

Abbott Laboratories

GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller)

FCC 15.225:2022 13.56 MHz Radio

Report: ABBO0193.1 Rev. 1, Issue Date: November 11, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: October 12, 2022
Abbott Laboratories

EUT: GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller)

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2022	ANSI C63.10:2013
FCC 15.225:2022	ANSI C63. 10.2013

Results

Test Description	Result	Specification Section(s)	Method Section(s)	Comments
Powerline Conducted Emissions	Pass	15.207	6.2	
Field Strength of Fundamental	Pass	15.225(a)-(c)	6.4	
Field Strength of Spurious Emissions (Less Than 30 MHz)	Pass	15.225(d), 15.209	6.4	
Field Strength of Spurious Emissions (Greater Than 30 MHz)	Pass	15.225(d), 15.209	6.5	
Frequency Stability	Pass	15.225(e), 15.31(e), 15.215(c), 2.1055	6.8	
Emissions Bandwidth (20 dB)	Pass	15.215(c)	6.9.2	

Deviations From Test Standards

None

Approved By:

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Removed Occupied Bandwidth data.	2022-11-10	N/A
01	Removed Occupied Bandwidth from COT and modifications pages.	2022-11-10	2, 13
U I	Elaborated on PCB/RFIC combination and addressed x dB to 99% relationship wrt RBW with technical expert.	2022-11-10	44

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

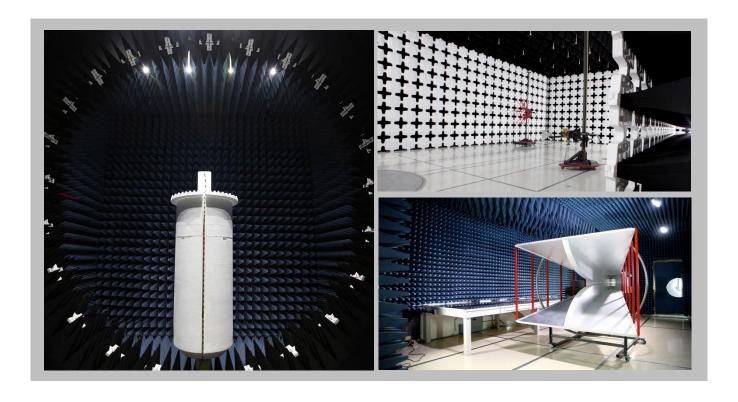
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600	
		A2LA			
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06	
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	US0017	US0191	US0157	

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

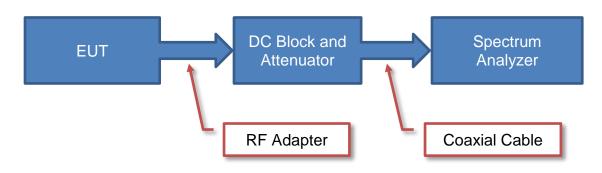
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	3.1 dB	-3.1 dB

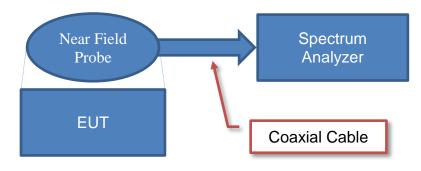
TEST SETUP BLOCK DIAGRAMS



Measurement Bandwidths

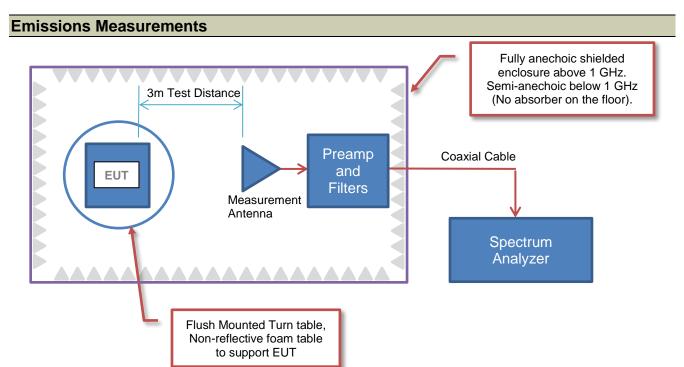

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.


Antenna Port Conducted Measurements

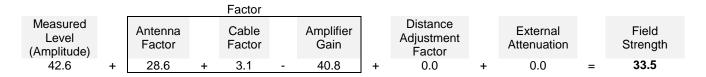
Sample Calculation (logarithmic units)

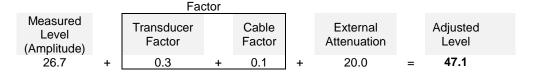
Near Field Test Fixture Measurements



Sample Calculation (logarithmic units)

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6


TEST SETUP BLOCK DIAGRAMS

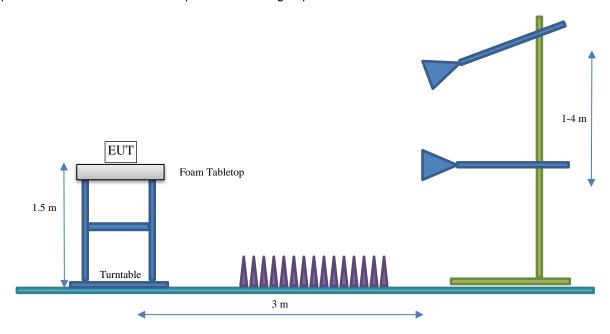


Sample Calculation (logarithmic units)

Radiated Emissions:

Conducted Emissions:

Radiated Power (ERP/EIRP) - Substitution Method:


Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Abbott Laboratories	
Address:	1921 Hurd Drive	
City, State, Zip:	Irving, TX 75038	
Test Requested By:	Don Mendell	
EUT:	GLP12553 ChargeLane M (with updated PIC Controller)	
First Date of Test:	September 13, 2022	
Last Date of Test:	October 12, 2022	
Receipt Date of Samples:	August 8, 2022	
Equipment Design Stage:	Production	
Equipment Condition:	No Damage	
Purchase Authorization:	Verified	

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Charge Lane Master (GLP12553) provides the means for charging the lithium polymer batteries in up to 3 CARS per section, and also receives data from the GLP Systems CAR via a single RFID reader embedded within the charging controller PCB. This is often used in conjunction with up to 3 Charge Lane Slave (GLP12554), which do not contain RFID.

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA INFORMATION

Type	Provided by:	Dimensions
Embedded Inductive Loop	GLP Systems	51mm x 35mm

POWER SETTING

Radio	Modulation	Protocol	Data Rate	Frequency	Power Setting (mW)
RFID	OOK	ISO 13693	26.48 kbps	13.56 MHz	200

^{*}Power is set internally through product firmware at the default maximum.

^{*}Antenna information/power setting is identical for each 13.56 MHz radio.

CONFIGURATIONS

Configuration ABBO0193-1

Software/Firmware Running During Test			
Description	Version		
Firmware	TrackEmvTest_cp_pp_tac_Version_0.0_46817.bin		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
ChargeLane M	Abbott Laboratories (GLP Systems)	GLP12553/LN06R34-01	CLM-01

Peripherals in Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Distribution Board	Abbott Laboratories (GLP Systems)	GLP12014	None			
AC Line Filter Box	Abbott Laboratories (GLP Systems)	GLP12689 (LN06U35-04)	0001000			
24V Power Supply	Abbott Laboratories (GLP Systems)	GLP12010	0001098			
Power Strip	Abbott Laboratories (GLP Systems)	GLP12015	None			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	0.6m	Yes	Distribution Board	ChargeLane M
AC Cable	Yes	1.1m	No	AC Mains	Track Filter
DC Cable	No	0.8m	No	24V Power Supply	Distribution Board
AC Cable	Yes	1m	No	Track Filter	Power Strip
AC Cable	No	1m	No	Power Strip	24V Power Supply

MODIFICATIONS

Equipment Modifications

-		1 _	1	T	
Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-09-13	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2022-09-13	Field Strength of Spurious Emissions (Less Than 30 MHz)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2022-09-13	Field Strength of Spurious Emissions (Greater Than 30 MHz)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2022-10-06	Emissions Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2022-10-06	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2022-10-12	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

FCC KDB 174176 D01 AC Conducted FAQ v01r01, June 3, 2015 Section Q5:

For a device with a permanent or detachable antenna operating at or below 30 MHz, the FCC will accept measurements performed with a suitable dummy load in lieu of the antenna under the following conditions:

- (1) perform the AC power-line conducted tests with the antenna connected to determine compliance with Section 15.207 limits outside the transmitter's fundamental emission band:
- (2) retest with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network which simulates the antenna in the fundamental frequency band.

All measurements must be performed as specified in clause 6.2 of ANSI C63.10-2013.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	2022-08-08	2023-08-08
Power Source/Analyzer	Hewlett Packard	6841A	THC	NCR	NCR
Receiver	Rohde & Schwarz	ESR7	ARI	2022-08-30	2023-08-30
Cable - Conducted Cable Assembly	Northwest EMC	TXA, HFC, TQU	TXAA	2022-01-24	2023-01-24

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	3.1 dB	-3.1 dB

CONFIGURATIONS INVESTIGATED

ABBO0193-1

MODES INVESTIGATED

Continuous Tx, 13.56 MHz RFID

EUT:	GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller)	Work Order:	ABBO0193
Serial Number:	CLM-01	Date:	2022-10-05
Customer:	Abbott Laboratories	Temperature:	21.6°C
Attendees:	Frank Sun	Relative Humidity:	44.7%
Customer Project:	None	Bar. Pressure (PMSL):	1022 mb
Tested By:	Travis Glasser	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0193-1

TEST SPECIFICATIONS

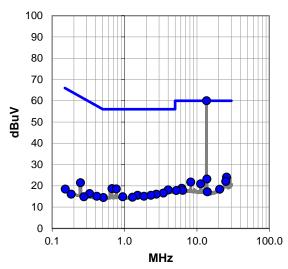
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

TEST PARAMETERS

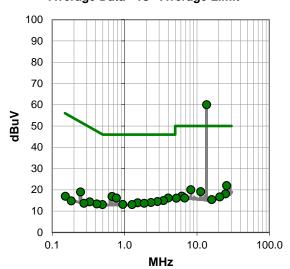
Run #:	1	Line:	High Line	Add. Ext. Attenuation (dB):	0
--------	---	-------	-----------	-----------------------------	---

COMMENTS

ChargeLane includes dual PCBs, the primary with single radio ON. Radio antenna connected.


EUT OPERATING MODES

Continuous Tx, 13.56 MHz RFID


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #1

Quasi Peak Data - vs - Quasi Peak Limit

Q	Quasi Peak Data - Vs - Quasi Peak Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
13.560	39.5	20.5	60.0	60.0	0.0	
25.620	2.7	21.4	24.1	60.0	-35.9	
13.720	2.7	20.5	23.2	60.0	-36.8	
0.670	-1.5	20.2	18.7	56.0	-37.3	
0.770	-1.6	20.2	18.6	56.0	-37.4	
4.000	-2.1	20.2	18.1	56.0	-37.9	
24.990	0.7	21.4	22.1	60.0	-37.9	
8.212	1.5	20.3	21.8	60.0	-38.2	
11.245	0.5	20.5	21.0	60.0	-39.0	
3.437	-3.6	20.2	16.6	56.0	-39.4	
2.744	-4.1	20.2	16.1	56.0	-39.9	
0.247	0.9	20.6	21.5	61.9	-40.4	
1.516	-4.5	20.1	15.6	56.0	-40.4	
2.310	-4.6	20.2	15.6	56.0	-40.4	
1.853	-5.1	20.2	15.1	56.0	-40.9	
0.944	-5.2	20.1	14.9	56.0	-41.1	
6.164	-1.2	20.1	18.9	60.0	-41.1	
1.286	-5.3	20.0	14.7	56.0	-41.3	
0.510	-5.7	20.2	14.5	56.0	-41.5	
20.650	-2.6	21.0	18.4	60.0	-41.6	
6.353	-2.2	20.1	17.9	60.0	-42.1	
5.179	-2.3	20.1	17.8	60.0	-42.2	
0.413	-5.2	20.3	15.1	57.6	-42.5	
13.931	-3.3	20.5	17.2	60.0	-42.8	
0.330	-3.9	20.3	16.4	59.5	-43.1	

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	39.5	20.5	60.0	50.0	10.0
25.620	0.6	21.4	22.0	50.0	-28.0
0.670	-3.3	20.2	16.9	46.0	-29.1
0.770	-4.0	20.2	16.2	46.0	-29.8
4.000	-4.0	20.2	16.2	46.0	-29.8
8.212	-0.2	20.3	20.1	50.0	-29.9
11.245	-1.3	20.5	19.2	50.0	-30.8
3.440	-5.2	20.2	15.0	46.0	-31.0
2.850	-5.7	20.2	14.5	46.0	-31.5
2.310	-6.1	20.2	14.1	46.0	-31.9
24.812	-3.3	21.4	18.1	50.0	-31.9
1.516	-6.2	20.1	13.9	46.0	-32.1
1.870	-6.5	20.2	13.7	46.0	-32.3
0.944	-6.9	20.1	13.2	46.0	-32.8
0.247	-1.6	20.6	19.0	51.9	-32.9
1.270	-6.9	20.0	13.1	46.0	-32.9
6.164	-3.0	20.1	17.1	50.0	-32.9
0.494	-7.1	20.2	13.1	46.1	-33.0
20.590	-4.3	21.0	16.7	50.0	-33.3
6.780	-3.9	20.1	16.2	50.0	-33.8
5.179	-4.0	20.1	16.1	50.0	-33.9
0.413	-6.9	20.3	13.4	47.6	-34.2
16.000	-5.3	20.7	15.4	50.0	-34.6
0.330	-5.9	20.3	14.4	49.5	-35.1
0.274	-6.7	20.4	13.7	51.0	-37.3

CONCLUSION

Evaluation

Tested By

Tunz Glass

EUT:	GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller)	Work Order:	ABBO0193
Serial Number:	CLM-01	Date:	2022-10-05
Customer:	Abbott Laboratories	Temperature:	21.6°C
Attendees:	Frank Sun	Relative Humidity:	44.7%
Customer Project:	None	Bar. Pressure (PMSL):	1022 mb
Tested By:	Travis Glasser	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0193-1

TEST SPECIFICATIONS

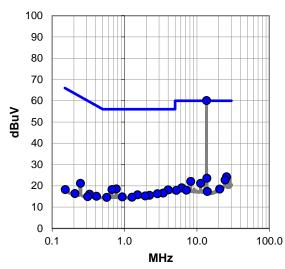
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

TEST PARAMETERS

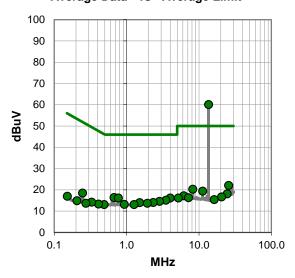
Run #:	2	Line:	Neutral	Add. Ext. Attenuation (dB):	0
--------	---	-------	---------	-----------------------------	---

COMMENTS

ChargeLane includes dual PCBs, the primary with single radio ON. Radio antenna connected.


EUT OPERATING MODES

Continuous Tx, 13.56 MHz RFID


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #2

Quasi Peak Data - vs - Quasi Peak Limit

<u> </u>	Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
13.560	39.6	20.5	60.1	60.0	0.1		
25.620	2.9	21.4	24.3	60.0	-35.7		
13.720	3.1	20.5	23.6	60.0	-36.4		
24.556	1.4	21.4	22.8	60.0	-37.2		
0.770	-1.6	20.2	18.6	56.0	-37.4		
0.670	-1.9	20.2	18.3	56.0	-37.7		
8.212	1.8	20.3	22.1	60.0	-37.9		
4.000	-2.1	20.2	18.1	56.0	-37.9		
11.245	0.7	20.5	21.2	60.0	-38.8		
3.420	-3.6	20.2	16.6	56.0	-39.4		
2.850	-3.9	20.2	16.3	56.0	-39.7		
1.516	-4.3	20.1	15.8	56.0	-40.2		
2.220	-4.6	20.2	15.6	56.0	-40.4		
0.247	0.6	20.6	21.2	61.9	-40.7		
1.930	-4.9	20.2	15.3	56.0	-40.7		
6.164	-1.0	20.1	19.1	60.0	-40.9		
0.930	-5.3	20.1	14.8	56.0	-41.2		
1.268	-5.3	20.0	14.7	56.0	-41.3		
0.566	-5.6	20.2	14.6	56.0	-41.4		
20.620	-2.5	21.0	18.5	60.0	-41.5		
7.145	-2.2	20.2	18.0	60.0	-42.0		
5.179	-2.2	20.1	17.9	60.0	-42.1		
0.410	-5.2	20.3	15.1	57.6	-42.5		
13.931	-3.1	20.5	17.4	60.0	-42.6		
0.330	-4.2	20.3	16.1	59.5	-43.4		

	Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
13.560	39.6	20.5	60.1	50.0	10.1	
25.620	0.7	21.4	22.1	50.0	-27.9	
0.670	-3.8	20.2	16.4	46.0	-29.6	
8.212	0.0	20.3	20.3	50.0	-29.7	
0.770	-4.0	20.2	16.2	46.0	-29.8	
4.000	-4.0	20.2	16.2	46.0	-29.8	
11.245	-1.1	20.5	19.4	50.0	-30.6	
3.496	-5.1	20.2	15.1	46.0	-30.9	
2.850	-5.6	20.2	14.6	46.0	-31.4	
2.340	-6.1	20.2	14.1	46.0	-31.9	
24.560	-3.3	21.4	18.1	50.0	-31.9	
1.516	-6.1	20.1	14.0	46.0	-32.0	
1.930	-6.5	20.2	13.7	46.0	-32.3	
0.930	-6.9	20.1	13.2	46.0	-32.8	
6.164	-2.9	20.1	17.2	50.0	-32.8	
1.268	-6.9	20.0	13.1	46.0	-32.9	
0.490	-7.1	20.2	13.1	46.2	-33.1	
20.510	-4.3	21.0	16.7	50.0	-33.3	
0.247	-2.1	20.6	18.5	51.9	-33.4	
7.150	-3.9	20.2	16.3	50.0	-33.7	
5.179	-3.9	20.1	16.2	50.0	-33.8	
0.410	-7.0	20.3	13.3	47.6	-34.3	
16.249	-5.4	20.8	15.4	50.0	-34.6	
0.330	-6.1	20.3	14.2	49.5	-35.3	
0.274	-6.7	20.4	13.7	51.0	-37.3	

CONCLUSION

Evaluation

Tested By

Tunz Glass

EUT:	GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller)	Work Order:	ABBO0193
Serial Number:	CLM-01	Date:	2022-10-12
Customer:	Abbott Laboratories	Temperature:	20.7°C
Attendees:	Frank Sun	Relative Humidity:	52.2%
Customer Project:	None	Bar. Pressure (PMSL):	1016 mb
Tested By:	Jarrod Brenden	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0193-1

TEST SPECIFICATIONS

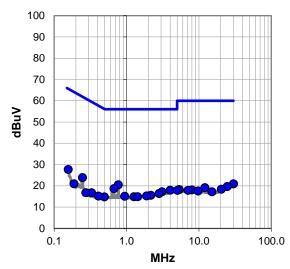
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

TEST PARAMETERS

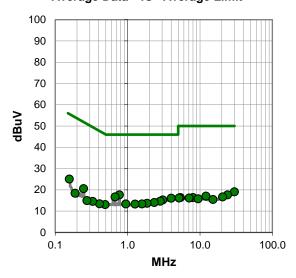
,	•			A 1.1 E 4 A44 41 (1D)	
Run #:	6	Line:	High Line	Add. Ext. Attenuation (dB):	1 0

COMMENTS

ChargeLane includes dual PCBs, the primary with single radio ON. Radio antenna terminated with load.


EUT OPERATING MODES

Continuous Tx, 13.56 MHz RFID


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #6

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.770	0.3	20.2	20.5	56.0	-35.5	
0.670	-1.5	20.2	18.7	56.0	-37.3	
0.157	7.1	20.6	27.7	65.6	-37.9	
0.247	3.3	20.6	23.9	61.9	-38.0	
4.000	-2.2	20.2	18.0	56.0	-38.0	
3.091	-3.0	20.2	17.2	56.0	-38.8	
29.996	-0.8	21.8	21.0	60.0	-39.0	
2.820	-3.8	20.2	16.4	56.0	-39.6	
24.632	-1.7	21.4	19.7	60.0	-40.3	
2.160	-4.6	20.2	15.6	56.0	-40.4	
1.900	-4.9	20.2	15.3	56.0	-40.7	
12.059	-1.3	20.5	19.2	60.0	-40.8	
0.944	-5.0	20.1	15.1	56.0	-40.9	
1.268	-5.1	20.0	14.9	56.0	-41.1	
1.426	-5.2	20.1	14.9	56.0	-41.1	
0.494	-5.4	20.2	14.8	56.1	-41.3	
20.420	-2.5	20.9	18.4	60.0	-41.6	
5.350	-1.8	20.1	18.3	60.0	-41.7	
8.000	-2.2	20.3	18.1	60.0	-41.9	
5.062	-2.2	20.1	17.9	60.0	-42.1	
7.073	-2.3	20.2	17.9	60.0	-42.1	
9.770	-2.7	20.3	17.6	60.0	-42.4	
0.410	-5.1	20.3	15.2	57.6	-42.4	
0.330	-3.5	20.3	16.8	59.5	-42.7	
15.080	-3.4	20.6	17.2	60.0	-42.8	

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.770	-2.5	20.2	17.7	46.0	-28.3	
0.670	-3.5	20.2	16.7	46.0	-29.3	
4.000	-4.1	20.2	16.1	46.0	-29.9	
0.157	4.5	20.6	25.1	55.6	-30.5	
3.064	-4.9	20.2	15.3	46.0	-30.7	
29.956	-2.7	21.8	19.1	50.0	-30.9	
0.247	0.0	20.6	20.6	51.9	-31.3	
2.825	-5.5	20.2	14.7	46.0	-31.3	
2.335	-6.1	20.2	14.1	46.0	-31.9	
1.860	-6.5	20.2	13.7	46.0	-32.3	
23.962	-3.7	21.4	17.7	50.0	-32.3	
0.944	-6.7	20.1	13.4	46.0	-32.6	
1.580	-6.7	20.1	13.4	46.0	-32.6	
1.268	-6.7	20.0	13.3	46.0	-32.7	
12.059	-3.4	20.5	17.1	50.0	-32.9	
0.490	-7.1	20.2	13.1	46.2	-33.1	
20.510	-4.3	21.0	16.7	50.0	-33.3	
5.350	-3.7	20.1	16.4	50.0	-33.6	
8.000	-3.9	20.3	16.4	50.0	-33.6	
5.143	-3.9	20.1	16.2	50.0	-33.8	
7.080	-4.0	20.2	16.2	50.0	-33.8	
0.410	-6.8	20.3	13.5	47.6	-34.1	
9.395	-4.5	20.3	15.8	50.0	-34.2	
15.080	-5.1	20.6	15.5	50.0	-34.5	
0.330	-5.7	20.3	14.6	49.5	-34.9	

CONCLUSION

Pass

Tested By

EUT:	GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller)	Work Order:	ABBO0193
Serial Number:	CLM-01	Date:	2022-10-12
Customer:	Abbott Laboratories	Temperature:	20.7°C
Attendees:	Frank Sun	Relative Humidity:	52.2%
Customer Project:	None	Bar. Pressure (PMSL):	1016 mb
Tested By:	Jarrod Brenden	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0193-1

TEST SPECIFICATIONS

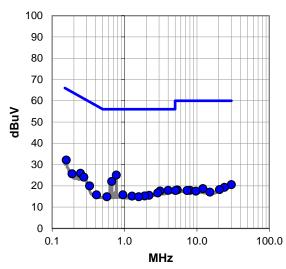
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

TEST PARAMETERS

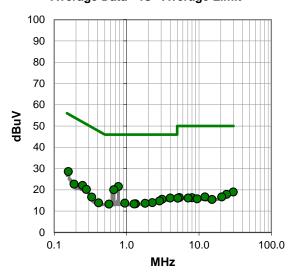
Run #:	7	Line:	Neutral	Add. Ext. Attenuation (dB):	0
--------	---	-------	---------	-----------------------------	---

COMMENTS

ChargeLane includes dual PCBs, the primary with single radio ON. Radio antenna terminated with load.


EUT OPERATING MODES

Continuous Tx, 13.56 MHz RFID


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #7

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.770	4.9	20.2	25.1	56.0	-30.9	
0.157	11.5	20.6	32.1	65.6	-33.5	
0.665	1.9	20.2	22.1	56.0	-33.9	
0.247	5.3	20.6	25.9	61.9	-36.0	
0.274	3.7	20.4	24.1	61.0	-36.9	
4.000	-2.3	20.2	17.9	56.0	-38.1	
0.188	5.1	20.6	25.7	64.1	-38.4	
3.091	-2.6	20.2	17.6	56.0	-38.4	
2.879	-3.5	20.2	16.7	56.0	-39.3	
29.870	-1.2	21.8	20.6	60.0	-39.4	
0.330	-0.3	20.3	20.0	59.5	-39.5	
0.950	-4.3	20.1	15.8	56.0	-40.2	
2.191	-4.6	20.2	15.6	56.0	-40.4	
1.898	-4.9	20.2	15.3	56.0	-40.7	
23.980	-2.1	21.4	19.3	60.0	-40.7	
1.268	-4.8	20.0	15.2	56.0	-40.8	
0.570	-5.3	20.2	14.9	56.0	-41.1	
1.570	-5.2	20.1	14.9	56.0	-41.1	
12.059	-1.8	20.5	18.7	60.0	-41.3	
20.546	-2.7	21.0	18.3	60.0	-41.7	
0.410	-4.5	20.3	15.8	57.6	-41.8	
5.345	-2.0	20.1	18.1	60.0	-41.9	
8.000	-2.4	20.3	17.9	60.0	-42.1	
5.066	-2.3	20.1	17.8	60.0	-42.2	
7.298	-2.4	20.2	17.8	60.0	-42.2	

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.770	1.4	20.2	21.6	46.0	-24.4	
0.665	-0.1	20.2	20.1	46.0	-25.9	
0.157	8.0	20.6	28.6	55.6	-27.0	
0.247	1.5	20.6	22.1	51.9	-29.8	
4.000	-4.0	20.2	16.2	46.0	-29.8	
3.082	-4.6	20.2	15.6	46.0	-30.4	
0.278	-0.2	20.4	20.2	50.9	-30.7	
29.770	-2.9	21.9	19.0	50.0	-31.0	
2.850	-5.4	20.2	14.8	46.0	-31.2	
0.188	2.1	20.6	22.7	54.1	-31.4	
2.260	-6.2	20.2	14.0	46.0	-32.0	
24.000	-3.5	21.4	17.9	50.0	-32.1	
0.944	-6.3	20.1	13.8	46.0	-32.2	
1.799	-6.5	20.2	13.7	46.0	-32.3	
1.330	-6.5	20.0	13.5	46.0	-32.5	
1.268	-6.6	20.0	13.4	46.0	-32.6	
0.570	-6.9	20.2	13.3	46.0	-32.7	
0.330	-3.7	20.3	16.6	49.5	-32.9	
12.059	-3.8	20.5	16.7	50.0	-33.3	
20.618	-4.3	21.0	16.7	50.0	-33.3	
5.350	-3.7	20.1	16.4	50.0	-33.6	
0.410	-6.4	20.3	13.9	47.6	-33.7	
8.000	-4.0	20.3	16.3	50.0	-33.7	
7.080	-4.0	20.2	16.2	50.0	-33.8	
5.090	-4.0	20.1	16.1	50.0	-33.9	

CONCLUSION

Pass

Tested By

FIELD STRENGTH OF FUNDAMENTAL

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR26	ARQ	2022-05-02	2023-05-02
Antenna - Loop	ETS Lindgren	6502	AZM	2022-07-19	2024-07-19
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2022-06-10	2023-06-10

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	1.8 dB	-1.8 dB

FREQUENCY RANGE INVESTIGATED

12.06 MHz TO 15.06 MHz

POWER INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0193-1

MODES INVESTIGATED

Continuous Tx, 13.56 MHz RFID

FIELD STRENGTH OF FUNDAMENTAL

EUT:	GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller)	Work Order:	ABBO0193
Serial Number:	CLM-01	Date:	2022-09-13
Customer:	Abbott Laboratories	Temperature:	20.9°C
Attendees:	Frank Sun	Relative Humidity:	50.5%
Customer Project:	None	Bar. Pressure (PMSL):	1019 mb
Tested By:	Jarrod Brenden	Job Site:	TX02
Power:	220VAC/60Hz	Configuration:	ABBO0193-1

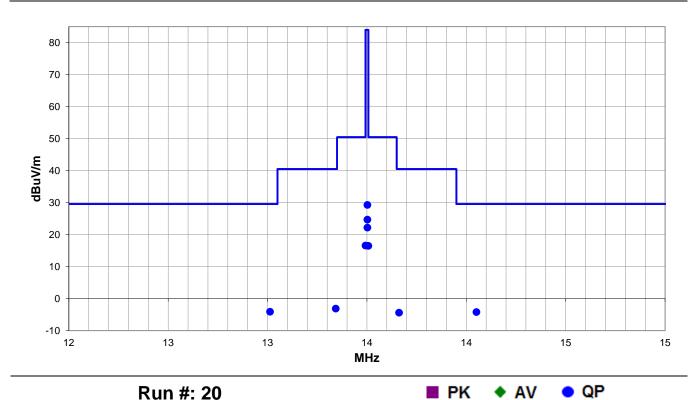
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.225:2022	ANSI C63.10:2013

TEST PARAMETERS

Run #:	20	Test Distance (m):	10	Ant. Height(s) (m):	1(m)
--------	----	--------------------	----	---------------------	------

COMMENTS


EUT is representative of floor-standing equipment.

EUT OPERATING MODES

Continuous Tx, 13.56 MHz RFID

DEVIATIONS FROM TEST STANDARD

None

FIELD STRENGTH OF FUNDAMENTAL

RESULTS - Run #20

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
13.072	3.6	11.4	1.0	202.9	10.0	0.0	Perp to EUT	QP	-19.1	-4.1	29.5	-33.6
14.111	3.5	11.4	1.0	303.0	10.0	0.0	Perp to EUT	QP	-19.1	-4.2	29.5	-33.7
13.553	24.3	11.4	1.0	183.9	10.0	0.0	Perp to EUT	QP	-19.1	16.6	50.5	-33.9
13.567	24.2	11.4	1.0	262.9	10.0	0.0	Perp to EUT	QP	-19.1	16.5	50.5	-34.0
13.403	4.6	11.4	1.0	195.0	10.0	0.0	Perp to EUT	QP	-19.1	-3.1	40.5	-43.6
13.721	3.3	11.4	1.0	265.0	10.0	0.0	Perp to EUT	QP	-19.1	-4.4	40.5	-44.9
13.562	37.0	11.4	1.0	190.9	10.0	0.0	Perp to EUT	QP	-19.1	29.3	84.0	-54.7
13.562	32.4	11.4	1.0	262.9	10.0	0.0	Para to GND	QP	-19.1	24.7	84.0	-59.3
13.562	29.9	11.4	1.0	261.0	10.0	0.0	Para to EUT	QP	-19.1	22.2	84.0	-61.8

CONCLUSION

Pass

Tested By

FIELD STRENGTH OF SPURIOUS EMISSIONS (LESS THAN 30 MHz)

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR26	ARQ	2022-05-02	2023-05-02
Antenna - Loop	ETS Lindgren	6502	AZM	2022-07-19	2024-07-19
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2022-06-10	2023-06-10

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	1.8 dB	-1.8 dB

FREQUENCY RANGE INVESTIGATED

490 kHz TO 30 MHz

POWER INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0193-1

MODES INVESTIGATED

Continuous Tx, 13.56 MHz RFID

FIELD STRENGTH OF SPURIOUS EMISSIONS (LESS THAN 30 MHz)

EUT:	GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller)	Work Order:	ABBO0193
Serial Number:	CLM-01	Date:	2022-09-13
Customer:	Abbott Laboratories	Temperature:	20.9°C
Attendees:	Frank Sun	Relative Humidity:	50.5%
Customer Project:	None	Bar. Pressure (PMSL):	1019 mb
Tested By:	Jarrod Brenden	Job Site:	TX02
Power:	220VAC/60Hz	Configuration:	ABBO0193-1

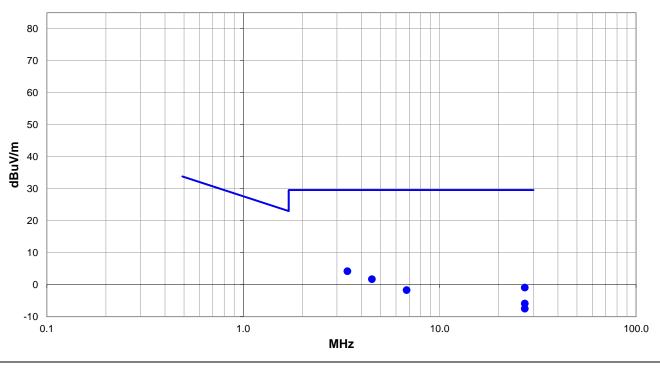
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.225:2022	ANSI C63.10:2013

TEST PARAMETERS

Run #:	21	Test Distance (m):	10	Ant. Height(s) (m):	1(m)
--------	----	--------------------	----	---------------------	------

COMMENTS


EUT is representative of floor-standing equipment.

EUT OPERATING MODES

Continuous Tx, 13.56 MHz RFID

DEVIATIONS FROM TEST STANDARD

None

Run #: 21 ■ PK ◆ AV • QP

FIELD STRENGTH OF SPURIOUS EMISSIONS (LESS THAN 30 MHz)

RESULTS - Run #21

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
3.390	11.9	11.4	1.0	1.0	10.0	0.0	Perp to EUT	QP	-19.1	4.2	29.5	-25.3
4.520	9.3	11.5	1.0	100.9	10.0	0.0	Perp to EUT	QP	-19.1	1.7	29.5	-27.8
27.115	8.4	9.8	1.0	266.0	10.0	0.0	Perp to EUT	QP	-19.1	-0.9	29.5	-30.4
6.783	6.0	11.4	1.0	46.9	10.0	0.0	Perp to EUT	QP	-19.1	-1.7	29.5	-31.2
27.120	3.4	9.8	1.0	141.9	10.0	0.0	Para to EUT	QP	-19.1	-5.9	29.5	-35.4
27.123	1.8	9.8	1.0	157.0	10.0	0.0	Para to GND	QP	-19.1	-7.5	29.5	-37.0

CONCLUSION

Pass

Tested By

FIELD STRENGTH OF SPURIOUS EMISSIONS (GREATER THAN 30 MHz)

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR26	ARQ	2022-05-02	2023-05-02
Antenna - Biconilog	ETS Lindgren	3143B	AYF	2022-09-02	2024-09-02
Filter - Low Pass	Micro-Tronics	LPM50004	HHV	2022-07-22	2023-07-22
Amplifier - Pre-Amplifier	Fairview Microwave	FMAM63001	PAS	2022-04-19	2023-04-19
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2022-06-10	2023-06-10

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	4.6 dB	-4.6 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 1000 MHz

POWER INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0193-1

MODES INVESTIGATED

Continuous Tx, 13.56 MHz RFID

FIELD STRENGTH OF SPURIOUS EMISSIONS (GREATER THAN 30 MHz)

EUT:	GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller)	Work Order:	ABBO0193
Serial Number:	CLM-01	Date:	2022-09-13
Customer:	Abbott Laboratories	Temperature:	20.9°C
Attendees:	Frank Sun	Relative Humidity:	50.5%
Customer Project:	None	Bar. Pressure (PMSL):	1019 mb
Tested By:	Jarrod Brenden	Job Site:	TX02
Power:	220VAC/60Hz	Configuration:	ABBO0193-1

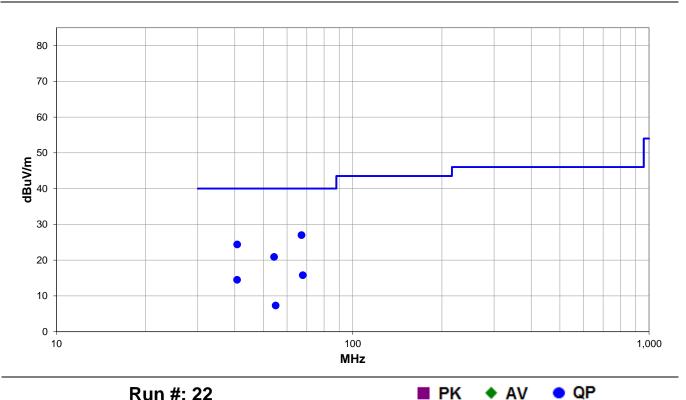
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.225:2022	ANSI C63.10:2013

TEST PARAMETERS

Run #:	22	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)

COMMENTS


EUT is representative of floor-standing equipment.

EUT OPERATING MODES

Continuous Tx, 13.56 MHz RFID

DEVIATIONS FROM TEST STANDARD

None

FIELD STRENGTH OF SPURIOUS EMISSIONS (GREATER THAN 30 MHz)

RESULTS - Run #22

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
67.127	53.1	-26.1	1.04	138.0	3.0	0.0	Vert	QP	0.0	27.0	40.0	-13.0
40.710	47.8	-23.4	1.0	240.0	3.0	0.0	Vert	QP	0.0	24.4	40.0	-15.6
54.251	47.9	-27.0	1.0	319.0	3.0	0.0	Vert	QP	0.0	20.9	40.0	-19.1
67.827	41.9	-26.1	3.18	262.9	3.0	0.0	Horz	QP	0.0	15.8	40.0	-24.2
40.706	37.9	-23.4	4.0	306.0	3.0	0.0	Horz	QP	0.0	14.5	40.0	-25.5
54.916	34.3	-27.0	3.87	169.0	3.0	0.0	Horz	QP	0.0	7.3	40.0	-32.7

CONCLUSION

Pass

Tested By

XMit 2022.02.07

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBH	NCR	NCR
Power Source/Analyzer	Hewlett Packard	6841A	THC	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUI	2021-02-02	2024-02-02
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Attenuator	Fairview Microwave	SA4018-20	TYE	2022-09-13	2023-09-13
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	2021-12-10	2022-12-10
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -20 ° to +50° C and at 10°C intervals.

The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm. The formula to check for compliance is:

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

								1bt1x 2022.06.03.0	XMit 2022.02.07.0
EUT:	GLP12553 LN06R34-01 C	hargeLane M (with updated	PIC Controller)				Work Order:	ABBO0193	
Serial Number:	CLM-01						Date:	6-Oct-22	
Customer:	Abbott Laboratories						Temperature:	19.6 °C	
Attendees:	Frank Sun						Humidity:	46.5% RH	
Project:	None					i i	Barometric Pres.:	1023 mbar	
	Jarrod Brenden		Power	r: 220VAC/60Hz			Job Site:	TX07	
TEST SPECIFICATI	ONS			Test Method					
FCC 15.225:2022				ANSI C63.10:2013					
COMMENTS									
ChargeLane include	es dual PCBs, the primary	y with a single radio.							
DEVIATIONS FROM	TEST STANDARD								
None									
0	1		OMA 1	2					
Configuration #	1	Signature	1						
					Measured	Nominal	Error	Limit	
					Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
Transmitting RFID, 1									
	ChargeLane								
		perature, 20C							
		Voltag 115%, 253 V			13.56005	13.56005	0.05	100	Pass
		Voltage Nominal, 220V			13.56005	13.56005	0.00	100	Pass
		Voltage 85%, 187V			13.56007	13.56005	1.16	100	Pass
		Voltage, 220V							
		Temperature, 50C			13.55993	13.56005	8.53	100	Pass
		Temperature, 40C			13.55997	13.56005	6.15	100	Pass
		Temperature, 30C			13.56000	13.56005	3.61	100	Pass
		Temperature, 20C			13.56005	13.56005	0.00	100	Pass
		Temperature, 10C			13.56010	13.56005	3.69	100	Pass
		Temperature, 0C			13.56017	13.56005	8.63	100	Pass
		Temperature, -10C			13.56017	13.56005	8.63	100	Pass
		Temperature, -20C			13.56015	13.56005	7.40	100	Pass

Transmitting RFID, 13.56 MHz, ChargeLane, Nominal Temperature, 20C, Voltag 115%, 253 V

Measured Nominal Error Limit

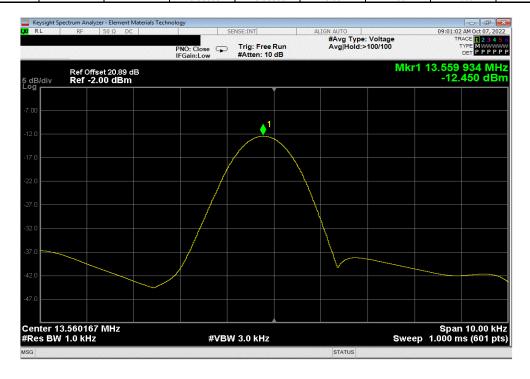
Value (MHz) Value (MHz) (ppm) (ppm) Results

13.56005 13.56005 0.05 100 Pass

	Transmitting RFID, 13.56 MHz, ChargeLane, Nominal Temperature, 20C, Voltage Nominal, 220V							
			Measured	Nominal	Error	Limit		
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
İ			13.56005	13.56005	0	100	Pass	



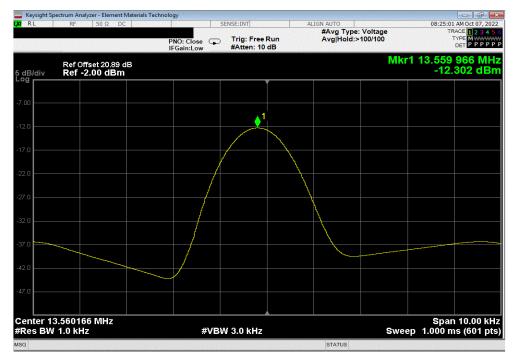
Transmitting RFID, 13.56 MHz, ChargeLane, Nominal Temperature, 20C, Voltage 85%, 187V


Measured Nominal Error Limit

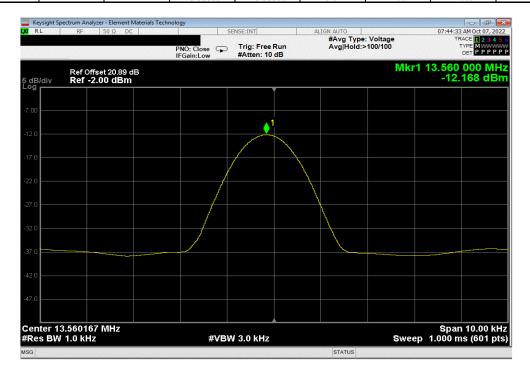
Value (MHz) Value (MHz) (ppm) (ppm) Results

13.56007 13.56005 1.16 100 Pass

Transmitting RFID, 13.56 MHz, ChargeLane, Nominal AC Voltage, 220V, Temperature, 50C							
			Measured	Nominal	Error	Limit	
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		-	13.55993	13.56005	8.53	100	Pass



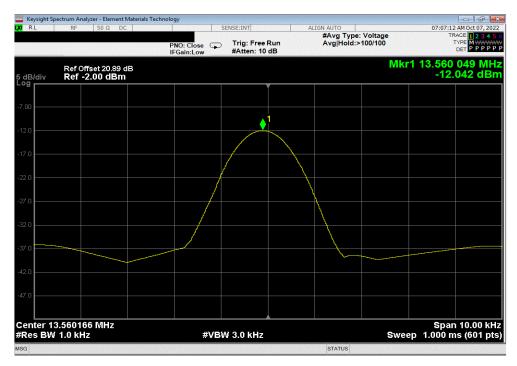
Transmitting RFID, 13.56 MHz, ChargeLane, Nominal AC Voltage, 220V, Temperature, 40C


Measured Nominal Error Limit

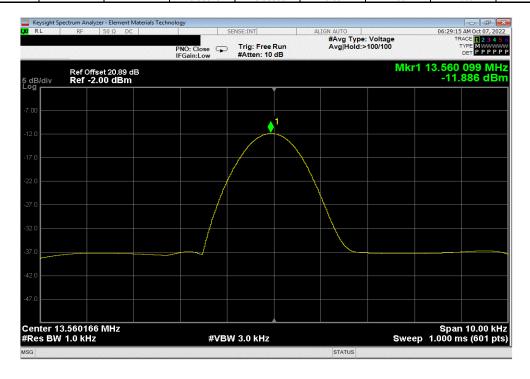
Value (MHz) Value (MHz) (ppm) (ppm) Results

13.55997 13.56005 6.15 100 Pass

Transmitting RFID, 13.56 MHz, ChargeLane, Nominal AC Voltage, 220V, Temperature, 30C								
		Measured	Nominal	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		13.56000	13.56005	3.61	100	Pass		

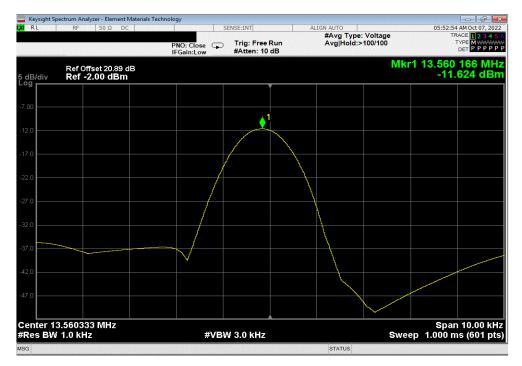


Transmitting RFID, 13.56 MHz, ChargeLane, Nominal AC Voltage, 220V, Temperature, 20C

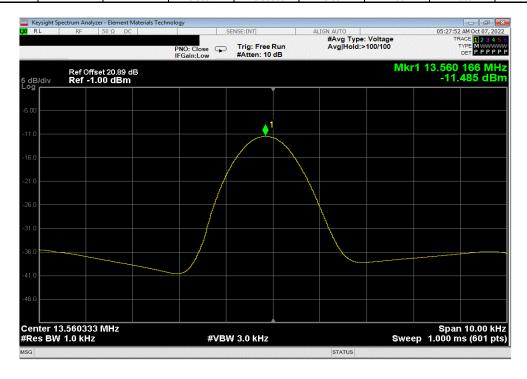

Measured Nominal Error Limit

Value (MHz) Value (MHz) (ppm) (ppm) Results

13.56005 13.56005 0 100 Pass

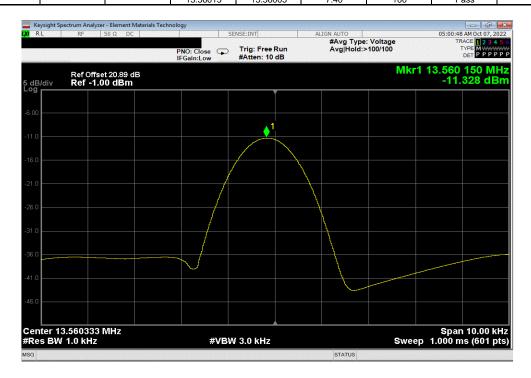


	Transmitting RFID, 13.56 MHz, ChargeLane, Nominal AC Voltage, 220V, Temperature, 10C								
			Measured	Nominal	Error	Limit			
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
,			13.56010	13.56005	3.69	100	Pass		



Transmitting RFID, 13.56 MHz, ChargeLane, Nominal AC Voltage, 220V, Temperature, 0C									
		-	Measured	Nominal	Error	Limit			
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	_	
			13.56017	13.56005	8.63	100	Pass		

	Transmitting RFID, 13.56 MHz, ChargeLane, Nominal AC Voltage, 220V, Temperature, -10C								
			Measured	Nominal	Error	Limit			
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
i			13.56017	13.56005	8.63	100	Pass		



Transmitting RFID, 13.56 MHz, ChargeLane, Nominal AC Voltage, 220V, Temperature, -20C

Measured Nominal Error Limit

Value (MHz) Value (MHz) (ppm) (ppm) Results

13.56015 13.56005 7.40 100 Pass

EMISSIONS BANDWIDTH (20 DB)

XMit 2022.02.07

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Attenuator	Fairview Microwave	SA4018-20	TYE	2022-09-13	2023-09-13
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	2021-12-10	2022-12-10
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

As defined in FCC 15.215 Part (c), intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise by specified in the specific rule section under which the equipment operates, is contained within the frequency band designed in the rule section under which the equipment is operated.

The 20 dB bandwidth must be contained within the band 13.110-14.010 MHz.

The emissions bandwidth was measured with the EUT configured for continuous modulated operation.

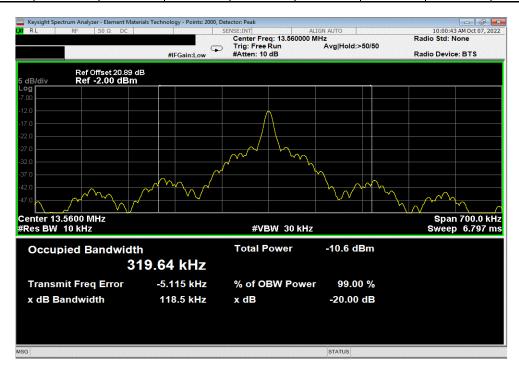
The resolution bandwidth (RBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

EMISSIONS BANDWIDTH (20 DB)

TbtTx 2022.06.03.0 XMit 2022.02.07.0 EUT: GLP12553 LN06R34-01 ChargeLane M (with updated PIC Controller) Work Order: ABBO0193 Date: 6-Oct-22
Temperature: 19.7 °C
Humidity: 47.8% RH
Barometric Pres.: 1022 mbar
Job Site: TX07 Serial Number: CLM-01 Customer: Abbott Laboratories Attendees: Frank Sun
Project: None
Tested by: Jarrod Brenden
TEST SPECIFICATIONS Power: 220VAC/60Hz Test Method FCC 15.225:2022 ANSI C63.10:2013 COMMENTS ChargeLane includes dual PCBs, the primary PCB contains a single RFID radio. ChargeLane radio ON. Emissions Bandwidth (20 dB) was taken with the 99% Bandwidth. This is the worst case as compared with 1-5% RBW and 20 dB bandwidth as called out in FCC 15.215. DEVIATIONS FROM TEST STANDARD None Configuration # Signature Limit 13.110 MHz ≤ BW ≤ 14.010 MHz Result Transmitting RFID, 13.56 MHz ChargeLane Nominal Temperature, 20C Voltage Nominal, 220V 118.505 kHz Within Pass

EMISSIONS BANDWIDTH (20 DB)



Transmitting RFID, 13.56 MHz, ChargeLane, Nominal Temperature, 20C, Voltage Nominal, 220V

Limit

Value WHz ≤ BW ≤ 14.0 Result

118.505 kHz Within Pass

End of Test Report