

Abbott Laboratories

GLP12152 Cross Switch

FCC 15.225:2021 13.56 MHz Radio

Report: ABBO0084 Rev. 2, Issue Date: September 27, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: September 2, 2021
Abbott Laboratories
EUT: GLP12152 Cross Switch

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2021	ANSI C63.10:2013
FCC 15.225:2021	ANSI C03.10.2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.2 6.4 6.4 6.5 6.8	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions (Less Than 30 MHz)	Yes	Pass	
6.5	Field Strength of Spurious Emissions (Greater Than 30 MHz)	Yes	Pass	
6.8	Frequency Stability	Yes	Pass	
6.9	Occupied Bandwidth	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Changed Powerline CE spec from Class A to FCC 15.209	2021-09-02	16 and 18
	Updated accreditations page	2022-09-27	4
	Updated test dates	2022-09-27	10
	Updated antenna information	2022-09-27	11
02	Fixed analyzer that was out of cal during the measurement.	2022-09-27	21, 23, 25
02	Updated power settings module	2022-09-27	11
	Updated the block diagram	2022-09-27	7-9
	Removed notation that does not apply	2022-09-27	16
	Adjusted the values.	2022-09-27	28

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

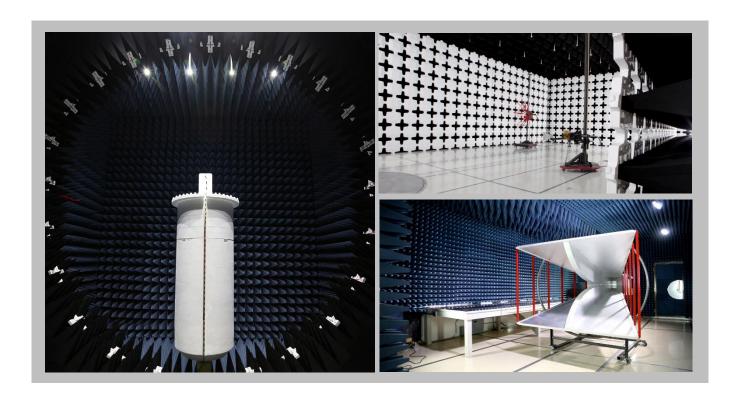
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600
		A2LA		
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06
	Innovation, Sci	ence and Economic Develop	ment Canada	
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1
	BSMI			
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
		VCCI		
A-0029	A-0109	A-0108	A-0201	A-0110
Re	ecognized Phase I CAB for IS	SED, ACMA, BSMI, IDA, KCC/	RRA, MIC, MOC, NCC, OF	CA
US0158	US0175	US0017	US0191	US0157

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

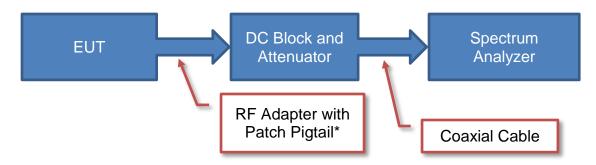
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	3.1 dB	-3.1 dB

TEST SETUP BLOCK DIAGRAMS

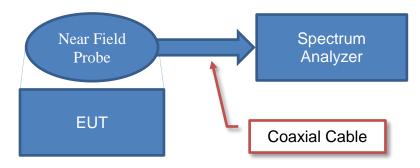


Measurement Bandwidths

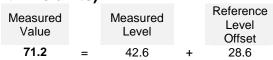
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

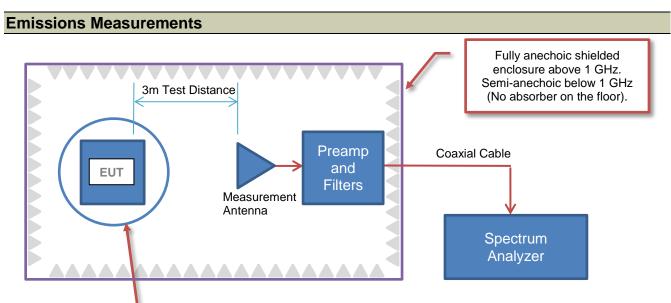


Sample Calculation (logarithmic units)

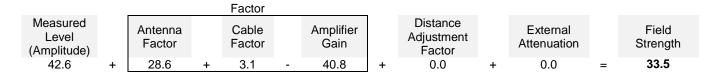

Measure Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

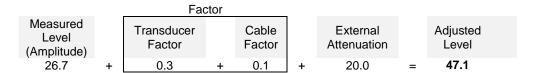
^{*}Patch pigtail connector used during measurements and accounted for in reference level offset.

Near Field Test Fixture Measurements



Sample Calculation (logarithmic units)


TEST SETUP BLOCK DIAGRAMS



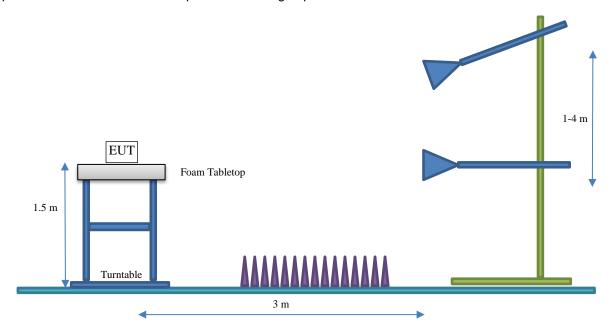
Sample Calculation (logarithmic units)

Radiated Emissions:

Conducted Emissions:

Flush Mounted Turn table, Non-reflective foam table to support EUT

Radiated Power (ERP/EIRP) - Substitution Method:



TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Abbott Laboratories	
Address:	1921 Hurd Drive	
City, State, Zip:	Irving, TX 75038	
Test Requested By:	Don Mendell	
EUT:	GLP12152 Cross Switch	
First Date of Test:	June 14, 2021	
Last Date of Test:	September 2, 2021	
Receipt Date of Samples:	June 14, 2021	
Equipment Design Stage:	Production	
Equipment Condition:	No Damage	
Purchase Authorization:	Verified	

Information Provided by the Party Requesting the Test

Functional Descri	ption of the	EUT:
--------------------------	--------------	------

Cross Switch allows for a CAR to change lanes, and contains an RFID reader for each lane

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA INFORMATION

Туре	Provided by:	Dimensions
Embedded Inductive Loop	GLP Systems	51mm x 35mm

POWER SETTING

Radio	Modulation	Protocol	Data Rate	Frequency	Power Setting (mW)
RFID	OOK	ISO 13693	26.48 kbps	13.56 MHz	200

^{*}Power is set internally through product firmware at the default maximum.

CONFIGURATIONS

Configuration ABBO0084-1

Software/Firmware Running during test		
Description	Version	
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin	
Firmware	TrackEmvTest_scc_Version_0.0_46817.bin	
Firmware	TrackEmvTest_scd_Version_0.0_46817.bin	
Firmware	TrackEmvTest_scx_scr_Version_0.0_46817.bin	
Firmware	Aliquoter_Version_2.5_47948.bin	

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
CrossSwitch Track Radio	GLP Systems	GLP12152	ENG07-CS		

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Aliquoter Module	GLP Systems	GLP12260	AM000057		
AccessPoint Radio 1	GLP Systems	20008971/20008841	ENG03-AP		
AccessPoint Radio 2	GLP Systems	20008971/20008841	ENG04-AP		
AccessPoint Radio 3	GLP Systems	20008971/20008841	ENG05-AP		
CrossSwitch Radio	GLP Systems	20005732	ENG06-CS		
CAN Bus	GLP Systems	None	None		
Power Strip	GLP Systems	GLP12015	None		
AC Line Filter	GLP Systems	GLP12013	None		
Module Power Supply	GLP Systems	20027692	0001439		
24V Power Supply	GLP Systems	GLP12010	0001045		
CrossSwitch Track Radio	GLP Systems	GLP12152	ENG07-CS		
Convergent 90 Track Radio	GLP Systems	GLP12154	ENG02-CN		
Divergent 90 Track Radio	GLP Systems	GLP12153	ENG02-DV		
Car 1	GLP Systems	GLP12677	0033406		
Car 2	GLP Systems	GLP12677	0033416		
Car 3	GLP Systems	GLP12677	0033506		
Car 4	GLP Systems	GLP12677	0033514		
Laptop	Dell	Optiplex XE3	71HQQ72		

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
AC Power Cable	No	2.7m	No	AC Mains	AC Line Filter		
AC Power Cable	No	2.7m	No	AC Line Filter	24V Power Supply		
Ethernet	Yes	10.0m	No	Laptop	Aliquoter Module		
USB	No	5.0m	No	Laptop	Aliquoter Module		

CONFIGURATIONS

Configuration ABBO0084 - 2

Software/Firmware Running during test				
Description	Version			
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin			
Firmware	TrackEmvTest_atr_Version_0.0_47120.bin			
Firmware	TrackEmvTest_cp_pp_tac_Version_0.0_46817.bin			
Firmware	TrackEmvTest_scc_Version_0.0_46817.bin			
Firmware	TrackEmvTest_scx_scr_Version_0.0_46817.bin			
Firmware	TrackEmvTest_scd_Version_0.0_46817.bin			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
CrossSwitch Track Radio	GLP Systems	GLP12152	ENG05-CS

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power Strip	GLP Systems	GLP12015	None		
CAN Bus	GLP Systems	None	None		
24V Power Supply	GLP Systems	GLP12010	C06A001511		
Power Board	GLP Systems	GLP12014	None		
AC Line Filter	GLP Systems	GLP12013	0001002		
AccessPoint Radio	GLP Systems	GLP12195	ENG02-AP		
PassPoint Track Radio	GLP Systems	GLP12191	ENG02-PP		
ChargeLane M Track Radio	GLP Systems	GLP12553	ENG02-CL M		
Switch 90 Convergent Track Radio	GLP Systems	GLP12154	ENG01-CN		
Switch 90 Divergent Track Radio	GLP Systems	GLP12153	ENG01-DV		
Drawer Reader Radio	GLP Systems	20001805 Rev C (PCB: 20001791 Rev B)	ENG05-DR		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Power Cable	Yes	1.1m	No	AC Mains	AC Line Filter	
Auxiliary Bus Line	Yes	1.0m	No	AC Line Filter	24V Power Supply	
DC Power Cable	No	0.6m	Yes	Power Board	Switch 90 Divergent	
DC Power Cable	No	0.6m	Yes	Power Board	Switch 90 Convergent	
DC Power Cable	No	0.6m	Yes	Power Board	ChargeLane	
DC Power Cable	No	0.6m	Yes	Power Board	Cross Switch	
DC Power Cable	No	0.6m	Yes	Power Board	PassPoint	
DC Power Cable	No	0.6m	Yes	Power Board	AccessPoint	
DC Power Cable	No	0.6m	Yes	Power Board	Drawer Reader	

CONFIGURATIONS

Configuration ABBO0084 - 3

Software/Firmware Running during test				
Description	Version			
Firmware	TrackEmvTest_scx_scr_Version_0.0_46817.bin			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
CrossSwitch Track Radio	GLP Systems	GLP12152	ENG05-CS

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Numl					
Power Strip	GLP Systems	GLP12015	None		
CAN Bus	GLP Systems	None	None		
24V Power Supply	GLP Systems	GLP12010	C06A001511		
Power Board	GLP Systems	GLP12014	None		
AC Line Filter	GLP Systems	GLP12013	0001002		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Power Cable	Yes	1.1m	No	AC Mains	AC Line Filter	
Auxiliary Bus Line	Yes	1.0m	No	AC Line Filter	24V Power Supply	
DC Power Cable	No	0.6m	Yes	Power Board	Cross Switch	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2021-07-21	Frequency Stability	Tested as delivered to test station.	None	EUT remained at Element following the test.
2	2021-07-21	Occupied Bandwidth	Tested as delivered to test station.	None	EUT remained at Element following the test.
3	2021-08-17	Powerline Conducted Emissions	Tested as delivered to test station.	None	EUT remained at Element following the test.
4	2021-09-02	Field Strength of Spurious Emissions (Greater Than 30 MHz)	Tested as delivered to test station.	None	EUT remained at Element following the test.
5	2021-08-31	Field Strength of Fundamental	Tested as delivered to test station.	None	EUT remained at Element following the test.
6	2021-08-31	Field Strength of Spurious Emissions (Less Than 30 MHz)	Tested as delivered to test station.	None	Scheduled testing was completed.

POWERLINE CONDUCTED EMISSIONS

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0084 - 1

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Gauss	TDEMI 30M	ARL	2021-03-23	2022-03-23
Terminator	Fairview Microwave	ST3B-C	RGX	2021-06-04	2022-06-04
Cable - Conducted Cable	Northwest EMC	TXA, HFC, TQU	TXAA	2021-01-26	2022-01-26
LISN	Solar Electronics	9252-50-R-24-BNC	LJL	2020-08-25	2021-08-25
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	2020-08-25	2021-08-25
Power Source/Analyzer	Hewlett Packard	6841A	THC	NCR	NCR

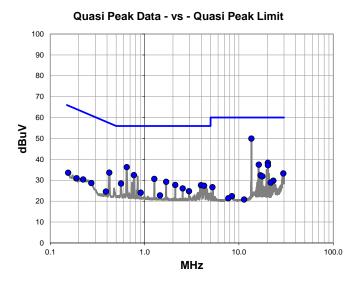
MEASUREMENT BANDWIDTHS

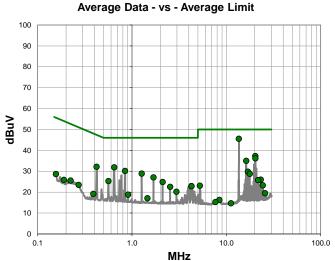
Frequency Range	BWI
(MHz)	(kHz)
0.15 - 30.0	1.0
30.0 - 400.0	10.0
400.0 - 1000.0	100.0
1000.0 - 6000.0	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION


The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.


The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

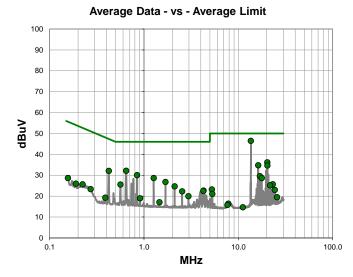
POWERLINE CONDUCTED EMISSIONS

					EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0				
Work Order:	ABBO0084	Date:	2021-08-17	~						
Project:	None	Temperature:	21.5 °C	lum	Hear					
Job Site:	TX02	Humidity:	59.2% RH		1					
Serial Number:	ENG07-CS	Barometric Pres.:	1016 mbar	Tested by	r: Travis Glasser					
EUT:	GLP12152 CrossSwite	ch								
Configuration:	1									
Customer:	Abbott Laboratories									
Attendees:	Don Mendell									
EUT Power:	220VAC/60Hz									
Operating Mode:	Transmitting RFID 13.	ransmitting RFID 13.56								
Deviations:	None									
Comments:		io within GLP12260 Ali	quoter Module.							
Test Specifications			Test Met	nod						
FCC 15.207:2021	•		ANSI C63	3.10:2013		_				
Run # 35	Line:	High Line	Ext. Attenuation	0	Results	Pass				

Quasi Peak Data - Vs - Quasi Peak Limit									
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)				
13.560	28.9	21.1	50.0	60.0	-10.0				
0.646	16.1	20.2	36.3	56.0	-19.7				
20.259	16.8	21.6	38.4	60.0	-21.6				
16.227	16.1	21.4	37.5	60.0	-22.5				
20.320	15.6	21.6	37.2	60.0	-22.8				

Average Data - vs - Average Limit									
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)				
13.560	24.5	21.1	45.6	50.0	-4.4				
20.259	15.7	21.6	37.3	50.0	-12.7				
20.320	14.6	21.6	36.2	50.0	-13.8				
0.649	11.7	20.2	31.9	46.0	-14.1				
16.227	13.6	21.4	35.0	50.0	-15.0				

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.769	12.3	20.2	32.5	56.0	-23.5
0.422	13.5	20.2	33.7	57.4	-23.7
1.267	10.4	20.3	30.7	56.0	-25.3
1.690	9.0	20.3	29.3	56.0	-26.7
29.552	10.6	22.7	33.3	60.0	-26.7
0.562	8.3	20.2	28.5	56.0	-27.5
16.900	11.0	21.4	32.4	60.0	-27.6
17.694	10.5	21.4	31.9	60.0	-28.1
2.112	7.5	20.3	27.8	56.0	-28.2
3.954	7.4	20.3	27.7	56.0	-28.3
4.277	7.1	20.3	27.4	56.0	-28.6
2.535	5.8	20.3	26.1	56.0	-29.9
23.129	7.9	21.9	29.8	60.0	-30.2
21.662	7.1	21.8	28.9	60.0	-31.1
2.957	4.5	20.3	24.8	56.0	-31.2
0.908	3.8	20.3	24.1	56.0	-31.9
0.155	13.2	20.4	33.6	65.8	-32.2
0.223	10.0	20.4	30.4	62.7	-32.3
0.272	8.3	20.4	28.7	61.1	-32.4
0.190	10.6	20.4	31.0	64.1	-33.1
1.456	2.5	20.3	22.8	56.0	-33.2
5.237	6.4	20.3	26.7	60.0	-33.3
0.388	4.4	20.2	24.6	58.1	-33.5
8.415	1.8	20.6	22.4	60.0	-37.6
7.712	0.9	20.5	21.4	60.0	-38.6
11.345	-0.1	20.9	20.8	60.0	-39.2


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.422	12.0	20.2	32.2	47.4	-15.2
0.844	10.0	20.2	30.2	46.0	-15.8
1.267	8.6	20.3	28.9	46.0	-17.1
1.690	6.8	20.3	27.1	46.0	-18.9
16.900	8.4	21.4	29.8	50.0	-20.2
0.562	5.1	20.2	25.3	46.0	-20.7
2.112	4.6	20.3	24.9	46.0	-21.1
17.694	7.4	21.4	28.8	50.0	-21.2
4.257	2.6	20.3	22.9	46.0	-23.1
4.277	2.6	20.3	22.9	46.0	-23.1
2.535	2.3	20.3	22.6	46.0	-23.4
23.129	4.1	21.9	26.0	50.0	-24.0
21.662	4.0	21.8	25.8	50.0	-24.2
2.957	-0.1	20.3	20.2	46.0	-25.8
24.349	1.1	22.2	23.3	50.0	-26.7
5.236	2.8	20.3	23.1	50.0	-26.9
0.156	8.3	20.4	28.7	55.7	-27.0
0.223	5.2	20.4	25.6	52.7	-27.1
0.908	-1.5	20.3	18.8	46.0	-27.2
0.272	3.1	20.4	23.5	51.1	-27.6
0.190	5.5	20.4	25.9	54.1	-28.2
1.456	-3.2	20.3	17.1	46.0	-28.9
0.390	-1.0	20.2	19.2	48.1	-28.9
25.694	-2.8	22.3	19.5	50.0	-30.5
8.415	-4.3	20.6	16.3	50.0	-33.7
7.654	-5.2	20.5	15.3	50.0	-34.7
11.188	-6.2	20.9	14.7	50.0	-35.3

POWERLINE CONDUCTED EMISSIONS

								EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0
Wo	rk Order:	ABBO0084	Date:	2021-	08-17	_	7		
	Project:	None	Temperature:	21.	5 °C	1	em)	He	
	Job Site:	TX02	Humidity:	59.29	6 RH				
Serial	Number:	ENG07-CS	Barometric Pres.:	1016	mbar	•	Tested by:	Travis Glasse	er
	EUT:	GLP12152 CrossSwite	ch						
Confi	guration:	1							
C	ustomer:	Abbott Laboratories							
At	tendees:	Don Mendell							
EU	T Power:	220VAC/60Hz							
Operation	ng Mode:	Transmitting RFID 13.	.56						
De	viations:	None							
Со	mments:	CrossSwitch track rad	io within GLP12260 Al	liquoter Mod	dule.				
Test Specif	ications				Test Metho	od			
FCC 15.207					ANSI C63.	10:2013	!		
Run#	36	Line:	Neutral	Ext. At	tenuation:	0		Results	Pass

Quasi Peak Data - vs - Quasi Peak Limit 100 80 70 60 40 30 20 10 0 0.1 1.0 MHz

Quasi Peak Data - Vs - Quasi Peak Limit									
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)				
13.560	29.7	21.1	50.8	60.0	-9.2				
0.646	16.3	20.2	36.5	56.0	-19.5				
16.227	16.0	21.4	37.4	60.0	-22.6				
20.259	15.7	21.6	37.3	60.0	-22.7				
0.769	12.8	20.2	33.0	56.0	-23.0				

Average Data - vs - Average Limit									
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)				
13.560	25.4	21.1	46.5	50.0	-3.5				
0.647	12.0	20.2	32.2	46.0	-13.8				
20.259	14.6	21.6	36.2	50.0	-13.8				
16.227	13.4	21.4	34.8	50.0	-15.2				
20.320	13.1	21.6	34.7	50.0	-15.3				

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.423	13.5	20.2	33.7	57.4	-23.7
29.545	13.3	22.7	36.0	60.0	-24.0
20.320	14.3	21.6	35.9	60.0	-24.1
1.267	10.2	20.3	30.5	56.0	-25.5
29.966	11.6	22.6	34.2	60.0	-25.8
1.690	8.9	20.3	29.2	56.0	-26.8
0.562	8.5	20.2	28.7	56.0	-27.3
16.900	10.8	21.4	32.2	60.0	-27.8
2.112	7.2	20.3	27.5	56.0	-28.5
3.954	7.1	20.3	27.4	56.0	-28.6
17.694	9.9	21.4	31.3	60.0	-28.7
4.277	6.8	20.3	27.1	56.0	-28.9
27.695	7.7	22.5	30.2	60.0	-29.8
23.127	8.0	21.9	29.9	60.0	-30.1
2.535	5.6	20.3	25.9	56.0	-30.1
21.662	6.9	21.8	28.7	60.0	-31.3
2.956	4.2	20.3	24.5	56.0	-31.5
0.907	3.8	20.3	24.1	56.0	-31.9
0.156	13.2	20.4	33.6	65.7	-32.1
0.223	10.0	20.4	30.4	62.7	-32.3
0.272	8.3	20.4	28.7	61.1	-32.4
0.190	10.7	20.4	31.1	64.1	-33.0
5.236	6.4	20.3	26.7	60.0	-33.3
0.390	4.6	20.2	24.8	58.1	-33.3
1.458	2.4	20.3	22.7	56.0	-33.3
7.832	1.8	20.6	22.4	60.0	-37.6
7.655	1.3	20.5	21.8	60.0	-38.2
11.188	-0.1	20.9	20.8	60.0	-39.2

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.423	11.9	20.2	32.1	47.4	-15.3
0.844	9.9	20.2	30.1	46.0	-15.9
1.267	8.4	20.3	28.7	46.0	-17.3
1.690	6.5	20.3	26.8	46.0	-19.2
16.900	8.2	21.4	29.6	50.0	-20.4
0.562	5.4	20.2	25.6	46.0	-20.4
17.694	7.3	21.4	28.7	50.0	-21.3
2.112	4.4	20.3	24.7	46.0	-21.3
4.277	2.4	20.3	22.7	46.0	-23.3
4.257	2.2	20.3	22.5	46.0	-23.5
2.535	2.0	20.3	22.3	46.0	-23.7
23.129	3.8	21.9	25.7	50.0	-24.3
21.662	3.4	21.8	25.2	50.0	-24.8
2.957	-0.3	20.3	20.0	46.0	-26.0
5.237	2.9	20.3	23.2	50.0	-26.8
24.349	0.8	22.2	23.0	50.0	-27.0
0.908	-1.3	20.3	19.0	46.0	-27.0
0.156	8.3	20.4	28.7	55.7	-27.0
0.223	5.3	20.4	25.7	52.7	-27.0
0.272	3.0	20.4	23.4	51.1	-27.7
0.190	5.6	20.4	26.0	54.1	-28.1
0.390	-0.9	20.2	19.3	48.1	-28.8
5.298	0.8	20.3	21.1	50.0	-28.9
1.456	-3.2	20.3	17.1	46.0	-28.9
25.694	-2.8	22.3	19.5	50.0	-30.5
7.832	-4.2	20.6	16.4	50.0	-33.6
7.654	-4.7	20.5	15.8	50.0	-34.2
11.172	-6.2	20.9	14.7	50.0	-35.3

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0084 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency	490 kHz	Stop Frequency	30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2021-05-24	2022-05-24
Antenna - Loop	ETS Lindgren	6502	AZM	2020-07-09	2022-07-09
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2021-03-11	2022-03-11

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDAMENTAL

										EmiR5 2021.06.24.0	F	SA-ESCI 202 <u>1.03.17.</u>	0_
Wo	rk Order:		O0084	_	Date:		-08-31		11/		7 ,		
	Project: Job Site:		one K02	I ei	mperature: Humidity:		4 ℃ % RH		1		7-		
	Number:		05-CS	Barome	etric Pres.:		mbar		Tested by:	Jarrod Bro	nden and I	Mark Bayta	_ n
Serial			2 Cross Swi		cuic Fies	1003	ilibai		resieu by.	Janou Die	ilueli aliu i	viaik bayla	<u>''</u>
Confi	guration:		2 01033 OWI	ton									_
		Abbott Lal	oratories										_
		Don Mend											_
		220VAC/6											_
			ng RFID 13	56 MHz									_
Operation	ng Mode:												
Da	eviations:	None											_
De	eviations:												
		All emission	ons were gr	eater than	20 dB below	the limit.							_
Co	mments:		_										
													_
Test Specif	fications						Test Metho	od					_
FCC 15.225							ANSI C63.						_
1 00 10.220	7.2021						711401 000.	10.2010					
Run#	0	Test Di	stance (m)	10	Antenna	Height(s)		1(m)		Results	P	ass	_
85 —			,										_
85							П						
75													
65													
55													
W//\ng 35													
≥						-							
9 35													
5 33													
-				- 					-				
25													
45													
15													
5 +													
_							📍			•			
-5 [⊥]		12	12	12	12	11	1.1		14	1.1	14	15	
13		13	13	13	13	14	14		14	14	14	15	
						MHz	•			■ PK	◆ AV	QP	
							Dolorit /						
						External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height		Test Distance	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB/m)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
13.010	5.7	11.6	1.0	249.9	10.0	0.0	Perp to EUT	QP	-19.1	-1.80	29.5	-31.3	Both radios of
14.105	5.6	11.6	1.0	303.9	10.0	0.0	Perp to EUT	QP	-19.1	-1.90	29.5	-31.4	Both radios of
13.813	7.3	11.6	1.0	270.0	10.0	0.0	Perp to EUT	QP	-19.1	-0.20	40.5	-40.7	Both radios of
13.314	5.6	11.6	1.0	315.0	10.0	0.0	Perp to EUT	QP	-19.1	-1.90	40.5	-42.4	Both radios o
13.662	6.3	11.6	1.0	274.9	10.0	0.0	Perp to EUT	QP	-19.1	-1.20	50.5	-51.7	Both radios of
13.451 13.560	5.4 36.0	11.6 11.6	1.0 1.0	9.0 201.9	10.0 10.0	0.0 0.0	Perp to EUT Perp to EUT	QP QP	-19.1 -19.1	-2.10 28.50	50.5 84.0	-52.6 -55.5	Both radios of Both radios of
13.560	32.8	11.6	1.0	201.9	10.0	0.0	Perp to EUT	QP QP	-19.1	25.30	84.0	-55.5 -58.7	Radio 1 on
13.560	27.2	11.6	1.0	188.0	10.0	0.0	Perp to EUT	QP	-19.1	19.70	84.0	-64.3	Radio 2 on
								-					

FIELD STRENGTH OF SPURIOUS EMISSIONS (Less Than 30 MHz)

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0084 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency 490 kHz	Stop Frequency	30 MHz
Start Frequency (490 kHz	Stop Frequency	30 MITZ

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2021-05-24	2022-05-24
Antenna - Loop	ETS Lindgren	6502	AZM	2020-07-09	2022-07-09
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2021-03-11	2022-03-11

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF SPURIOUS EMISSIONS (Less Than 30 MHz)

Work Order:												EmiR5 2021.06.24.0	F	PSA-ESCI 2021.03.17.0
Serial Number: ENGS-CS Barmetric Press; 1009 mbar Tested by: Jarrod Brenden		Wo	rk Order:	ABB	O0084		Date:	2021	-08-31			\sim		
ENGISC-CIS SWITCH Configuration: 3 Customer: Abbort Laboratories			Project:			Ter				$\langle - \rangle$	111	. / _		
EUT: GLP12152 Cross Swirch Customer: Abbott Laboratories Attendes: Don Mandell EUT Power: 220/AC/60Hz Comments: Co			Job Site:	T.	X02		Humidity:	57.7	% RH	1				
Configuration: 3 Customer: Abbott Laboratories		Serial	Number:	ENG	905-CS	Barome	etric Pres.:	1009) mbar		Tested by:	Jarrod Bre	nden	
Customer, JAbott Laboratories			EUT:	GLP1215	2 Cross Swit	ich								
## Attendess: Don Mendell EUT Power: 220/NAC/60Hz Operating Mode: Transmitting RFID 13.56 MHz		Confi	guration:	3										
Committed Transmitting RFID 13.56 MHz		С	ustomer:	Abbott La	boratories									
Test menting RFID 13.56 MHz Deviations None														
None		EU	T Power:	220VAC/6	60Hz									
Test Specifications FCC 15.225.2021	O	oerati	ng Mode:	Transmitt	ing RFID 13.	56 MHz								
Test Specifications Test Method		De	eviations:	None										
Run # 1 Test Distance (m) 10 Antenna Height(s) 1(m) Results Pass		Co	mments:											
Run # 1 Test Distance (m) 10 Antenna Height(s) 1(m) Results Pass	Test S	Speci	fications						Test Meth	nod				
Run # 1 Test Distance (m) 10 Antenna Height(s) 1(m) Results Pass														
To 60	D	up #	1	Toot D	istance (m)	10	Antonna	Hoight(s)		1(m)		Poculto	D	000
Freq Amplitude Factor Antenna Height (degrees) (melers) (degrees) (de	K	un #	<u> </u>	Test D	istance (m)	10	Antenna	i neigni(s)		1(111)		Results	Pi	188
Freq Amplitude Factor Antenna Height (degrees) (melers) (degrees) (de		Γ												
Test Distance Compared to Spec. Limit (dBu/lm) Test Distance Compared to Spec. Limit (dBu/lm) Transducer Type Detector Typ		70												
Test Distance Compared to Spec. Limit (dBu/lm) Test Distance Compared to Spec. Limit (dBu/lm) Transducer Type Detector Typ														
Test Distance Compared to Spec. Limit (dBu/lm) Test Distance Compared to Spec. Limit (dBu/lm) Transducer Type Detector Typ														
Amplitude Factor (dBu/l) Azimuth (meters) Azimuth (meters) Azimuth (meters) Azimuth (dBu/l) Compared to Spec. (dBu/l) Compared		60												
Amplitude Factor (dBu/l) Azimuth (meters) Azimuth (meters) Azimuth (meters) Azimuth (dBu/l) Compared to Spec. (dBu/l) Compared														
Amplitude Factor (dBu/l) Azimuth (meters) Azimuth (meters) Azimuth (meters) Azimuth (dBu/l) Compared to Spec. (dBu/l) Compared		50												
Test Distance (MHz)														
Test Distance (MHz)														
20 10 10 NHz Test Distance (Meters) Transducer (Type (JB)) Transducer (JB)	_	40												
20 10 10 NHz Test Distance (Meters) Transducer (Type (JB)) Transducer (JB)	Ę.													
20 10 10 NHz Test Distance (Meters) Transducer (Type (JB)) Transducer (JB)	≥													
20 10 10 NHz Test Distance (Meters) Transducer (Type (JB)) Transducer (JB)	<u>ā</u>	30												
Test Distance (MHz)	O													
Test Distance (MHz)		20												
Treed (MHz) Freq (MHz) MHz Male (MBW) Factor (MBW) Male (M														
Treed (MHz) Freq (MHz) MHz Male (MBW) Factor (MBW) Male (M							•							
Test Distance (MHz) MHz Distance (MHz) Detector Detector Detector Distance (MHz) Detector Detector Detector Detector Detector Detector Distance (MHz) Detector De		10												
-10 0 1 1 10 100 MHz ■ PK ◆ AV ● QP Preq (MHz)														
-10 0 1 1 10 100 MHz ■ PK ◆ AV ● QP Preq (MHz)		_								<u> </u>				
-10 MHz		٦												
MHz												•		
MHz		-10 L												
Freq (MHz)						1				10				100
Freq (MHz)								MHz	<u> </u>			■ PK	◆ AV	QP
Freq (MHz)									Polarity/					
(MHz) (dBuV) (dB/m) (meters) (degrees) (meters) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dB) 1.698 21.1 11.5 1.0 166.9 10.0 0.0 Perp to EUT QP -19.1 13.5 23.0 -9.5 3.385 15.1 11.7 1.0 88.9 10.0 0.0 Perp to EUT QP -19.1 7.7 29.5 -21.8 6.778 10.8 11.6 1.0 315.0 10.0 0.0 Perp to EUT QP -19.1 3.3 29.5 -26.2 27.125 6.0 10.0 1.0 204.0 10.0 0.0 Perp to EUT QP -19.1 -3.1 29.5 -32.6 27.130 5.3 10.0 1.0 348.0 10.0 0.0 Para to GND QP -19.1 -3.8 29.5 -33.3	_						T D: .		Transducer			A.D	•	
1.698 21.1 11.5 1.0 166.9 10.0 0.0 Perp to EUT QP -19.1 13.5 23.0 -9.5 3.385 15.1 11.7 1.0 88.9 10.0 0.0 Perp to EUT QP -19.1 7.7 29.5 -21.8 6.778 10.8 11.6 1.0 315.0 10.0 0.0 Perp to EUT QP -19.1 3.3 29.5 -26.2 27.125 6.0 10.0 1.0 204.0 10.0 0.0 Perp to EUT QP -19.1 -3.1 29.5 -32.6 27.130 5.3 10.0 1.0 348.0 10.0 0.0 Para to GND QP -19.1 -3.8 29.5 -33.3									Туре	Detector				
3.385 15.1 11.7 1.0 88.9 10.0 0.0 Perp to EUT QP -19.1 7.7 29.5 -21.8 6.778 10.8 11.6 1.0 315.0 10.0 0.0 Perp to EUT QP -19.1 3.3 29.5 -26.2 27.125 6.0 10.0 1.0 204.0 10.0 0.0 Perp to EUT QP -19.1 -3.1 29.5 -32.6 27.130 5.3 10.0 1.0 348.0 10.0 0.0 Para to GND QP -19.1 -3.8 29.5 -33.3	(MH	iz)	(dBUV)	(aB/m)	(meters)	(degrees)	(meters)	(dB)			(dB)	(abuV/m)	(dbuV/m)	(aB)
6.778 10.8 11.6 1.0 315.0 10.0 0.0 Perp to EUT QP -19.1 3.3 29.5 -26.2 27.125 6.0 10.0 1.0 204.0 10.0 0.0 Perp to EUT QP -19.1 -3.1 29.5 -32.6 27.130 5.3 10.0 1.0 348.0 10.0 0.0 Para to GND QP -19.1 -3.8 29.5 -33.3			21.1	11.5	1.0		10.0	0.0			-19.1	13.5	23.0	
27.125 6.0 10.0 1.0 204.0 10.0 0.0 Perp to EUT QP -19.1 -3.1 29.5 -32.6 27.130 5.3 10.0 1.0 348.0 10.0 0.0 Para to GND QP -19.1 -3.8 29.5 -33.3	3.38	85	15.1	11.7	1.0	88.9	10.0	0.0	Perp to EUT	Γ QP	-19.1	7.7	29.5	-21.8
27.130 5.3 10.0 1.0 348.0 10.0 0.0 Para to GND QP -19.1 -3.8 29.5 -33.3														
- ZELIZO - DO 10.0 1.0 DO 10.0 DU PRIZIDEUT UP -191 -55 795 -333			5.3 5.3	10.0 10.0	1.0 1.0	348.0 6.0	10.0 10.0	0.0	Para to GNL Para to EUT		-19.1 -19.1	-3.8 -3.8	29.5 29.5	-33.3 -33.3

FIELD STRENGTH OF SPURIOUS EMISSIONS (Greater than 30 MHz)

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0084 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	1000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2021-05-24	2022-05-24
Amplifier - Pre-Amplifier	Fairview Microwave	FMAM63001	PAS	2021-05-24	2022-05-24
Filter - Low Pass	Micro-Tronics	LPM50004	HHV	2021-07-27	2022-07-27
Antenna - Biconilog	ETS Lindgren	3143B	AYF	2020-06-25	2022-06-25
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2021-03-11	2022-03-11

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

FIELD STRENGTH OF SPURIOUS EMISSIONS (Greater than 30 MHz)

W	ork Order:	ABBO	20084		Date	:	20	021-	09-02			EmiR5 2021.06.24.	0 P	PSA-ESCI 2021.03.17.0
	Project:	No	one	Ter	mperature	:		20.8		(-)	m11+	., ~		
	Job Site:		K 02		Humidity		5	9.49	6 RH	1				
Seria	al Number:		05-CS		etric Pres.	.=	1	017	mbar	•	Tested by:	Jarrod Bro	enden	
			2 CrossSwite	ch										
	figuration:													
	Customer:	Abbott Lat	ooratories											
	Attendees: UT Power:													
		Transmitti	ng RFID 13.	EC MU-										
Operat	ting Mode:	Hansiillii	ing KFID 13.	30 MHZ										
	Deviations:	None												
C	omments:	Both radio	s on											
Test Spec	ifications								Test Meth	od				
FCC 15.22									ANSI C63.		l			
Run #	2	Test Dis	stance (m)	3	Antenr	ia H	eigh	t(s)		1 to 4(m)		Results	s P	ass
			()				3	-(-/						
80 +						\rightarrow								+
70														
70]														
60						_								
- ⁵⁰ +						\pm								
5														
w//Nab														
₽ →														
30 -				_		-								
20														
20 +														
				•				•						
10						_								
0 +	<u> </u>							00						1000
10	U							00						1000
							M	Hz				■ PK	◆ AV	QP
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)		Externation (dB)	tion	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
40.192	54.7	-23.0	1.0	93.0	3.0		0.0		Vert	QP	0.0	31.7	40.0	-8.3
81.368	41.4	-25.4	1.0	154.9	3.0		0.0		Vert	QP	0.0	16.0	40.0	-24.0
40.690	38.1	-23.2	2.96	244.9	3.0		0.0		Horz	QP	0.0	14.9	40.0	-25.1
81.378 108.490	38.0 38.6	-25.4 -24.2	2.27 1.04	181.0 315.9	3.0 3.0		0.0		Horz Vert	QP QP	0.0 0.0	12.6 14.4	40.0 43.5	-27.4 -29.1
108.490	38.1	-24.2 -24.2	2.66	261.9	3.0		0.0		Horz	QP QP	0.0	13.9	43.5	-29.1

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	77-IV	MLT	2020-10-15	2023-10-15
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBH	NCR	NCR
Transformer	Staco Energy Products Co.	3PN2520B	XFZ	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUI	2021-02-02	2024-02-02
Probe - Near Field Set	ETS Lindgren	7405	IPS	NCR	NCR
Cable	UtiFlex Micro-Coax	UFD1150A-1-0720-200200	TXJ	2020-09-22	2021-09-22
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2021-01-06	2022-01-06

TEST DESCRIPTION

The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

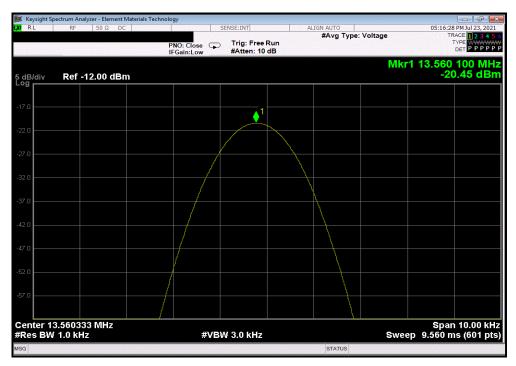
Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -20 ° to +50° C and at 10°C intervals.

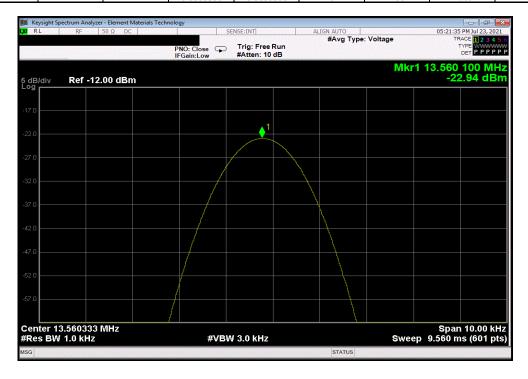
The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm. The formula to check for compliance is:

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

EUT: GLP12152 CrossSwitch
Serial Number: ENG05-CS
Customer: Abbott Laboratories Work Order: ABBO0084
Date: 24-Jul-21
Temperature: 25 °C Attendees: Don Mendell Humidity: 47.8% RH Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Barometric Pres.: 1019 mbar Power: 220VAC/60Hz Test Method Job Site: TX05 FCC 15.225:2021 COMMENTS DEVIATIONS FROM TEST STANDARD 1464 Configuration # 2 Signature Measured Value (MHz) Value (MHz) Results (ppm) (ppm) CrossSwitch Radio - Antenna 1 Normal Voltage
Mid Channel, 13.56 MHz 13.56009967 13.56009967 0 100 Pass Extreme Voltage +15%
Mid Channel, 13.56 MHz 13.56009967 13.56009967 100 Pass ne Voltage -15% Mid Channel, 13.56 MHz 13.56006633 13.56009967 2.5 100 Pass nperature +50°C Mid Channel, 13.56 MHz 13.55998267 13.56009967 100 8.6 Pass mperature +40°C Mid Channel, 13.56 MHz 13.560016 13.56009967 6.2 100 Pass e Temperature +30°C Mid Channel, 13.56 MHz 13.56004967 13.56009967 100 Pass 3.7 mperature +20°C Mid Channel, 13.56 MHz 13.56006633 13.56009967 100 Pass 2.5 ne Temperature +10°C Mid Channel, 13.56 MHz 13.56014967 13.56009967 3.7 100 Pass nperature 0°C Mid Channel, 13.56 MHz 13.560183 13.56009967 6.1 100 Pass e Temperature -10°C Mid Channel, 13.56 MHz 100 13.56009967 Pass 13.5602 7.4 mperature -20°C Mid Channel, 13.56 MHz 13.560183 13.56009967 6.1 100 Pass CrossSwitch Radio - Antenna 2 Normal Voltage
Mid Channel, 13.56 MHz 13.56003267 13.56003267 0 100 Pass Extreme Voltage +15% Mid Channel, 13.56 MHz ie Voltage -15% 13.56009967 13.56003267 4.9 100 Pass Mid Channel, 13.56 MHz mperature +50°C 13.560016 13.56003267 12 100 Pass Mid Channel, 13.56 MHz 13.55994933 13.56003267 6.1 100 Pass e Temperature +40°C Mid Channel 13 56 MHz 13 55993367 13 56003267 7.3 100 Pass mperature +30°C Mid Channel, 13.56 MHz 13.55998333 13.56003267 3.6 100 Pass e Temperature +20°C Mid Channel, 13.56 MHz mperature +10°C 13.560066 13.56003267 2.5 100 Pass Mid Channel, 13.56 MHz e Temperature 0°C 13.560066 13.56003267 100 Pass Mid Channel, 13.56 MHz 13.56009967 13.56003267 4.9 100 Pass e Temperature -10°C Mid Channel, 13,56 MHz 13.56011633 13 56003267 6.2 100 Pass Extreme Temperature -20°C Mid Channel, 13.56 MHz 13.56008367 13.56003267 3.8 100 Pass

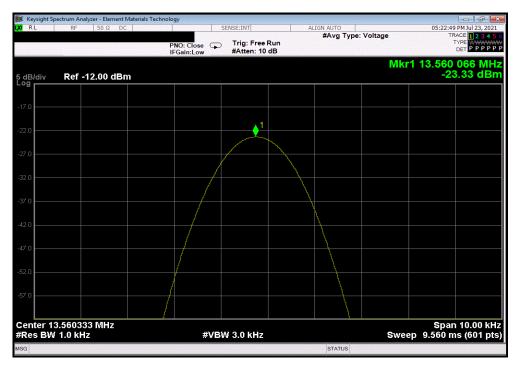


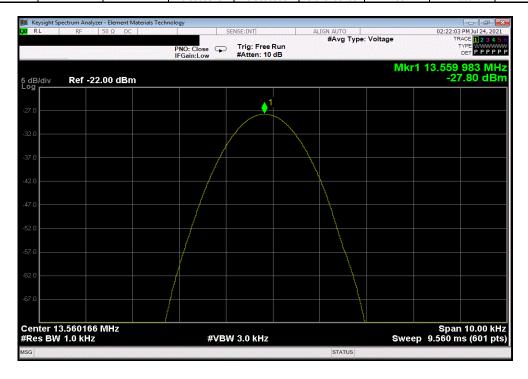
 CrossSwitch Radio - Antenna 1, Normal Voltage, Mid Channel, 13.56 MHz


 Measured
 Nominal
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 13.56009967
 13.56009967
 0
 100
 Pass

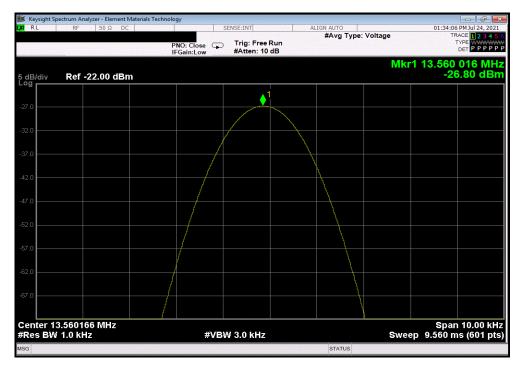

	CrossSwitch Radio - Antenna 1,	Extreme Voltage	+15%, Mid Char	nel, 13.56 MHz	
	Measured	Nominal	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.56009967	13.56009967	0	100	Pass



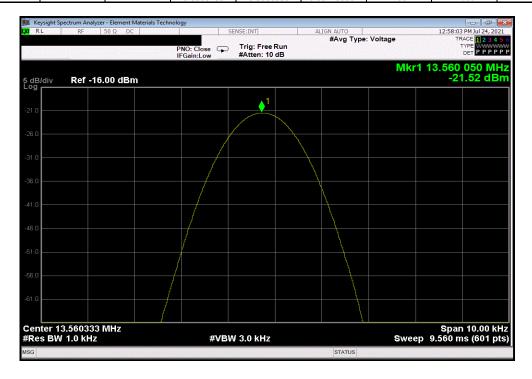
CrossSwitch Radio - Antenna 1, Extreme Voltage -15%, Mid Channel, 13.56 MHz

| Measured Nominal Error Limit | Value (MHz) Value (MHz) (ppm) (ppm) Results | 13.56006633 | 13.56009967 | 2.458241519 | 100 Pass

	(CrossSwitch Radio	o - Antenna 1, Ex	treme Temperatu	re +50°C, Mid Ch	nannel, 13.56 MH	lz
			Measured	Nominal	Error	Limit	
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
İ			13.55998267	13.56009967	8.628255166	100	Pass



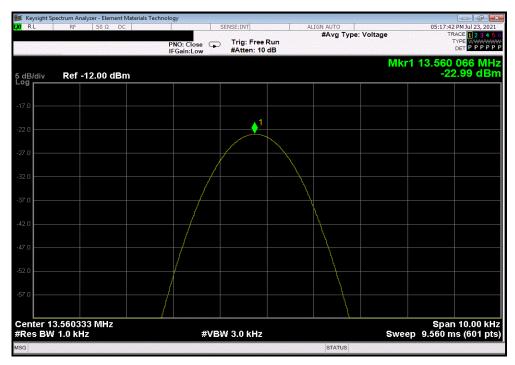
 CrossSwitch Radio - Antenna 1, Extreme Temperature +40°C, Mid Channel, 13.56 MHz


 Measured
 Nominal
 Error
 Limit

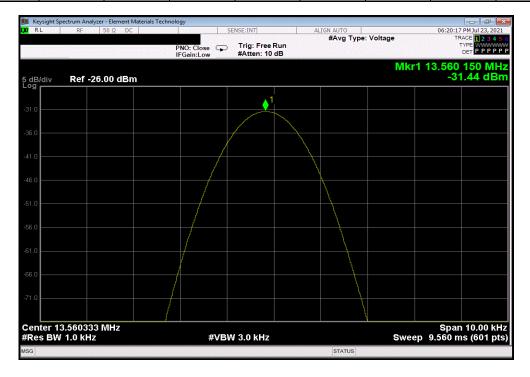
 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 13.560016
 13.56009967
 6.170087393
 100
 Pass

	CrossSwitch Radio - Antenna 1, Extreme Temperature +30°C, Mid Channel, 13.56 MHz										
			Measured	Nominal	Error	Limit					
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
1			13.56004967	13.56009967	3.687288532	100	Pass				



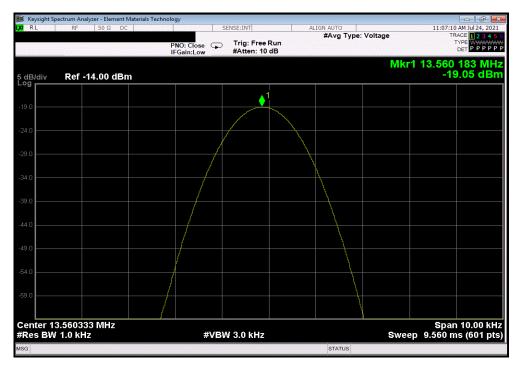
 CrossSwitch Radio - Antenna 1, Extreme Temperature +20°C, Mid Channel, 13.56 MHz


 Measured
 Nominal
 Error
 Limit

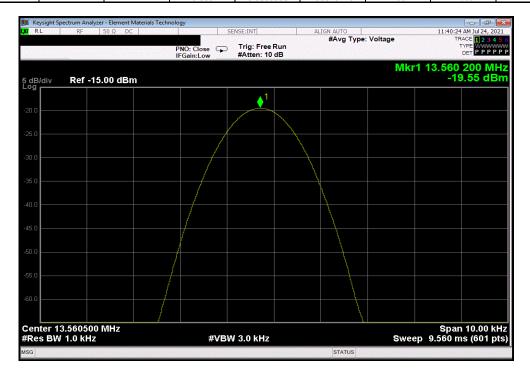
 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 13.56006633
 13.56009967
 2.458241519
 100
 Pass

CrossSwitch Radio - Antenna 1, Extreme Temperature +10°C, Mid Channel, 13.56 MHz										
			Measured	Nominal	Error	Limit				
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
			13.56014967	13.56009967	3.687288532	100	Pass			

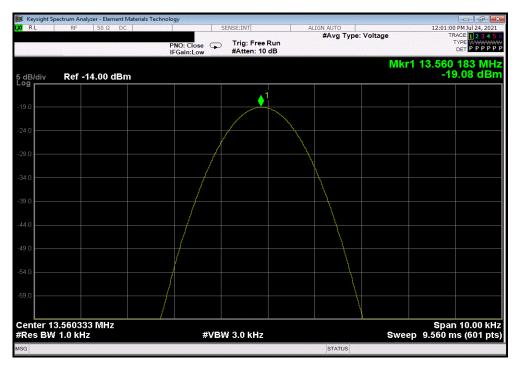


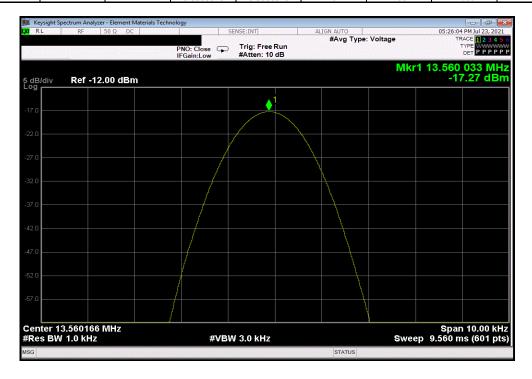
 CrossSwitch Radio - Antenna 1, Extreme Temperature 0°C, Mid Channel, 13.56 MHz


 Measured
 Nominal
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

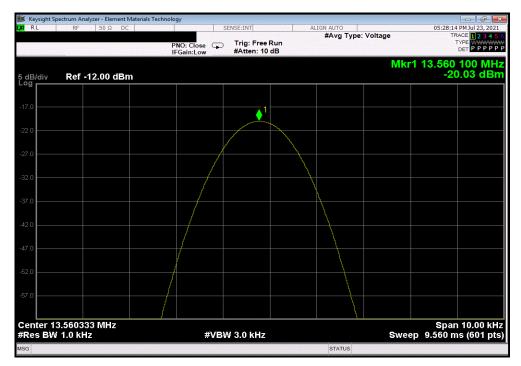
 13.560183
 13.56009967
 6.145456305
 100
 Pass


	CrossSwitch Radio - Antenna 1, Extreme Temperature -10°C, Mid Channel, 13.56 MHz										
			Measured	Nominal	Error	Limit					
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
1			13.5602	13.56009967	7.399134407	100	Pass				

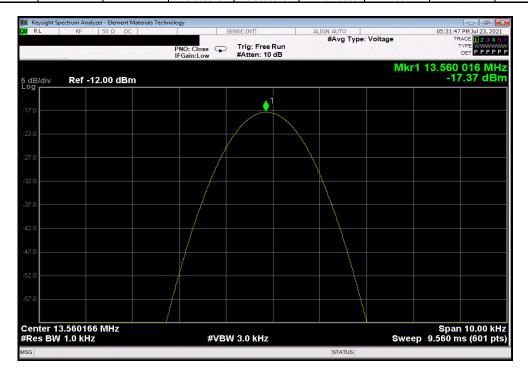


CrossSwitch Radio - Antenna 1, Extreme Temperature -20°C, Mid Channel, 13.56 MHz

| Measured Nominal Error Limit | Value (MHz) Value (MHz) (ppm) (ppm) Results | 13.560183 | 13.56009967 | 6.145456305 | 100 Pass

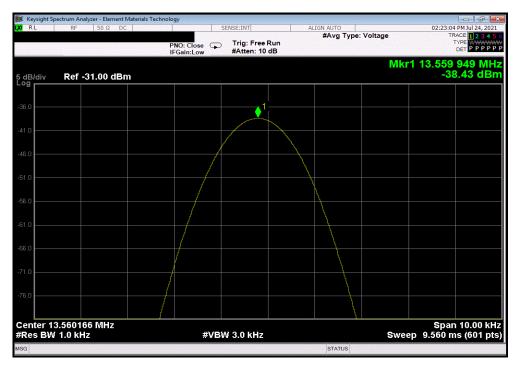


	CrossSwitch Radio - Antenna 2, Normal Voltage, Mid Channel, 13.56 MHz										
			Measured	Nominal	Error	Limit					
_			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
			13.56003267	13.56003267	0	100	Pass				

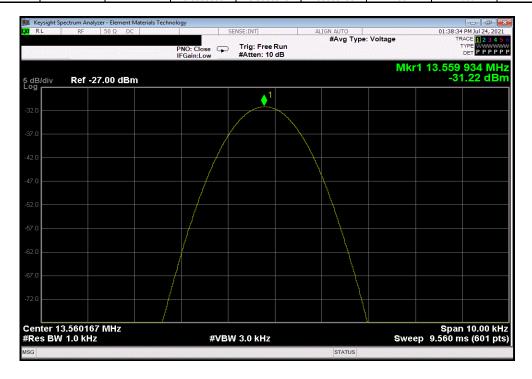


| CrossSwitch Radio - Antenna 2, Extreme Voltage +15%, Mid Channel, 13.56 MHz
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.56009967 | 13.56003267 | 4.940991047 | 100 Pass

CrossSwitch Radio - Antenna 2, Extreme Voltage -15%, Mid Channel, 13.56 MHz										
		Measured	Nominal	Error	Limit					
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		13.560016	13.56003267	1.229126833	100	Pass				



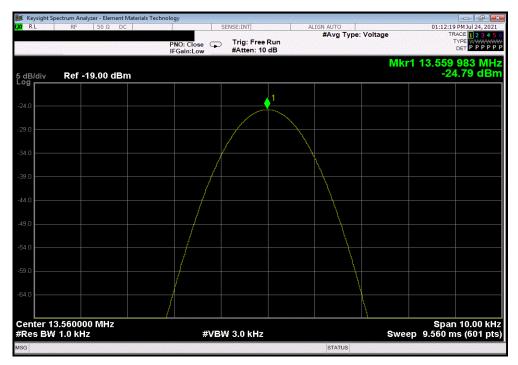
 CrossSwitch Radio - Antenna 2, Extreme Temperature +50°C, Mid Channel, 13.56 MHz


 Measured
 Nominal
 Error
 Limit

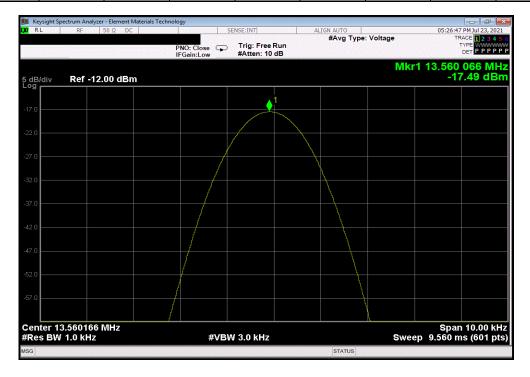
 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 13.55994933
 13.56003267
 6.145560416
 100
 Pass

	CrossSwitch Radio - Antenna 2, Extreme Temperature +40°C, Mid Channel, 13.56 MHz										
			Measured	Nominal	Error	Limit					
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
1			13.55993367	13.56003267	7.300867367	100	Pass				



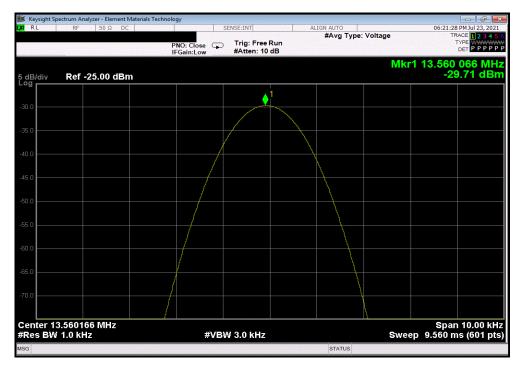
 CrossSwitch Radio - Antenna 2, Extreme Temperature +30°C, Mid Channel, 13.56 MHz


 Measured
 Nominal
 Error
 Limit

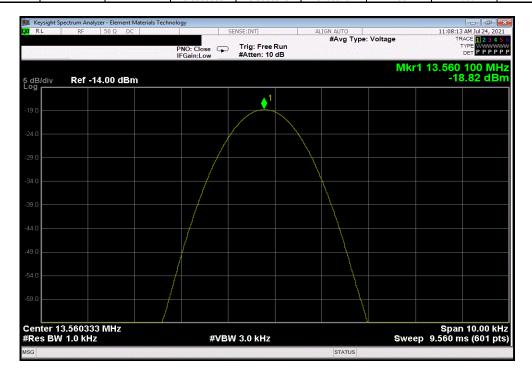
 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 13.55998333
 13.56003267
 3.638191825
 100
 Pass

CrossSwitch Radio - Antenna 2, Extreme Temperature +20°C, Mid Channel, 13.56 MHz										
			Measured	Nominal	Error	Limit				
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
			13.560066	13.56003267	2.458179919	100	Pass			

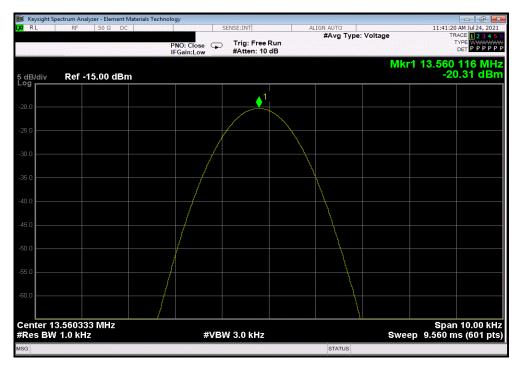


 CrossSwitch Radio - Antenna 2, Extreme Temperature +10°C, Mid Channel, 13.56 MHz

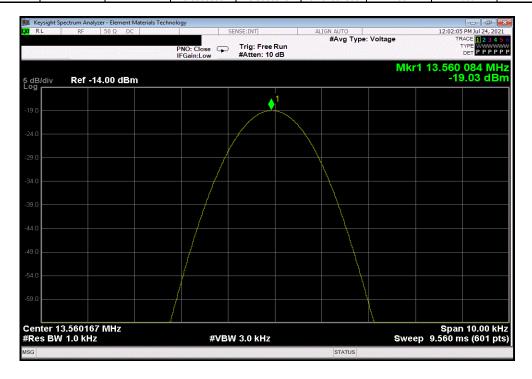

 Measured
 Nominal
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 13.560066
 13.56003267
 2.458179919
 100
 Pass



	CrossSwitch Radio - Antenna 2, Extreme Temperature 0°C, Mid Channel, 13.56 MHz										
			Measured	Nominal	Error	Limit					
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
i			13.56009967	13.56003267	4.940991047	100	Pass				



(CrossSwitch Radio	o - Antenna 2, Ex	treme Temperati	ure -10°C, Mid Ch	annel, 13.56 MHz	z
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.56011633	13.56003267	6.170044133	100	Pass

CrossSwitch Radio - Antenna 2, Extreme Temperature -20°C, Mid Channel, 13.56 MHz										
		Measured	Nominal	Error	Limit					
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
		13.56008367	13.56003267	3.761052886	100	Pass				

OCCUPIED BANDWIDTH

XMit 2020.12.30

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	ETS Lindgren	7405	IPS	NCR	NCR
Cable	UtiFlex Micro-Coax	UFD1150A-1-0720-200200	TXJ	2020-09-22	2021-09-22
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2021-01-06	2022-01-06

TEST DESCRIPTION

As defined in FCC 15.215 Part (c), intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise by specified in the specific rule section under which the equipment operates, is contained within the frequency band designed in the rule section under which the equipment is operating.

The 20 dB bandwidth must be contained within the band 13.110-14.010 MHz.

The emissions bandwidth was measured with the EUT configured for continuous modulated operation.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

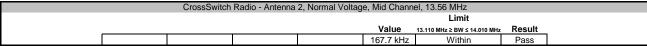
The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

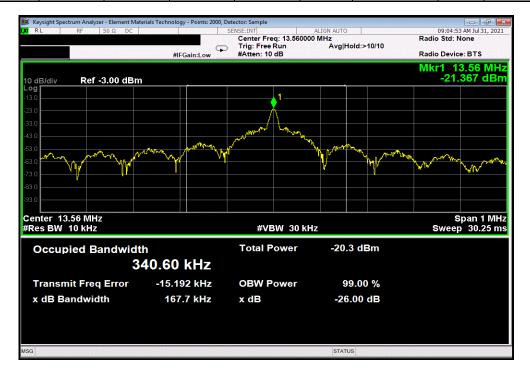
The spectrum analyzer occupied bandwidth measurement function was used to find the emissions bandwidth.

OCCUPIED BANDWIDTH

EUT: GLP12152 CrossSwitch
Serial Number: ENG05-CS
Customer: Abbott Laboratories Work Order: ABBO0084 Date: 29-Jul-21 Temperature: 21.1 °C Humidity: 57.8% RH
Barometric Pres.: 1021 mbar
Job Site: TX02 Attendees: Don Mendell
Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Power: 220VAC/60Hz Test Method FCC 15.225:2021 CrossSwitch Radio. Emissions bandwidth taken with a 26 dB bandwidth. This is worst case as compared with the 20 dB bandwidth called out in FCC 15.215. DEVIATIONS FROM TEST STANDARD None 1464 Configuration # Signature Limit Value 13.110 MHz ≥ BW ≤ 14.010 MHz Result CrossSwitch Radio - Antenna 1 Normal Voltage Mid Channel, 13.56 MHz 166.1 kHz Within Pass CrossSwitch Radio - Antenna 2 Normal Voltage Mid Channel, 13.56 MHz 167.7 kHz Within Pass

OCCUPIED BANDWIDTH


CrossSwitch Radio - Antenna 1, Normal Voltage, Mid Channel, 13.56 MHz


Limit

Value 13.110 MHz ≥ BW ≤ 14.010 MHz Result

166.1 kHz Within Pass

End of Test Report