref Offset 6.	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔	SENSE	E:PULSE	Avg Type	e: Log-Pwr : 100/100	03:20:12 PI TRAC TYF DE	E 1 2 3 4 5 6 E M WWWWW T P N N N N N 4 3 GHz 08 dBm	Auto Tun Center Fre 2.526000000 GH
10 dB/div 0 000 10.0	R€ 0ffset 6. Ref 0ffset 6. Ref 20.00 f	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔	SENSE	:PULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 MH	03:20:12 PI TRAC TYF DE	21 2 3 4 5 6 P N N N N N 4 3 GHz 08 dBm DL1 -19.67 dBm	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH
10 dB/div Log 10.0 -0	R€ 0ffset 6. Ref 0ffset 6. Ref 20.00 f	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔ Gain:Low	SENSE	:PULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 MH	03:20:12 PI TRAC TY DI (r4 2.482 -48.91	21 2 3 4 5 6 P N N N N N 4 3 GHz 08 dBm DL1 -19.67 dBm	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH Stop Fre
10 dB/div Log 10.0 -0	R€ 0ffset 6. Ref 0ffset 6. Ref 20.00 f	AC 00000 GI F IF 78 dB	Hz NO: Fast ↔ Gain:Low	SENSE	:PULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 MH	03:20:12 PI TRAC TY DI (r4 2.482 -48.91	21 2 3 4 5 6 P N N N N N 4 3 GHz 08 dBm DL1 -19.67 dBm	Center Fre 2.52600000 GH 2.476000000 GH 2.476000000 GH
Image: Contert F 10 GB/div 000 0 10.0 0 0.00 0 -10.0 0 -20.0 0 -40.0 0 -50.0 0 -60.0 0 -70.0 0 Start 2.43 0	Ref 50 Ω Ref Offset 6 Ref 20.00 € 1 1 2 2 7600 GHz 2	AC 00000 GI F IF 78 dB	Hz Gain:Low	SENSE	:PULSE	Avg Type Avg Hold	a: Log-Pwr : 100/100 Mk	(13:20:12 PT TRAC TW TRAC TRAC TRAC TRAC TRAC TRAC TRAC TRAC	EII2 3 4 5 6 MWWWWEIT TP NNNN 4 3 GHz 08 dBm 0.1 -19.67 dBm	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH Stop Fre 2.576000000 GH CF Ste
0 dB/div 10 dB/div 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 -20.0 - -30.0 - -60.0 - -70.0 - Start 2.4: #Res BW	Ref Offset 6. Ref 20.00 d 1 7600 GHz 100 KHz	AC 00000 GI F IF 78 dB	Hz Gain:Low	SENSE	::PULSE Run) dB	Avg Type Avg Hold	2: Log-Pwr : 100/100 Mł	(r4 2.48 -48.9)	24.5 6 MWWWWW TP NNNNN 4 3 GHz 08 dBm 0.1 -19.67 dBm 0.1 -19.67 dBm 1001 pts)	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH Stop Fre 2.57600000 GH CF Ste 10.000000 MH
10 dB/div 10 dB/div 000 10.0 0.00 .000<	R€ 050 £ Ref 0ffset 6. Ref 20.00 € 1 7600 GHz 100 kHz Ref SGL	AC 00000 GI	Hz Gain:Low #VBM	SENSE Trig: Free #Atten: 3	EPULSE	Avg Type Avg Hold	a: Log-Pwr : 100/100 Mk	(r4 2.48 -48.9)	EII2 3 4 5 6 MWWWWEIT TP NNNN 4 3 GHz 08 dBm 0.1 -19.67 dBm	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH Stop Fre 2.57600000 GH CF Ste 10.00000 MH
10 dB/div Center F 10 dB/div 10 0 10 0	Ref Offset 6. Ref 20.00 d 1 7600 GHz 100 KHz	AC 00000 GI	Hz Gain:Low	SENSE	EPULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 Mł	(r4 2.48 -48.9)	24.5 6 MWWWWW TP NNNNN 4 3 GHz 08 dBm 0.1 -19.67 dBm 0.1 -19.67 dBm 1001 pts)	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH Stop Fre 2.576000000 GH CF Ste 10.00000 MH Auto Ma
10 dB/div -20 dB/div -20 dB/div -30 dB/div -50 dB/div	R€ 050 £ Ref 0ffset 6. Ref 20.00 € 1 7600 GHz 100 kHz Ref SGL	AC 00000 GI	Hz Gain:Low #VBM	SENSE Trig: Free #Atten: 3	EPULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 Mł	(r4 2.48 -48.9)	24.5 6 MWWWWW TP NNNNN 4 3 GHz 08 dBm 0.1 -19.67 dBm 0.1 -19.67 dBm 1001 pts)	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH Stop Fre 2.576000000 GH CF Ste 10.00000 MH Auto Auto Tun Freq Offsee
10 dB/div -20 dB/div -20 dB/div -30 dB/div -50 dB/div	R€ 050 £ Ref 0ffset 6. Ref 20.00 € 1 7600 GHz 100 kHz Ref SGL	AC 00000 GI	Hz Gain:Low #VBM	SENSE Trig: Free #Atten: 3	EPULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 Mł	(r4 2.48 -48.9)	24.5 6 MWWWWW TP NNNNN 4 3 GHz 08 dBm 0.1 -19.67 dBm 0.1 -19.67 dBm 1001 pts)	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH Stop Fre 2.576000000 GH CF Step 10.000000 MH Auto Freq Offse
10 dB/div -20 dB/div -20 dB/div -30 dB/div -50 dB/div	R€ 050 £ Ref 0ffset 6. Ref 20.00 € 1 7600 GHz 100 kHz Ref SGL	AC 00000 GI	Hz Gain:Low #VBM	SENSE Trig: Free #Atten: 3	EPULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 Mł	(r4 2.48 -48.9)	EII2 3 4 5 6 MWWWWW TP NNNNN 4 3 GHz 08 dBm 0.1 -1967 dBm 0.1 -1967 dBm 1001 pts)	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH Stop Fre 2.576000000 GH CF Ste 10.000000 MH Auto Freq Offse 0 H
Image: system is a	R€ 050 £ Ref 0ffset 6. Ref 20.00 € 1 7600 GHz 100 kHz Ref SGL	AC 00000 GI	Hz Gain:Low #VBM	SENSE Trig: Free #Atten: 3	EPULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 Mł	(r4 2.48 -48.9)	EII2 3 4 5 6 MWWWWW TP NNNNN 4 3 GHz 08 dBm 0.1 -1967 dBm 0.1 -1967 dBm 1001 pts)	Frequency Auto Tun Center Fre 2.526000000 GH Start Fre 2.476000000 GH Stop Fre 2.576000000 GH CF Step 10.000000 MH Auto Ma Freq Offse 0 H Scale Typ
M RL Center F 10 dB/div og 0 10.0 0 -000 0 -10.0 0 -20.0 0 -30.0 - -40.0 - -50.0 - -60.0 - -77.0 - Start 2.4/ - #Res MODE 1 1 N 2 3 4 5 6 - 7 - 9 9 10 11	R€ 050 £ Ref 0ffset 6. Ref 20.00 € 1 7600 GHz 100 kHz Ref SGL	AC 00000 GI	Hz Gain:Low #VBM	SENSE Trig: Free #Atten: 3	EPULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 Mł	(r4 2.48 -48.9)	EII2 3 4 5 6 MWWWWW TP NNNNN 4 3 GHz 08 dBm 0.1 -1967 dBm 0.1 -1967 dBm 1001 pts)	Frequency Auto Tun Center Freq 2.526000000 GH Start Freq 2.476000000 GH Stop Freq 2.576000000 GH CF Step 10.000000 MH Auto Main Freq Offse 0 H Scale Type
M RL Center F Conter F 10 00 000 -000	R€ 050 £ Ref 0ffset 6. Ref 20.00 € 1 7600 GHz 100 kHz Ref SGL	AC 00000 GI	Hz Gain:Low #VBM	SENSE Trig: Free #Atten: 3	EPULSE	Avg Type Avg Hold	2: Log-Pwr : 100/100 Mł	(r4 2.482 -48.9) 	EII2 3 4 5 6 MWWWWW TP NNNNN 4 3 GHz 08 dBm 0.1 -1967 dBm 0.1 -1967 dBm 1001 pts)	Auto Tun Center Free 2.526000000 GH Start Free 2.476000000 GH Stop Free 2.576000000 GH CF Step 10.00000 MH Auto Freq Offsee 0 H Scale Type

2. Radiated emission Test


No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		2347.898	52.84	-5.11	47.73	74.00	-26.27	peak			
2		2390.000	50.24	-4.82	45.42	74.00	-28.58	peak			
3		2400.000	60.70	-4.75	55.95	74.00	-18.05	peak			
4	*	2400.000	45.02	-4.75	40.27	54.00	-13.73	AVG			

*:Maximum data x:Over limit 1:over margin


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	2	2349.937	53.15	-5.09	48.06	74.00	-25.94	peak			
2	2	2390.000	52.18	-4.82	47.36	74.00	-26.64	peak			
3	2	2400.000	67.50	-4.75	62.75	74.00	-11.25	peak			
4	* 2	2400.000	50.25	-4.75	45.50	54.00	-8.50	AVG			

*:Maximum data x:Over limit !:over margin

No.	Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		2483.500	49.55	-4.19	45.36	74.00	-28.64	peak			
2		2484.935	50.44	-4.18	46.26	74.00	-27.74	peak			
3	*	2492.882	51.08	-4.14	46.94	74.00	-27.06	peak			

*:Maximum data x:Over limit I:over margin

No.	M	k. Freq.	Reading Level		Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		2483.500	49.14	-4.19	44.95	74.00	-29.05	peak			
2		2487.631	50.85	-4.16	46.69	74.00	-27.31	peak			
3	*	2493.282	52.23	-4.14	48.09	74.00	-25.91	peak			

*:Maximum data x:Over limit !:over margin

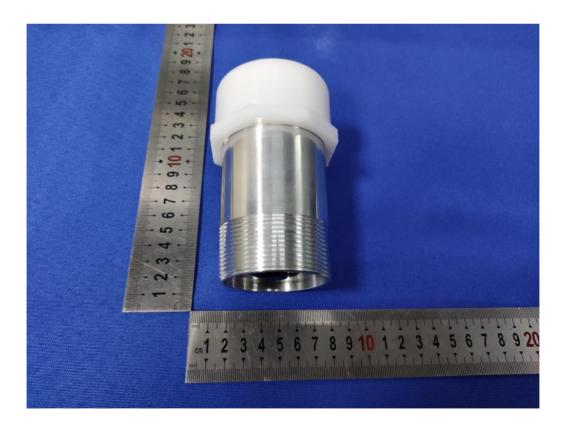
12 Antenna Application

12.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247.

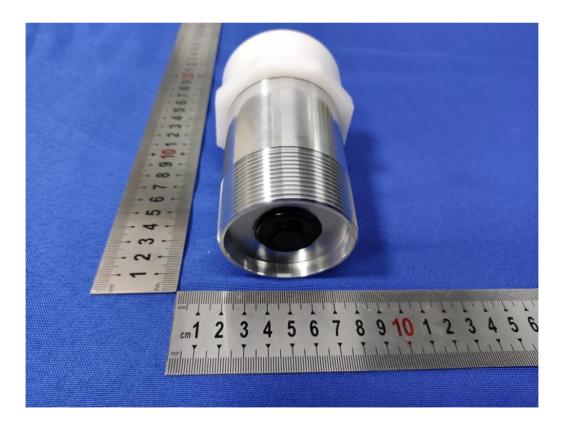
FCC part 15C section 15.247 requirements:

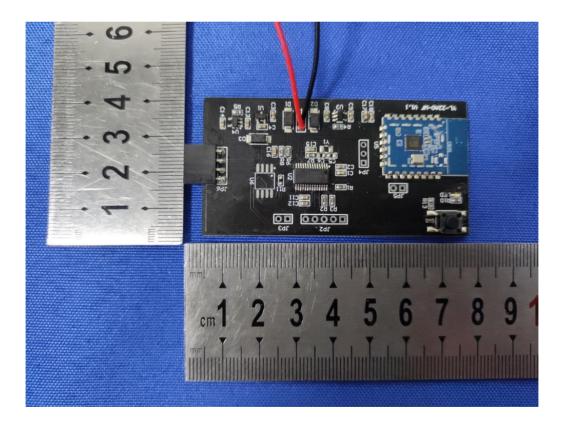
Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

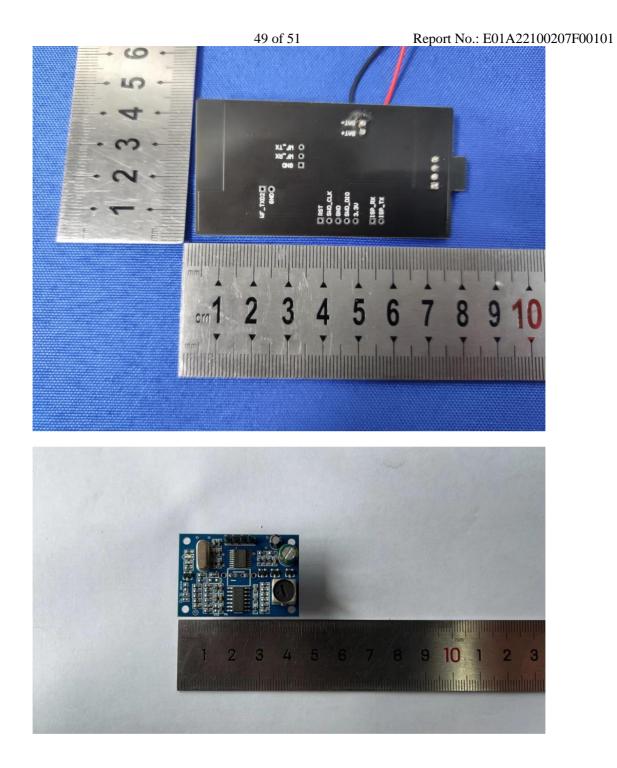

12.2 Result

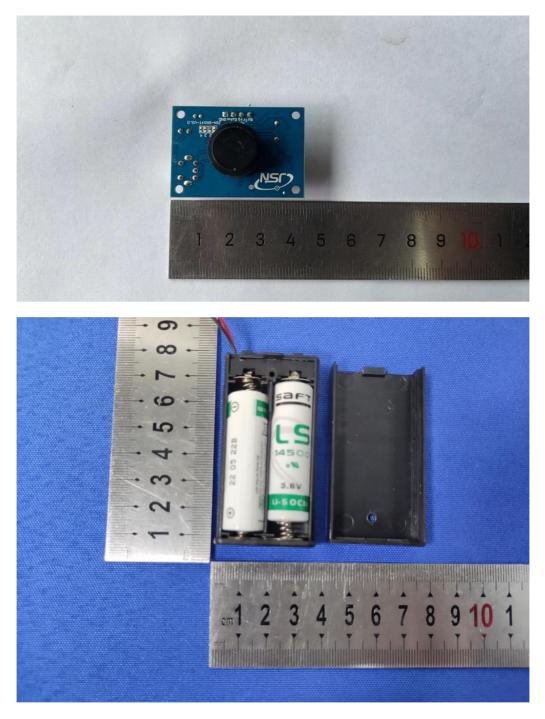
The EUT's antenna, permanent attached antenna, used a ceramic antenna and integrated on PCB, The antenna's gain is 1.37dBi and meets the requirement.

APPENDIX I (Photos of EUT)









---The end of report---