

Abbott Laboratories

GLP12190 AccessPoint Center GLP12193 AccessPoint Right GLP12195 AccessPoint Left

> FCC 15.225:2022 13.56 MHz Radio

Report: ABBO0083 Rev. 4, Issue Date: August 9, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: June 2, 2022
Abbott Laboratories
EUT: GLP12190 AccessPoint Center
GLP12193 AccessPoint Right
GLP12195 AccessPoint Left

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2022	ANSI C63.10:2013
FCC 15.225:2022	ANSI C03.10.2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.4	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions (Less Than 30 MHz)	Yes	Pass	
6.5	Field Strength of Spurious Emissions (Greater Than 30 MHz)	Yes	Pass	
6.8	Frequency Stability	Yes	Pass	
6.9	Occupied Bandwidth	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Changed Powerline CE spec from Class A to FCC 15.209	2021-09-02	16 and 18
	Listed GLP 12193 as the EUT	2021-09-23	1
	Corrected dates	2021-09-23	9 and 15
02	Revised comment regarding emissions being greater than 20 dB and fixed graph scaling	2021-09-23	22 and 23
	Corrected EUT name	2021-09-23	22
	Corrected serial number	2021-09-23	26
03	Updated test dates	2022-06-06	2, 9, 15
03	Updated data	2022-06-06	17-53
	Updated standard on cover page to year 2022.	2022-08-09	1
	Updated block diagram.	2022-08-09	7-9
	Added note to describe the differences between model variants.	2022-08-09	10
	Updated Power Settings and Antennas page.	2022-08-09	11
04	Updated configuration reference in Powerline Conducted Emissions.	2022-08-09	17-41
	Updated test description and comments in Occupied Bandwidth.	2022-08-09	63
	In Frequency Stability noted that EUT was transmitting with an unmodulated carrier.	2022-08-09	55

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

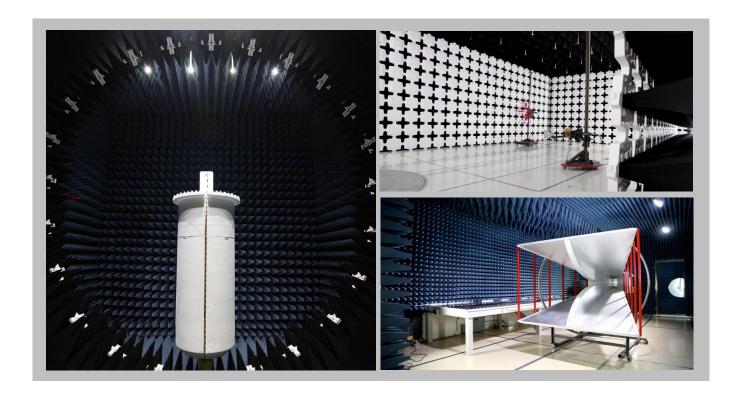
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>


FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (44) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-6136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (460) 304-8755	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011			
(343) 001-0310	(949) 861-8918 (612)-638-5136 (503) 844-4066 (469) 304-5255 (425)984-6600 A2LA						
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06			
	Innovation, Sci	ence and Economic Develop	ment Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1			
BSMI							
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
VCCI							
A-0029	A-0109	A-0108	A-0201	A-0110			
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

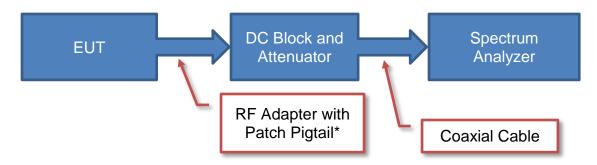
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	3.1 dB	-3.1 dB

TEST SETUP BLOCK DIAGRAMS

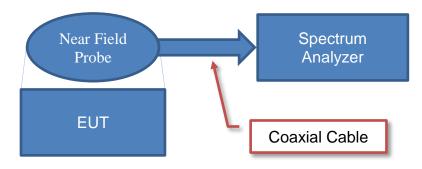


Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

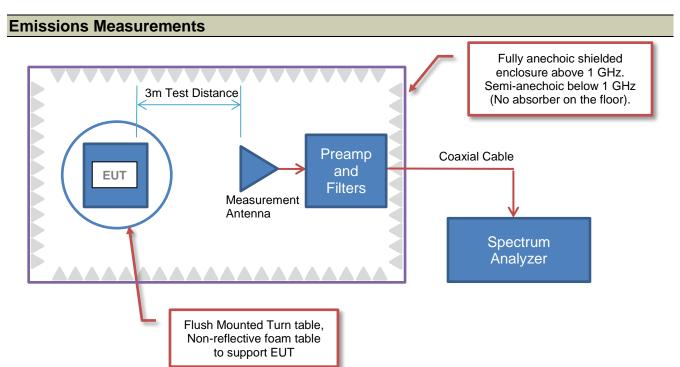


Sample Calculation (logarithmic units)

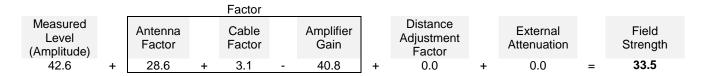
Measure Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

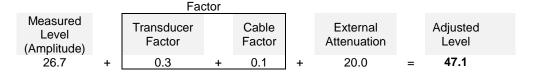
^{*}Patch pigtail connector used during measurements and accounted for in reference level offset.

Near Field Test Fixture Measurements



Sample Calculation (logarithmic units)


TEST SETUP BLOCK DIAGRAMS

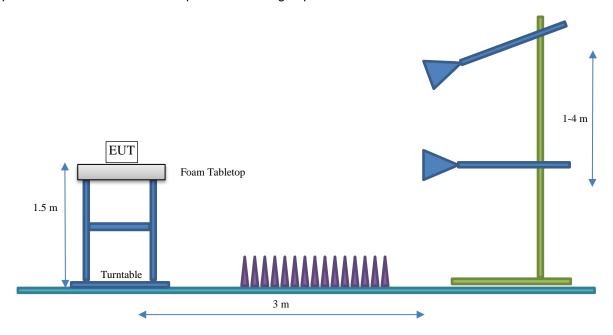


Sample Calculation (logarithmic units)

Radiated Emissions:

Conducted Emissions:

Radiated Power (ERP/EIRP) - Substitution Method:



TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Abbott Laboratories
Address:	1921 Hurd Drive
City, State, Zip:	Irving, TX 75038
Test Requested By:	Don Mendell
EUT:	GLP12190 AccessPoint Center, GLP12193 AccessPoint Right, GLP12195
EUI.	AccessPoint Left
First Date of Test:	July 24, 2021
Last Date of Test:	June 2, 2022
Receipt Date of Samples:	June 10, 2021
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Access Point (center-GLP12190, right-GLP12193 and left-GLP12195) – secures CARs and samples in place, allowing for secure sample processing. This contains one RFID reader per access point to determine the ID and battery state of the CAR (which contains a passive tag).

Note: All 3 variants share the same PCB boards: 20008971 Access Point IO (with reader) and 20008841 Dual AccessPoint CPU (without reader). The difference being that each variant is mounted in a slightly different plastic enclosure to enable variation in installation.

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA INFORMATION

Type	Provided by:	Dimensions
Embedded Inductive Loop	GLP Systems	51mm x 35mm

POWER SETTING

Radio	Modulation	Protocol	Data Rate	Frequency	Power Setting (mW)
RFID	OOK	ISO 13693	26.48 kbps	13.56 MHz	200

^{*}Power is set internally through product firmware at the default maximum.

Software/Firmware Running during test				
Description	Version			
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin			

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
AccessPoint Left Track Radio	GLP Systems	GLP12195 (PCB:20008971)	ENG02-AP	

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Track Filter	GLP Systems	GLP12689 (LN06U35-04)	0001000	
Power Strip	GLP Systems	GLP12015	None	
24V Power Supply	GLP Systems	GLP12010	0001098	
Power Board	GLP Systems	GLP12014	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power Cable	Yes	1.1m	No	AC Mains	Track Filter
AC Power Cable	Yes	1.0m	No	Track Filter	Power Strip
AC Power Cable	No	1.0m	No	Power Strip	24V Power Supply
DC Power Cable	No	0.8m	No	24V Power Supply	Power Board
DC Power Cable	No	0.6m	Yes	Power Board	AccessPoint

Software/Firmware Running during test				
Description	Version			
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin			

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
AccessPoint Right Track Radio	GLP Systems	GLP12193 (PCB:20008971)	ENG03-AP	

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Track Filter	GLP Systems	GLP12689 (LN06U35-04)	0001000	
Power Strip	GLP Systems	GLP12015	None	
24V Power Supply	GLP Systems	GLP12010	0001098	
Power Board	GLP Systems	GLP12014	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power Cable	Yes	1.1m	No	AC Mains	Track Filter
AC Power Cable	Yes	1.0m	No	Track Filter	Power Strip
AC Power Cable	No	1.0m	No	Power Strip	24V Power Supply
DC Power Cable	No	0.8m	No	24V Power Supply	Power Board
DC Power Cable	No	0.6m	Yes	Power Board	AccessPoint

Software/Firmware Running during test				
Description	Version			
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
AccessPoint Center Track Radio	GLP Systems	GLP12190 (PCB:20008971)	ENG04-AP

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Track Filter	GLP Systems	GLP12689 (LN06U35-04)	0001000	
Power Strip	GLP Systems	GLP12015	None	
24V Power Supply	GLP Systems	GLP12010	0001098	
Power Board	GLP Systems	GLP12014	None	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power Cable	Yes	1.1m	No	AC Mains	Track Filter
AC Power Cable	Yes	1.0m	No	Track Filter	Power Strip
AC Power Cable	No	1.0m	No	Power Strip	24V Power Supply
DC Power Cable	No	0.8m	No	24V Power Supply	Power Board
DC Power Cable	No	0.6m	Yes	Power Board	AccessPoint

Software/Firmware Running during test	
Description	Version
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
AccessPoint Radio	GLP Systems	PCB:20008971	ENG05-AP

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Track Filter	GLP Systems	GLP12689 (LN06U35-04)	0001000		
Power Strip	GLP Systems	GLP12015	None		
24V Power Supply	GLP Systems	GLP12010	0001098		
Power Board	GLP Systems	GLP12014	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power Cable	Yes	1.1m	No	AC Mains	Track Filter
AC Power Cable	Yes	1.0m	No	Track Filter	Power Strip
AC Power Cable	No	1.0m	No	Power Strip	24V Power Supply
DC Power Cable	No	0.8m	No	24V Power Supply	Power Board
DC Power Cable	No	0.6m	Yes	Power Board	AccessPoint

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2021-07-24	Frequency Stability	Tested as delivered to test station.	None	EUT remained at Element following the test.
2	2021-07-29	Occupied Bandwidth	Tested as delivered to test station.	None	EUT remained at Element following the test.
3	2022-05-31	Field Strength of Fundamental	Tested as delivered to test station.	None	Scheduled testing was completed.
4	2022-06-01	Field Strength of Spurious Emissions (Greater Than 30 MHz)	Tested as delivered to test station.	None	EUT remained at Element following the test.
5	2022-06-01	Field Strength of Spurious Emissions (Less Than 30 MHz)	Tested as delivered to test station.	None	EUT remained at Element following the test.
6	2022-06-02	Powerline Conducted Emissions	Tested as delivered to test station.	None	Scheduled testing was completed.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

FCC KDB 174176 D01 AC Conducted FAQ v01r01, June 3, 2015 Section Q5:

For a device with a permanent or detachable antenna operating at or below 30 MHz, the FCC will accept measurements performed with a suitable dummy load in lieu of the antenna under the following conditions:

- (1) perform the AC power-line conducted tests with the antenna connected to determine compliance with Section 15.207 limits outside the transmitter's fundamental emission band:
- (2) For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network which simulates the antenna in the fundamental frequency band.

All measurements must be performed as specified in clause 6.2 of ANSI C63.10-2013.

TEST EQUIPMENT

I LOI LOUI IIILIII					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
	Gauss				
Receiver	Instruments	TDEMI 30M	ARL	2022-03-28	2023-03-28
Receiver	Rohde & Schwarz	ESCI	ARF	2021-09-16	2022-09-16
Cable - Conducted Cable					
Assembly	Northwest EMC	TXA, HFC, TQU	TXAA	2022-01-24	2023-01-24
		9252-50-R-24-			
LISN	Solar Electronics	BNC	LJK	2021-08-06	2022-08-06
Power Source/Analyzer	Hewlett Packard	6841A	THC	NCR	NCR

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	3.1 dB	-3.1 dB

CONFIGURATIONS INVESTIGATED

ABBO0083-6 ABBO0083-7 ABBO0083-8

MODES INVESTIGATED

Transmitting RFID 13.56 MHz

EUT:	GLP12190 AccessPoint Center	Work Order:	ABBO0083
Serial Number:	ENG04-AP	Date:	2022-06-01
Customer:	Abbott Laboratories	Temperature:	23.2°C
Attendees:	None	Relative Humidity:	52.9%
Customer Project:	None	Bar. Pressure (PMSL):	1017 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-8

TEST SPECIFICATIONS

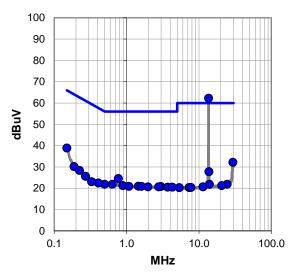
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

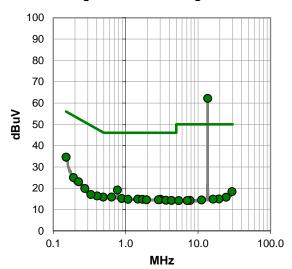
TEST PARAMETERS

Run #	2	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #2

Quasi Peak Data - vs - Quasi Peak Limit

<u> </u>	uasi Peak	Dala - VS	- Quasi i		
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	41.4	20.9	62.3	60.0	2.3
0.150	18.3	20.6	38.9	66.0	-27.1
29.395	9.6	22.6	32.2	60.0	-27.8
0.769	4.4	20.2	24.6	56.0	-31.4
13.719	6.9	20.9	27.8	60.0	-32.2
0.188	9.6	20.6	30.2	64.1	-33.9
0.498	1.7	20.2	21.9	56.0	-34.1
0.635	1.7	20.2	21.9	56.0	-34.1
0.223	7.8	20.6	28.4	62.7	-34.3
0.890	1.1	20.2	21.3	56.0	-34.7
1.453	0.8	20.2	21.0	56.0	-35.0
1.076	0.9	20.0	20.9	56.0	-35.1
1.603	0.7	20.2	20.9	56.0	-35.1
0.408	2.2	20.3	22.5	57.7	-35.2
2.973	0.6	20.2	20.8	56.0	-35.2
1.972	0.5	20.2	20.7	56.0	-35.3
2.779	0.5	20.2	20.7	56.0	-35.3
0.272	5.1	20.5	25.6	61.1	-35.5
3.702	0.3	20.2	20.5	56.0	-35.5
4.288	0.3	20.2	20.5	56.0	-35.5
0.330	2.8	20.3	23.1	59.5	-36.4
13.931	1.0	20.9	21.9	60.0	-38.1
24.470	-0.1	22.0	21.9	60.0	-38.1
20.640	-0.1	21.4	21.3	60.0	-38.7
11.380	0.0	20.7	20.7	60.0	-39.3

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	41.3	20.9	62.2	50.0	12.2
0.150	14.0	20.6	34.6	56.0	-21.4
0.769	-1.0	20.2	19.2	46.0	-26.8
0.190	4.4	20.6	25.0	54.1	-29.1
0.223	2.5	20.6	23.1	52.7	-29.6
0.637	-4.3	20.2	15.9	46.0	-30.1
0.490	-4.3	20.2	15.9	46.2	-30.3
0.884	-5.0	20.2	15.2	46.0	-30.8
1.467	-5.3	20.2	14.9	46.0	-31.1
1.076	-5.2	20.0	14.8	46.0	-31.2
1.703	-5.4	20.2	14.8	46.0	-31.2
3.028	-5.4	20.2	14.8	46.0	-31.2
0.272	-0.6	20.5	19.9	51.1	-31.2
0.403	-3.9	20.3	16.4	47.8	-31.4
1.944	-5.6	20.2	14.6	46.0	-31.4
2.835	-5.6	20.2	14.6	46.0	-31.4
3.597	-5.8	20.2	14.4	46.0	-31.6
29.357	-4.2	22.6	18.4	50.0	-31.6
4.305	-5.9	20.2	14.3	46.0	-31.7
0.330	-3.2	20.3	17.1	49.5	-32.4
24.400	-6.2	22.0	15.8	50.0	-34.2
19.398	-6.3	21.3	15.0	50.0	-35.0
16.169	-6.3	21.2	14.9	50.0	-35.1
11.157	-6.2	20.7	14.5	50.0	-35.5
7.764	-6.1	20.4	14.3	50.0	-35.7

CONCLUSION

Evaluation

EUT:	GLP12190 AccessPoint Center	Work Order:	ABBO0083
Serial Number:	ENG04-AP	Date:	2022-06-01
Customer:	Abbott Laboratories	Temperature:	21.8°C
Attendees:	None	Relative Humidity:	55.4%
Customer Project:	None	Bar. Pressure (PMSL):	1016 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-8

TEST SPECIFICATIONS

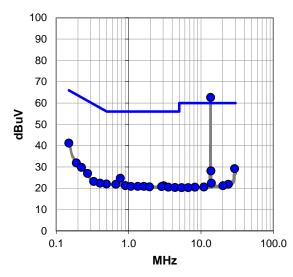
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

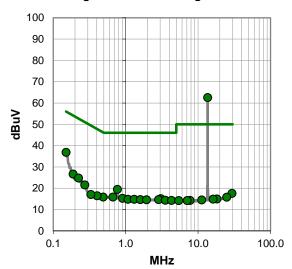
TEST PARAMETERS

Run #:	3	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #3

Quasi Peak Data - vs - Quasi Peak Limit

	uasi Feak	Data V3	Quasii		
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	41.8	20.9	62.7	60.0	2.7
0.150	20.6	20.6	41.2	66.0	-24.8
29.183	6.6	22.6	29.2	60.0	-30.8
0.769	4.5	20.2	24.7	56.0	-31.3
13.719	7.3	20.9	28.2	60.0	-31.8
0.190	11.3	20.6	31.9	64.1	-32.2
0.223	9.2	20.6	29.8	62.7	-32.9
0.272	6.5	20.5	27.0	61.1	-34.1
0.495	1.8	20.2	22.0	56.1	-34.1
0.667	1.7	20.2	21.9	56.0	-34.1
0.904	1.1	20.2	21.3	56.0	-34.7
3.052	1.0	20.2	21.2	56.0	-34.8
1.076	0.9	20.0	20.9	56.0	-35.1
1.343	0.8	20.1	20.9	56.0	-35.1
1.627	0.7	20.2	20.9	56.0	-35.1
2.857	0.6	20.2	20.8	56.0	-35.2
1.944	0.5	20.2	20.7	56.0	-35.3
0.403	2.1	20.3	22.4	57.8	-35.4
3.553	0.3	20.2	20.5	56.0	-35.5
4.389	0.2	20.2	20.4	56.0	-35.6
0.330	2.9	20.3	23.2	59.5	-36.3
13.931	1.5	20.9	22.4	60.0	-37.6
23.885	0.0	21.9	21.9	60.0	-38.1
20.141	-0.2	21.4	21.2	60.0	-38.8
10.974	0.0	20.6	20.6	60.0	-39.4

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	41.7	20.9	62.6	50.0	12.6
0.150	16.3	20.6	36.9	56.0	-19.1
0.769	-0.7	20.2	19.5	46.0	-26.5
0.188	6.1	20.6	26.7	54.1	-27.4
0.223	4.2	20.6	24.8	52.7	-27.9
0.272	1.1	20.5	21.6	51.1	-29.5
0.667	-4.3	20.2	15.9	46.0	-30.1
0.490	-4.3	20.2	15.9	46.2	-30.3
0.905	-4.9	20.2	15.3	46.0	-30.7
3.049	-5.1	20.2	15.1	46.0	-30.9
1.076	-5.2	20.0	14.8	46.0	-31.2
1.311	-5.3	20.1	14.8	46.0	-31.2
0.403	-3.8	20.3	16.5	47.8	-31.3
1.596	-5.5	20.2	14.7	46.0	-31.3
2.845	-5.5	20.2	14.7	46.0	-31.3
1.943	-5.6	20.2	14.6	46.0	-31.4
3.516	-5.8	20.2	14.4	46.0	-31.6
4.291	-5.9	20.2	14.3	46.0	-31.7
0.330	-3.2	20.3	17.1	49.5	-32.4
29.354	-5.0	22.6	17.6	50.0	-32.4
24.891	-6.2	22.0	15.8	50.0	-34.2
18.237	-6.3	21.3	15.0	50.0	-35.0
16.156	-6.3	21.2	14.9	50.0	-35.1
11.218	-6.2	20.7	14.5	50.0	-35.5
7.753	-6.1	20.4	14.3	50.0	-35.7

CONCLUSION

Evaluation

EUT:	GLP12190 AccessPoint Center	Work Order:	ABBO0083
Serial Number:	ENG04-AP	Date:	2022-06-02
Customer:	Abbott Laboratories	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.2%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-8

TEST SPECIFICATIONS

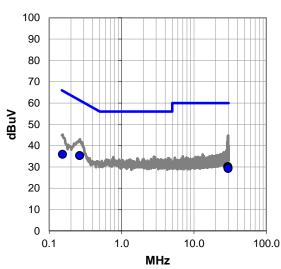
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

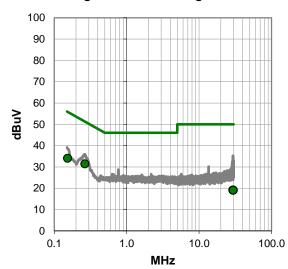
TEST PARAMETERS

Run #:	8	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

Antenna removed from PCB and replaced with matching load.


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #8

Quasi Peak Data - vs - Quasi Peak Limit

	aaoi i cak	Data VO	Q d d d i	our Emili	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.264	14.9	20.5	35.4	61.3	-25.9
29.303	7.6	22.6	30.2	60.0	-29.8
0.153	15.4	20.6	36.0	65.9	-29.9
29.460	7.4	22.5	29.9	60.0	-30.1
29.494	7.2	22.5	29.7	60.0	-30.3
29.645	6.8	22.5	29.3	60.0	-30.7

Average Data - vs - Average Limit						
	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
	0.264	11.0	20.5	31.5	51.3	-19.8
	0.153	13.5	20.6	34.1	55.9	-21.8
	29.303	-3.4	22.6	19.2	50.0	-30.8
	29.460	-3.3	22.5	19.2	50.0	-30.8
	29.645	-3.4	22.5	19.1	50.0	-30.9
	29.494	-3.4	22.5	19.1	50.0	-30.9

CONCLUSION

Pass

EUT:	GLP12190 AccessPoint Center	Work Order:	ABBO0083
Serial Number:	ENG04-AP	Date:	2022-06-02
Customer:	Abbott Laboratories	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.2%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-8

TEST SPECIFICATIONS

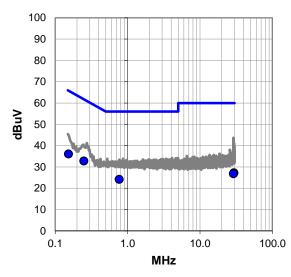
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

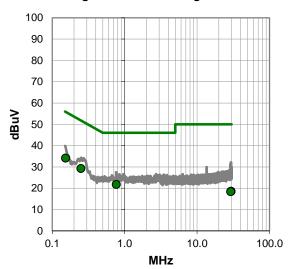
TEST PARAMETERS

Run #:	9	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

Antenna removed from PCB and replaced with matching load.


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #9

Quasi Peak Data - vs - Quasi Peak Limit

	aaoi i cak	Data VO	Q d d d i	oak Emili	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.248	12.2	20.6	32.8	61.8	-29.0
0.153	15.5	20.6	36.1	65.8	-29.7
0.767	4.0	20.2	24.2	56.0	-31.8
29.404	4.8	22.5	27.3	60.0	-32.7
29.331	4.6	22.6	27.2	60.0	-32.8
29.062	4.2	22.6	26.8	60.0	-33.2

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.153	13.6	20.6	34.2	55.8	-21.6
0.248	8.7	20.6	29.3	51.8	-22.5
0.767	1.6	20.2	21.8	46.0	-24.2
29.404	-3.9	22.5	18.6	50.0	-31.4
29.331	-4.0	22.6	18.6	50.0	-31.4
29 062	-42	22.6	18 4	50.0	-31.6

CONCLUSION

Pass

EUT:	GLP12193 AccessPoint Right	Work Order:	ABBO0083
Serial Number:	ENG03-AP	Date:	2022-06-01
Customer:	Abbott Laboratories	Temperature:	21.8°C
Attendees:	None	Relative Humidity:	55.4%
Customer Project:	None	Bar. Pressure (PMSL):	1016 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-7

TEST SPECIFICATIONS

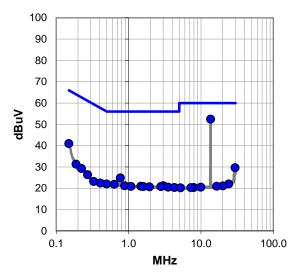
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

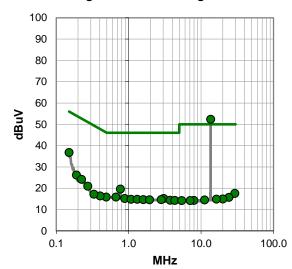
TEST PARAMETERS

Run #:	4	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #4

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Fear Data - VS - Quasi Fear Little					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	31.6	20.9	52.5	60.0	-7.5
0.150	20.4	20.6	41.0	66.0	-25.0
29.528	7.2	22.5	29.7	60.0	-30.3
0.769	4.7	20.2	24.9	56.0	-31.1
0.188	10.7	20.6	31.3	64.1	-32.8
0.223	8.7	20.6	29.3	62.7	-33.4
0.496	1.8	20.2	22.0	56.1	-34.1
0.635	1.7	20.2	21.9	56.0	-34.1
0.272	5.9	20.5	26.4	61.1	-34.7
0.885	1.0	20.2	21.2	56.0	-34.8
3.017	1.0	20.2	21.2	56.0	-34.8
1.476	0.8	20.2	21.0	56.0	-35.0
1.076	0.9	20.0	20.9	56.0	-35.1
0.408	2.2	20.3	22.5	57.7	-35.2
1.598	0.6	20.2	20.8	56.0	-35.2
2.791	0.6	20.2	20.8	56.0	-35.2
1.949	0.5	20.2	20.7	56.0	-35.3
3.528	0.3	20.2	20.5	56.0	-35.5
4.294	0.2	20.2	20.4	56.0	-35.6
0.330	2.9	20.3	23.2	59.5	-36.3
24.082	0.1	21.9	22.0	60.0	-38.0
20.077	-0.3	21.4	21.1	60.0	-38.9
16.452	-0.2	21.2	21.0	60.0	-39.0
9.943	0.0	20.5	20.5	60.0	-39.5
7.971	0.0	20.4	20.4	60.0	-39.6

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	31.5	20.9	52.4	50.0	2.4
0.150	16.2	20.6	36.8	56.0	-19.2
0.769	-0.6	20.2	19.6	46.0	-26.4
0.190	5.6	20.6	26.2	54.1	-27.9
0.223	3.6	20.6	24.2	52.7	-28.5
0.272	0.5	20.5	21.0	51.1	-30.1
0.669	-4.3	20.2	15.9	46.0	-30.1
0.490	-4.3	20.2	15.9	46.2	-30.3
0.884	-5.0	20.2	15.2	46.0	-30.8
3.049	-5.0	20.2	15.2	46.0	-30.8
1.076	-5.2	20.0	14.8	46.0	-31.2
1.311	-5.3	20.1	14.8	46.0	-31.2
1.596	-5.5	20.2	14.7	46.0	-31.3
2.820	-5.5	20.2	14.7	46.0	-31.3
0.403	-3.9	20.3	16.4	47.8	-31.4
1.943	-5.6	20.2	14.6	46.0	-31.4
3.743	-5.8	20.2	14.4	46.0	-31.6
4.341	-5.9	20.2	14.3	46.0	-31.7
0.330	-3.1	20.3	17.2	49.5	-32.3
29.261	-5.0	22.6	17.6	50.0	-32.4
24.188	-6.3	22.0	15.7	50.0	-34.3
19.960	-6.4	21.4	15.0	50.0	-35.0
16.275	-6.3	21.2	14.9	50.0	-35.1
11.195	-6.2	20.7	14.5	50.0	-35.5
7.936	-6.1	20.4	14.3	50.0	-35.7

CONCLUSION

Evaluation

EUT:	GLP12193 AccessPoint Right	Work Order:	ABBO0083
Serial Number:	ENG03-AP	Date:	2022-06-01
Customer:	Abbott Laboratories	Temperature:	21.8°C
Attendees:	None	Relative Humidity:	55.4%
Customer Project:	None	Bar. Pressure (PMSL):	1016 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-7

TEST SPECIFICATIONS

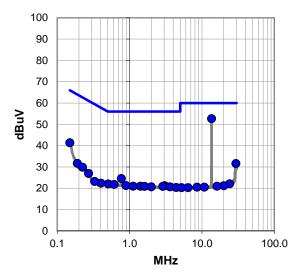
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

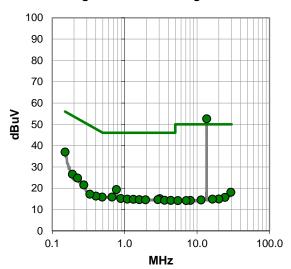
TEST PARAMETERS

Run #:	5	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #5

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Peak Dala - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
13.559	31.8	20.9	52.7	60.0	-7.3	
0.150	20.8	20.6	41.4	66.0	-24.6	
29.430	9.1	22.5	31.6	60.0	-28.4	
0.769	4.4	20.2	24.6	56.0	-31.4	
0.190	11.1	20.6	31.7	64.1	-32.4	
0.223	9.3	20.6	29.9	62.7	-32.8	
0.507	1.8	20.2	22.0	56.0	-34.0	
0.272	6.5	20.5	27.0	61.1	-34.1	
0.614	1.6	20.2	21.8	56.0	-34.2	
0.892	1.1	20.2	21.3	56.0	-34.7	
3.052	1.0	20.2	21.2	56.0	-34.8	
1.120	1.0	20.0	21.0	56.0	-35.0	
1.412	0.8	20.2	21.0	56.0	-35.0	
1.613	0.7	20.2	20.9	56.0	-35.1	
2.878	0.7	20.2	20.9	56.0	-35.1	
1.999	0.5	20.2	20.7	56.0	-35.3	
3.620	0.5	20.2	20.7	56.0	-35.3	
0.402	2.1	20.3	22.4	57.8	-35.4	
4.422	0.2	20.2	20.4	56.0	-35.6	
0.330	2.9	20.3	23.2	59.5	-36.3	
24.107	0.2	21.9	22.1	60.0	-37.9	
19.985	-0.2	21.4	21.2	60.0	-38.8	
16.143	-0.2	21.2	21.0	60.0	-39.0	
8.554	0.1	20.4	20.5	60.0	-39.5	
10.788	-0.1	20.6	20.5	60.0	-39.5	

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.559	31.7	20.9	52.6	50.0	2.6
0.150	16.4	20.6	37.0	56.0	-19.0
0.769	-0.8	20.2	19.4	46.0	-26.6
0.190	6.0	20.6	26.6	54.1	-27.5
0.223	4.2	20.6	24.8	52.7	-27.9
0.272	1.1	20.5	21.6	51.1	-29.5
0.667	-4.3	20.2	15.9	46.0	-30.1
0.490	-4.3	20.2	15.9	46.2	-30.3
0.884	-5.0	20.2	15.2	46.0	-30.8
3.049	-5.1	20.2	15.1	46.0	-30.9
1.088	-5.1	20.0	14.9	46.0	-31.1
1.319	-5.3	20.1	14.8	46.0	-31.2
1.596	-5.5	20.2	14.7	46.0	-31.3
2.867	-5.5	20.2	14.7	46.0	-31.3
1.944	-5.6	20.2	14.6	46.0	-31.4
0.402	-4.0	20.3	16.3	47.8	-31.5
3.560	-5.8	20.2	14.4	46.0	-31.6
4.347	-5.9	20.2	14.3	46.0	-31.7
29.239	-4.5	22.6	18.1	50.0	-31.9
0.330	-3.1	20.3	17.2	49.5	-32.3
24.175	-6.3	22.0	15.7	50.0	-34.3
19.943	-6.4	21.4	15.0	50.0	-35.0
16.266	-6.3	21.2	14.9	50.0	-35.1
11.327	-6.2	20.7	14.5	50.0	-35.5
8.078	-6.1	20.4	14.3	50.0	-35.7

CONCLUSION

Evaluation

EUT:	GLP12193 AccessPoint Right	Work Order:	ABBO0083
Serial Number:	ENG03-AP	Date:	2022-06-02
Customer:	Abbott Laboratories	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.2%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-7

TEST SPECIFICATIONS

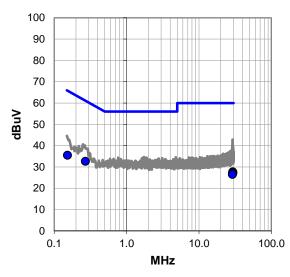
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

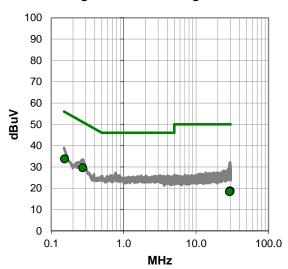
TEST PARAMETERS

Run #:	10	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

Antenna removed from PCB and replaced with matching load.


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #10

Quasi Peak Data - vs - Quasi Peak Limit

Quasi i can bata vs Quasi i can Lillin					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.271	12.2	20.5	32.7	61.1	-28.4
0.153	14.9	20.6	35.5	65.8	-30.3
29.349	5.1	22.6	27.7	60.0	-32.3
29.368	4.6	22.6	27.2	60.0	-32.8
29.186	4.4	22.6	27.0	60.0	-33.0
28.957	3.9	22.6	26.5	60.0	-33.5

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.271	9.2	20.5	29.7	51.1	-21.4	
0.153	13.2	20.6	33.8	55.8	-22.0	
29.368	-3.8	22.6	18.8	50.0	-31.2	
29.349	-3.9	22.6	18.7	50.0	-31.3	
29.186	-4.1	22.6	18.5	50.0	-31.5	
28 957	-42	22.6	18 4	50.0	-31.6	

CONCLUSION

Pass

EUT:	GLP12193 AccessPoint Right	Work Order:	ABBO0083
Serial Number:	ENG03-AP	Date:	2022-06-02
Customer:	Abbott Laboratories	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.2%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-7

TEST SPECIFICATIONS

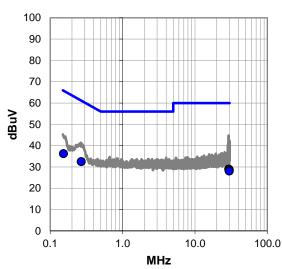
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

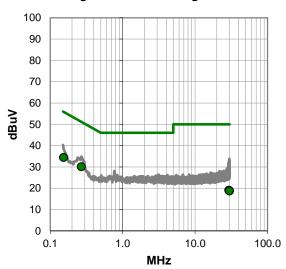
TEST PARAMETERS

Run #:	11	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

Antenna removed from PCB and replaced with matching load.


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #11

Quasi Peak Data - vs - Quasi Peak Limit

Quadri dan Dana 10 Quadri dan Emin					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.268	12.0	20.5	32.5	61.2	-28.7
0.153	15.7	20.6	36.3	65.9	-29.6
29.221	6.4	22.6	29.0	60.0	-31.0
29.794	6.3	22.5	28.8	60.0	-31.2
29.746	5.8	22.5	28.3	60.0	-31.7
29.765	5.6	22.5	28.1	60.0	-31.9

Average Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.268	9.6	20.5	30.1	51.2	-21.1	
0.153	13.9	20.6	34.5	55.9	-21.4	
29.221	-3.5	22.6	19.1	50.0	-30.9	
29.746	-3.6	22.5	18.9	50.0	-31.1	
29.794	-3.7	22.5	18.8	50.0	-31.2	
20 765	-3.7	22.5	18.8	50.0	-31.2	

CONCLUSION

Pass

EUT:	GLP12195 AccessPoint Left	Work Order:	ABBO0083
Serial Number:	ENG02-AP	Date:	2022-06-01
Customer:	Abbott Laboratories	Temperature:	21.8°C
Attendees:	None	Relative Humidity:	55.4%
Customer Project:	None	Bar. Pressure (PMSL):	1016 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-6

TEST SPECIFICATIONS

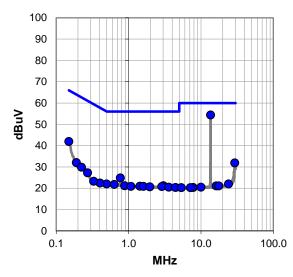
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

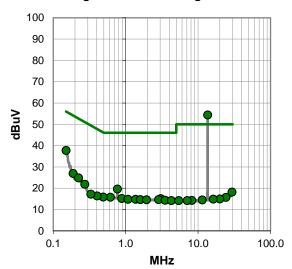
TEST PARAMETERS

Run #:	6	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #6

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Peak Data - vs - Quasi Peak Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	33.5	20.9	54.4	60.0	-5.6
0.150	21.4	20.6	42.0	66.0	-24.0
29.354	9.3	22.6	31.9	60.0	-28.1
0.769	4.7	20.2	24.9	56.0	-31.1
0.190	11.5	20.6	32.1	64.1	-32.0
0.223	9.3	20.6	29.9	62.7	-32.8
0.272	6.8	20.5	27.3	61.1	-33.8
0.496	1.8	20.2	22.0	56.1	-34.1
0.634	1.6	20.2	21.8	56.0	-34.2
0.884	1.0	20.2	21.2	56.0	-34.8
3.034	1.0	20.2	21.2	56.0	-34.8
1.432	0.8	20.2	21.0	56.0	-35.0
1.079	0.9	20.0	20.9	56.0	-35.1
1.606	0.7	20.2	20.9	56.0	-35.1
2.877	0.6	20.2	20.8	56.0	-35.2
0.403	2.2	20.3	22.5	57.8	-35.3
1.963	0.5	20.2	20.7	56.0	-35.3
3.595	0.3	20.2	20.5	56.0	-35.5
4.454	0.2	20.2	20.4	56.0	-35.6
0.330	3.0	20.3	23.3	59.5	-36.2
23.966	0.1	21.9	22.0	60.0	-38.0
16.232	-0.1	21.2	21.1	60.0	-38.9
17.653	-0.1	21.2	21.1	60.0	-38.9
9.999	0.0	20.5	20.5	60.0	-39.5
7.794	0.0	20.4	20.4	60.0	-39.6

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	33.5	20.9	54.4	50.0	4.4
0.150	17.2	20.6	37.8	56.0	-18.2
0.769	-0.6	20.2	19.6	46.0	-26.4
0.188	6.4	20.6	27.0	54.1	-27.1
0.223	4.3	20.6	24.9	52.7	-27.8
0.272	1.4	20.5	21.9	51.1	-29.2
0.615	-4.4	20.2	15.8	46.0	-30.2
0.490	-4.3	20.2	15.9	46.2	-30.3
0.884	-5.0	20.2	15.2	46.0	-30.8
3.049	-5.1	20.2	15.1	46.0	-30.9
1.076	-5.2	20.0	14.8	46.0	-31.2
1.366	-5.3	20.1	14.8	46.0	-31.2
1.596	-5.5	20.2	14.7	46.0	-31.3
2.843	-5.5	20.2	14.7	46.0	-31.3
0.403	-3.9	20.3	16.4	47.8	-31.4
1.943	-5.6	20.2	14.6	46.0	-31.4
3.510	-5.8	20.2	14.4	46.0	-31.6
4.273	-6.0	20.2	14.2	46.0	-31.8
29.409	-4.3	22.5	18.2	50.0	-31.8
0.330	-3.1	20.3	17.2	49.5	-32.3
24.188	-6.3	22.0	15.7	50.0	-34.3
19.949	-6.4	21.4	15.0	50.0	-35.0
16.197	-6.3	21.2	14.9	50.0	-35.1
11.420	-6.2	20.7	14.5	50.0	-35.5
8.186	-6.1	20.4	14.3	50.0	-35.7

CONCLUSION

Evaluation

EUT:	GLP12195 AccessPoint Left	Work Order:	ABBO0083
Serial Number:	ENG02-AP	Date:	2022-06-01
Customer:	Abbott Laboratories	Temperature:	21.8°C
Attendees:	None	Relative Humidity:	55.4%
Customer Project:	None	Bar. Pressure (PMSL):	1016 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-6

TEST SPECIFICATIONS

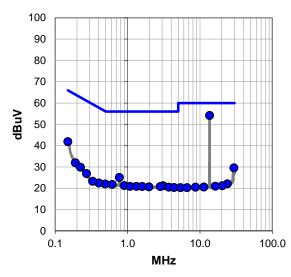
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

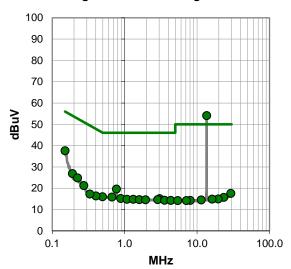
TEST PARAMETERS

Run #:	7	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES


Transmitting RFID 13.56 MHz

DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

RESULTS - Run #7

Quasi Peak Data - vs - Quasi Peak Limit

Q	Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
13.560	33.3	20.9	54.2	60.0	-5.8		
0.150	21.3	20.6	41.9	66.0	-24.1		
29.380	7.0	22.6	29.6	60.0	-30.4		
0.771	4.9	20.2	25.1	56.0	-30.9		
0.190	11.4	20.6	32.0	64.1	-32.1		
0.223	9.3	20.6	29.9	62.7	-32.8		
0.493	1.8	20.2	22.0	56.1	-34.1		
0.272	6.4	20.5	26.9	61.1	-34.2		
0.612	1.6	20.2	21.8	56.0	-34.2		
0.904	1.1	20.2	21.3	56.0	-34.7		
3.089	1.0	20.2	21.2	56.0	-34.8		
1.082	0.9	20.0	20.9	56.0	-35.1		
1.326	0.8	20.1	20.9	56.0	-35.1		
1.596	0.6	20.2	20.8	56.0	-35.2		
2.837	0.6	20.2	20.8	56.0	-35.2		
0.402	2.2	20.3	22.5	57.8	-35.3		
1.979	0.5	20.2	20.7	56.0	-35.3		
3.705	0.3	20.2	20.5	56.0	-35.5		
4.398	0.2	20.2	20.4	56.0	-35.6		
0.330	3.0	20.3	23.3	59.5	-36.2		
23.940	0.2	21.9	22.1	60.0	-37.9		
20.317	-0.2	21.4	21.2	60.0	-38.8		
16.285	-0.2	21.2	21.0	60.0	-39.0		
11.287	-0.1	20.7	20.6	60.0	-39.4		
8.701	0.1	20.4	20.5	60.0	-39.5		

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
13.560	33.2	20.9	54.1	50.0	4.1
0.150	17.0	20.6	37.6	56.0	-18.4
0.769	-0.6	20.2	19.6	46.0	-26.4
0.190	6.3	20.6	26.9	54.1	-27.2
0.223	4.3	20.6	24.9	52.7	-27.8
0.272	0.8	20.5	21.3	51.1	-29.8
0.493	-4.2	20.2	16.0	46.1	-30.1
0.667	-4.3	20.2	15.9	46.0	-30.1
0.884	-5.0	20.2	15.2	46.0	-30.8
3.048	-5.1	20.2	15.1	46.0	-30.9
1.076	-5.2	20.0	14.8	46.0	-31.2
1.311	-5.3	20.1	14.8	46.0	-31.2
1.596	-5.5	20.2	14.7	46.0	-31.3
2.861	-5.5	20.2	14.7	46.0	-31.3
0.402	-3.9	20.3	16.4	47.8	-31.4
1.943	-5.6	20.2	14.6	46.0	-31.4
3.556	-5.8	20.2	14.4	46.0	-31.6
4.331	-5.9	20.2	14.3	46.0	-31.7
0.330	-3.0	20.3	17.3	49.5	-32.2
29.326	-5.0	22.6	17.6	50.0	-32.4
23.437	-6.1	21.8	15.7	50.0	-34.3
19.592	-6.3	21.3	15.0	50.0	-35.0
16.169	-6.3	21.2	14.9	50.0	-35.1
11.436	-6.2	20.7	14.5	50.0	-35.5
8.031	-6.1	20.4	14.3	50.0	-35.7

CONCLUSION

Evaluation

Tested By

EUT:	GLP12195 AccessPoint Left	Work Order:	ABBO0083
Serial Number:	ENG02-AP	Date:	2022-06-02
Customer:	Abbott Laboratories	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.2%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-6

TEST SPECIFICATIONS

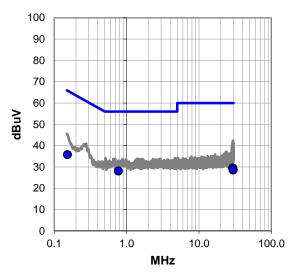
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

TEST PARAMETERS

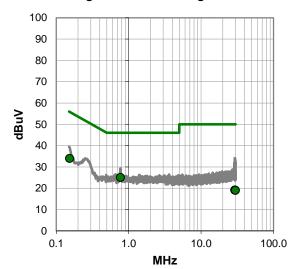
Run #:	12	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS

Antenna removed from PCB and replaced with matching load.


EUT OPERATING MODES

Transmitting RFID 13.56 MHz


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #12

Quasi Peak Data - vs - Quasi Peak Limit

	aaoi i cak	Data VO	Q d d d i	oak Emili	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.770	7.9	20.2	28.1	56.0	-27.9
0.153	15.2	20.6	35.8	65.8	-30.0
29.255	6.9	22.6	29.5	60.0	-30.5
29.322	6.9	22.6	29.5	60.0	-30.5
29.643	6.1	22.5	28.6	60.0	-31.4
29.748	6.1	22.5	28.6	60.0	-31.4

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.770	4.9	20.2	25.1	46.0	-20.9
0.153	13.4	20.6	34.0	55.8	-21.8
29.255	-3.4	22.6	19.2	50.0	-30.8
29.322	-3.4	22.6	19.2	50.0	-30.8
29.643	-3.4	22.5	19.1	50.0	-30.9
29.748	-3.5	22.5	19.0	50.0	-31.0

CONCLUSION

Pass

Tested By

EUT:	GLP12195 AccessPoint Left	Work Order:	ABBO0083
Serial Number:	ENG02-AP	Date:	2022-06-02
Customer:	Abbott Laboratories	Temperature:	21.7°C
Attendees:	None	Relative Humidity:	51.2%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Mark Baytan	Job Site:	TX01
Power:	220VAC/60Hz	Configuration:	ABBO0083-6

TEST SPECIFICATIONS

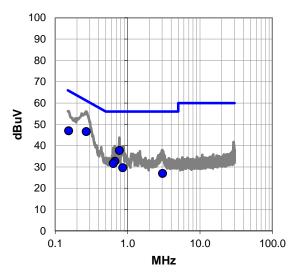
Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013

TEST PARAMETERS

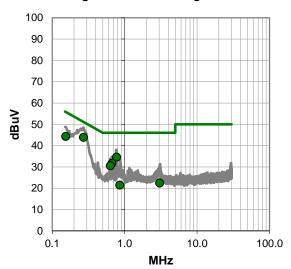
Run #:	13	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

Antenna removed from PCB and replaced with matching load.


EUT OPERATING MODES

Transmitting RFID 13.56 MHz


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

RESULTS - Run #13

Quasi Peak Data - vs - Quasi Peak Limit

Quadri dan Bata 10 Quadri dan Emin					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.269	26.1	20.5	46.6	61.1	-14.5
0.772	17.6	20.2	37.8	56.0	-18.2
0.154	26.4	20.6	47.0	65.8	-18.8
0.669	12.5	20.2	32.7	56.0	-23.3
0.635	11.4	20.2	31.6	56.0	-24.4
0.857	9.6	20.1	29.7	56.0	-26.3
3.047	6.8	20.2	27.0	56.0	-29.0

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.269	23.4	20.5	43.9	51.1	-7.2
0.154	23.8	20.6	44.4	55.8	-11.4
0.772	14.4	20.2	34.6	46.0	-11.4
0.669	11.5	20.2	31.7	46.0	-14.3
0.635	10.4	20.2	30.6	46.0	-15.4
3.047	2.3	20.2	22.5	46.0	-23.5
0.857	1.4	20.1	21.5	46.0	-24.5

MKE

CONCLUSION

Pass

Tested By

PSA-ESCI 2022.1.12.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0083 - 8 ABBO0083 - 6

ABBO0083 - 7

FREQUENCY RANGE INVESTIGATED

		l
Start Frequency 12.06 MHz	Stop Frequency	l15.06 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2022-04-19	2023-04-19
Antenna - Loop	ETS Lindgren	6502	AZM	2020-07-09	2022-07-09
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2022-03-22	2023-03-22

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

										EmiR5 2022.03.10.0		PSA-ESCI 2022.1.12.0
W	ork Order:		O0083	T.,	Date:		-05-31		21/		7 ,	
	Project:		one X02	Ter	nperature: Humidity:		7 ℃ % RH		1		7-	
Caria	Job Site: I Number:		05-AP	Davama	etric Pres.:		% RH · mbar		Tested by:	Morle Doute	- n	
Seria			O AccessPoi		enic Fres	1014	IIIDai		rested by.	IVIAIK Dayl	all	
Cont	figuration:		J Accessi of	ni Center								
		Abbott Lal	horatories									
	Attendees:		50.410.100									
		220VAC/6	60Hz									
Operat	ing Mode:	Transmitti	ng RFID 13.	56 MHz								
D	eviations:	None										
С	omments:	None										
T 0	···						T 4 NA - 41		ı			
FCC 15.22							ANSI C63.					
Run #	<u> </u>	Test Di	stance (m)	10	Antenna	ı Height(s)		1(m)		Results	l p	ass
			0101100 ()		7 11110111110			. ()		11000110		
80 -												
70 -												
60 -												
50 -												
W/\ngp												
B 30 -												
20 -												
10 -						•	•					
0 -				•				•				
-10 -	06	12.4	F.C.	12.0		42.50		14.00		14.50		45.00
12	.00	12.	υυ	13.0	υ	13.56 MHz		14.06		14.56 ■ PK	◆ AV	15.06 • QP
							Polarity/					,-
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
13.568	34.0	11.5	1.0	252.0	10.0	0.0	Para to GND	QP	-19.1	26.4	50.5	-24.1
13.553	33.6	11.5	1.0	199.0	10.0	0.0	Para to GND	QP	-19.1	26.0	50.5	-24.5
13.109 14.011	11.3 10.0	11.5 11.5	1.0 1.0	353.0 78.0	10.0 10.0	0.0 0.0	Para to GND Para to GND	QP QP	-19.1 -19.1	3.7 2.4	29.5 29.5	-25.8 -27.1
13.719	20.4	11.5	1.0	78.0 142.0	10.0	0.0	Para to GND	QP QP	-19.1 -19.1	2.4 12.8	29.5 40.5	-27.1 -27.7
13.402	13.3	11.5	1.0	159.0	10.0	0.0	Para to GND	QP QP	-19.1	5.7	40.5	-34.8
13.560	50.0	11.5	1.0	225.0	10.0	0.0	Para to GND	QP	-19.1	42.4	84.0	-41.6
13.560	49.4	11.5	1.0	240.0	10.0	0.0	Para to EUT	QP	-19.1	41.8	84.0	-42.2
13.560	47.4	11.5	1.0	229.0	10.0	0.0	Perp to EUT	QP	-19.1	39.8	84.0	-44.2

	Wo	rk Order:	\ ABB	O0083		Date:	2022	-05-31			EmiR5 2022.03.10.0	F	PSA-ESCI 2022.1.12.0
	VVO	Project:		one	Ter	nperature:		-03-31 7 °C		1	6/	3 /	
		Job Site:		X02		Humidity:		% RH	-			77 7	
S		Number:		02-AP	Barome	etric Pres.:		mbar		Tested by:	Mark Bayt	an	
		EUT:	GLP1219	5 AccessPoi			J						
(guration:											
			Abbott La	boratories									
		ttendees:											
	EU	T Power:	220VAC/6										
Op	erati	ng Mode:		ing RFID 13.	56 MHz								
	De	eviations:											
	Co	mments:		rst case ante	enna polari	ty found dur	ing testing	on AccessF	oint Cente	·r			
Test S	peci	fications						Test Metho	od				
FCC 1								ANSI C63.					
Ru	ın #	2	Test Di	stance (m)	10	Antenna	Height(s)		1(m)		Results	l Pa	ass
									\ /				
	<u> </u>												
	80 +												
	70 🕂												
	60												
	00												
	50 +												
_													
- ₹	40 🕂								_				
Ž													
dBuV/m	30												
	30												
	20 +												
									•				
	10												
							•						
	0 +												
	١												
	.												
-	10 [⊥]	16	40	56	12.0	2	12.50		14.06		1 <i>A</i> EG		15.06
	12.0	,,,	12.	JU	13.00	U	13.56		14.06		14.56		15.06
							MHz				■ PK	◆ AV	• QP
Free		Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
14.0	11	22.6	11.5	1.0	298.0	10.0	0.0	Para to GND	QP	-19.1	15.0	29.5	-14.5
13.73	30	18.4	11.5	1.0	307.0	10.0	0.0	Para to GND	QP	-19.1	10.8	40.5	-29.7
13.10		6.0	11.5	1.0	112.0	10.0	0.0	Para to GND	QP	-19.1	-1.6	29.5	-31.1
13.56 13.55		26.8 26.3	11.5 11.5	1.0 1.0	197.0 259.0	10.0	0.0	Para to GND Para to GND	QP QP	-19.1 -19.1	19.2 18.7	50.5	-31.3 -31.8
13.5		26.3 12.7	11.5	1.0	259.0 349.0	10.0 10.0	0.0 0.0	Para to GND	QP QP	-19.1 -19.1	18.7 5.1	50.5 40.5	-31.8 -35.4
13.56		42.9	11.5	1.0	220.0	10.0	0.0	Para to GND	QP	-19.1	35.3	84.0	-48.7

	Wo	rk Order	\ ABB	O0083		Date:	2022	-05-31			EmiR5 2022.03.10.0	P	PSA-ESCI 2022.1.12.0
	VVO	Project		one	Ter	nperature:		-03-31 .7 °C		4	6/	< ,	
		Job Site:		X02		Humidity:		% RH				77	
		Number		03-AP	Barome	etric Pres.:		l mbar		Tested by:	Mark Bayt	an	Į
		EUT	GLP1219	3 AccessPoi	nt Right								
(guration											
			Abbott La	boratories									
		ttendees											
	EU	T Power:	220VAC/6										
Op	erati	ng Mode	1	ing RFID 13.	56 MHz								
	De	eviations			1 2			Α					
	Co	mments		rst case ante	enna polari	ty found dur	ing testing	on Access	oint Cente	:r 			
Test S	Speci	fications						Test Metho	od				
		5:2022						ANSI C63.					
Rı	ın #	3	Test Di	stance (m)	10	Antenna	ı Height(s)		1(m)		Results	l Pa	ass
	80 +												
	70 🕂												
	60												
	60 T												
	50 +												
_													
5	40 🕂								_				
<u></u>													
dBuV/m													
	30 +												
	20 +						 						
	10							-					
	0 +												
	۲T												
-	10 1	20		50	40.5	2	40.50		44.00		44.50		45.00
	12.0	סכ	12.	OC	13.0	0	13.56		14.06		14.56		15.06
							MHz			•	■ PK	◆ AV	• QP
Fre (MH		Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
14.0	11	12.2	11.5	1.0	358.0	10.0	0.0	Para to GND	QP	-19.1	4.6	29.5	-24.9
13.7	30	19.6	11.5	1.0	146.0	10.0	0.0	Para to GND	QP	-19.1	12.0	40.5	-28.5
13.1		7.5	11.5	1.0	356.0	10.0	0.0	Para to GND	QP	-19.1	-0.1	29.5	-29.6
13.5		27.2	11.5	1.0	232.0	10.0	0.0	Para to GND	QP	-19.1	19.6	50.5	-30.9
13.5 13.3		27.0 12.1	11.5 11.5	1.0 1.0	215.0 42.0	10.0 10.0	0.0 0.0	Para to GND Para to GND	QP QP	-19.1 -19.1	19.4 4.5	50.5 40.5	-31.1 -36.0
13.5		43.1	11.5	1.0	266.0	10.0	0.0	Para to GND	QP QP	-19.1	35.5	84.0	-36.0 -48.5
10.0		.5.1	. 1.0		_00.0	. 5.0	5.0	0 0110	٧.		55.5	34.0	.0.0

PSA-ESCI 2022.1.12.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0083 - 6

ABBO0083 - 7

ABBO0083 - 8

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2022-03-22	2023-03-22
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2022-04-19	2023-04-19
Antenna - Loop	ETS Lindgren	6502	AZM	2020-07-09	2022-07-09

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

										EmiR5 2022.03.10.0		PSA-ESCI 2022.1.12.0
Wo	rk Order:		300083		Date:		-06-01		11	, /	-	
	Project:		lone	Ter	nperature:		3 °C		11		7/-	
	Job Site:		X02		Humidity:		% RH					
Serial	Number:		G04-AP		etric Pres.:	1014	l mbar		Tested by:	Mark Bayta	an	
			00 AccessPoir	nt Center								
	iguration:											
			aboratories									
	ttendees:											
EL	JT Power:	220VAC/	60Hz									
Operati	ng Mode:	Transmitt	ting RFID 13.5	56 MHz								
D	eviations:	None										
Co	omments:	None										
Test Speci	fications						Test Meth	od				
FCC 15.22							ANSI C63.					
Run#	83	Toot D	vistance (m)	10	Antonna	ı Height(s)		1(m)		Results	D	ass
Kuii #	03	Test D	istance (m)	10	Antenna	i neigni(s)		1(111)		Results	Pe	155
60												
50												
40												
_ 30				$\downarrow\downarrow\downarrow$								
Ę					<u> </u>							
≥					7							
m//Nab												
10												
0 -							•					
-										8		
										-		
-10				++++								+++
-20												
0				1				10				100
						MHz				■ PK	◆ AV	QP
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
3.392	13.5	11.5	1.0	271.0	10.0	0.0	Perp to EUT	QP	-19.1	5.9	29.5	-23.6
4.522	11.1	11.6	1.0	18.0	10.0	0.0	Perp to EUT		-19.1	3.6	29.5	-25.9
6.775	8.5	11.6	1.0	290.0	10.0	0.0	Perp to EUT	QP	-19.1	1.0	29.5	-28.5
27.117	6.6	9.9	1.0	0.0	10.0	0.0	Perp to EUT		-19.1	-2.6	29.5	-32.1
27.125	5.3	9.9	1.0	124.0	10.0	0.0	Para to GND		-19.1	-3.9	29.5	-33.4
27.124	5.2	9.9	1.0	162.0	10.0	0.0	Para to EUT	QP	-19.1	-4.0	29.5	-33.5

	147 -		4 D D C	20000		D-11-	0000	00.04			EmiR5 2022.03.10.0		PSA-ESCI 2022.1.12.0
	vvo	rk Order: Project:		D0083 one	Т	Date:		-06-01 3 °C		4	1	< ,	
		Job Site:		(02	- 10	Humidity:		% RH		1		7	
5	Serial	Number:		03-AP	Baron	netric Pres.:		mbar		Tested by:	Mark Bavta	an	
				3 AccessPoi									
		guration:											
			Abbott Lab	oratories									
		ttendees:		01.1-									
			220VAC/6		EC MU-								
Op	oerati	ng Mode:		ng RFID 13.	OO IVITIZ								
	De	eviations:	None										
	Co	omments:	None										
Test S	Speci	fications						Test Meth	od				
		5:2022						ANSI C63.					
Di	4	0.4	Toot Di	stance (m)	10	Antonno	. Usiaht(s)		1(m)		Results	D	
	un #	84	lest Dis	stance (m)	10	Antenna	Height(s)		1(m)		Results	Pi	ass
	60												
	50												
	40												++
	.				$\downarrow \downarrow \downarrow \downarrow \downarrow$								
	30												
Ę													
dBuV/m	20												
Б													
ס													
	10												++
							•						
	0												
	٦										•		
											•		
-	-10												
-	-20 └ 0.	1			1.	n			10.0				100.0
	0.	ı			1.	U	8411-		10.0				100.0
							MHz				■ PK	AV	QP
								Polarity/					
Fre (MH		Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
3.39	94	13.3	11.5	1.0	264.0	10.0	0.0	Perp to EUT	QP	-19.1	5.7	29.5	-23.8
4.52	25	11.2	11.6	1.0	191.0	10.0	0.0	Perp to EUT	QP	-19.1	3.7	29.5	-25.8
6.77		8.5	11.6	1.0	305.0	10.0	0.0	Perp to EUT Perp to EUT	QP OB	-19.1 -10.1	1.0	29.5	-28.5
27.1 27.1		6.9 6.5	9.9 9.9	1.0 1.0	64.0 213.0	10.0 10.0	0.0 0.0	Perp to EUT	QP QP	-19.1 -19.1	-2.3 -2.7	29.5 29.5	-31.8 -32.2
27.1		5.3	9.9	1.0	199.0	10.0	0.0	Para to GND		-19.1	-3.9	29.5	-33.4

Work Order: ABBC00083		O I	1.000000		5.4.	0000	00.04	1		EmiR5 2022.03.10.0	F	PSA-ESCI 2022.1.12.0
Serial Number: ENGO2AP Barmetric Press. 1014 mbar Tested by: Mark Baytan	v			To	Date:				11		7 ,	
Serial Number: ENGG2-AP Barometric Pres.: 1014 mbar Tested by: Mark Baytan				Te					1		7-	
First Specifications First Constitute First First Constitute First First Constitute First	Sori			Barom					Tostad by:	Mark Boyto	nn.	
Configuration: 6 Customer: Abbott Laboratories Attendees: None EUT Power: 220VAC/GOHz	Jen				enic Fies	1014	Праг		resieu by.	INIAIR Dayla	211	
Autordees: None EUT Power: 220VAC/60Hz Transmitting RFID 13.56 MHz	Cor			OITE LOTE								
## Attendees: None EUT Power: 220VAC/60Hz Operating Mode: Transmitting RFID 13.58 MHz None												
Comments Transmitting RFID 13.56 MHz												
Deviations None N												
Comments: None	Opera	ating Mode:	Transmitting RFID 1	3.56 MHz								
Test Specifications FCC 15.225.2022 ANSI C63.10:2013		Deviations:	None									
Run # 85 Test Distance (m) 10 Antenna Height(s) 1(m) Results Pass		Comments:										
Run # 85 Test Distance (m) 10 Antenna Height(s) 1(m) Results Pass	Test Spe	cifications					Test Meth	od				
Freq Amplitude Factor American Height Azimuth Trest Distance Cegares Trest Tre												
Freq Amplitude Factor American Height Azimuth Trest Distance Cegares Trest Tre	Dun	# OE	Test Distance (n	10	Antonna	Hoight/c)		1(m)		Populto	D	200
10		+ 00	Test Distance (II	1) 10	Antenna	rieigiit(s)		1(111)		Nesulis	Г	255
Anglitude Factor Antenna Height Azimuth Test Distance External Transducer Type Detector Adjusted (dBuV/m) Spec. Limit Compared to Spec. (dB) 11.5 1.0 188.0 10.0 0.0 Perp to EUT QP -19.1 3.7 29.5 -23.7 4.52.0 11.2 11.6 1.0 240.0 10.0 0.0 Perp to EUT QP -19.1 3.7 29.5 -28.8 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 1.1 29.5 -28.4 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 1.1 29.5 -28.4 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 1.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 1.2 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 1.2 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 1.2 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.5 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 29.0 27.119 27.119 27.119 27.119 27.119 27.119 27.119 27.119 27.119	60											
Anglitude Factor Antenna Height Azimuth Test Distance External Transducer Type Detector Adjusted (dBuV/m) Spec. Limit Compared to Spec. (dB) 11.5 1.0 188.0 10.0 0.0 Perp to EUT QP -19.1 3.7 29.5 -23.7 4.52.0 11.2 11.6 1.0 240.0 10.0 0.0 Perp to EUT QP -19.1 3.7 29.5 -28.8 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 1.1 29.5 -28.4 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 1.1 29.5 -28.4 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 1.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 1.2 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 1.2 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 1.2 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.5 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 29.0 27.119 27.119 27.119 27.119 27.119 27.119 27.119 27.119 27.119												
Anglitude Factor Antenna Height Azimuth Test Distance External Transducer Type Detector Adjusted (dBuV/m) Spec. Limit Compared to Spec. (dB) 11.5 1.0 188.0 10.0 0.0 Perp to EUT QP -19.1 3.7 29.5 -23.7 4.52.0 11.2 11.6 1.0 240.0 10.0 0.0 Perp to EUT QP -19.1 3.7 29.5 -28.8 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 1.1 29.5 -28.4 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 1.1 29.5 -28.4 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 1.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 1.2 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 1.2 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 1.2 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.5 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Perp to EUT QP -19.1 2.9 29.5 -32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.9 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 2.5 29.5 32.0 27.119 29.0 27.119 27.119 27.119 27.119 27.119 27.119 27.119 27.119 27.119	50											
10	00											
10												
10	40											
10												
10												
10 0 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	30			\rightarrow								+++
10 0 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	E				<u> </u>							
10 0 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1	≥				7							
10 0 -10 -10 -10 -10 -10 -10 -10 -10 -10 -1												
0 -10	쁑											
0 -10	10											
-10 -20 0.1 1.0 MHz PK AV QP												
-10 -20 0.1 1.0 MHz PK AV QP							• _					
-20 0.1 1.0 MHz Indicates Polarity/ Transducer Type Detector Distance Adjustment Adjustment	0						 					
-20 0.1 1.0 MHz Indicates Polarity/ Transducer Type Detector Distance Adjustment Adjustment										•		
-20 0.1 1.0 MHz Indicates Polarity/ Transducer Type Detector Distance Adjustment Adjustment	40											
0.1 1.0 10.0 MHz MHz	-10											
0.1 1.0 10.0 MHz MHz												
0.1 1.0 10.0 MHz MHz	-20											
Freq (MHz)		0.1		1.0)			10.0				100.0
Freq (MHz) Amplitude (dBuV) Factor (dB/m) Antenna Height (meters) Azimuth (degrees) Test Distance (meters) External Attenuation (dB) Type Detector Distance Adjustment (dB) Adjusted (dBuV/m) Spec. Limit (dBuV/m) Compared to Spec. (dB) 3.392 13.4 11.5 1.0 188.0 10.0 0.0 Perp to EUT QP -19.1 5.8 29.5 -23.7 4.520 11.2 11.6 1.0 240.0 10.0 0.0 Perp to EUT QP -19.1 3.7 29.5 -25.8 6.780 8.6 11.6 1.0 360.0 10.0 0.0 Perp to EUT QP -19.1 1.1 29.5 -28.4 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 -2.5 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Para to EUT QP -19.1 -2.9 29.5 -32.4						MHz				■ PK	◆ AV	• QP
4.520 11.2 11.6 1.0 240.0 10.0 0.0 Perp to EUT QP -19.1 3.7 29.5 -25.8 6.780 8.6 11.6 1.0 360.0 10.0 0.0 Perp to EUT QP -19.1 1.1 29.5 -28.4 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 -2.5 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Para to EUT QP -19.1 -2.9 29.5 -32.4						Attenuation	Transducer	Detector	Adjustment			Spec.
4.520 11.2 11.6 1.0 240.0 10.0 0.0 Perp to EUT QP -19.1 3.7 29.5 -25.8 6.780 8.6 11.6 1.0 360.0 10.0 0.0 Perp to EUT QP -19.1 1.1 29.5 -28.4 27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 -2.5 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Para to EUT QP -19.1 -2.9 29.5 -32.4	3.392	13.4	11.5 1.0	188.0	10.0	0.0	Perp to EUT	QP	-19.1	5.8	29.5	-23.7
27.123 6.7 9.9 1.0 126.0 10.0 0.0 Perp to EUT QP -19.1 -2.5 29.5 -32.0 27.119 6.3 9.9 1.0 299.0 10.0 0.0 Para to EUT QP -19.1 -2.9 29.5 -32.4	4.520	11.2	11.6 1.0	240.0	10.0	0.0	Perp to EUT	QP	-19.1	3.7	29.5	-25.8
27.119 6.3 9.9 1.0 299.0 10.0 0.0 Para to EUT QP -19.1 -2.9 29.5 -32.4												

PSA-ESCI 2022.1.12.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0083 - 8

ABBO0083 - 7

ABBO0083 - 6

FREQUENCY RANGE INVESTIGATED

0 =	0. = 1.000 1.01	
Start Frequency 30 MHz	Stop Frequency 1000 MHz	
Start i requerity (50 Mil 12	10top i requerity 1000 ivil iz	

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2022-03-22	2023-03-22
Antenna - Biconilog	ETS Lindgren	3143B	AYF	2020-06-25	2022-06-25
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2022-04-19	2023-04-19
Amplifier - Pre-Amplifier	Fairview Microwave	FMAM63001	PAS	2022-04-19	2023-04-19

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

										EmiR5 2022.03.10.0		PSA-ESCI 2022.1.12.0
Wo	rk Order:	ABBO008	33	T	Date:		22-06-01		4	, /	7 .	
	Project: Job Site:	None TX02		I ei	mperature: Humidity:		21.3 °C 3.5% RH		1		71	
	Number:	ENG02-A	D.	Davam	etric Pres.:		19 mbar		Tooted by	Mark Bayta	-	
Serial		GLP12195 Acc			ellic Fles	10	19 IIIbai		rested by.	IVIAIK Dayla	ll I	
Confi	guration:		LESSE UI	III LEII								
		Abbott Laborat	tories									
	ttendees:		101100									
		220VAC/60Hz										
	ng Mode:	Transmitting R		56 MHz								
De	eviations:	None										
Co	omments:	None										
Test Speci							Test Me					
FCC 15.22	5:2022						ANSI C	33.10:2013				
Run#	86	Test Distan	ice (m)	3	Antenna	Height	(s)	1 to 4(m)		Results	P	ass
80												
⁸⁰ T												
70												
60												
_ 50 +												
ے ت												
≥												
dBuV/m						_						
ס										1		
				Ţ								
30 +												
					•							
20												
				•	•							
10 +												
0												
10						10	0					1000
						MH				■ PK	◆ AV	• QP
Freq	Amplitude (dBuV)		nna Height meters)	Azimuth (degrees)	Test Distance (meters)	Externa Attenuatio		Pr Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
(MHz)	(abav)	(35,)		(augicus)	(11131013)	(00)			(35)	(GDG V/III)	(000 (7111)	(45)
40.064	57.5	-23.1	1.0	360.0	3.0	0.0	Vert	QP	0.0	34.4	40.0	-5.6
488.166	50.3		1.39	231.0	3.0	0.0	Vert	QP	0.0	39.2	46.0	-6.8
488.161	49.3 51.5	-11.1	1.0	265.0	3.0	0.0	Horz	QP OP	0.0	38.2	46.0	-7.8 -15.4
54.872 67.805	51.5 50.4	-26.9 -26.0	1.0 1.0	198.0 264.0	3.0 3.0	0.0	Vert Vert	QP QP	0.0 0.0	24.6 24.4	40.0 40.0	-15.4 -15.6
67.872	49.9		2.55	154.0	3.0	0.0	Horz	QP	0.0	23.9	40.0	-16.1
40.094	41.2	-23.1	1.0	80.0	3.0	0.0	Horz	QP	0.0	18.1	40.0	-21.9
54.811	43.2	-26.9	1.0	74.0	3.0	0.0	Horz	QP	0.0	16.3	40.0	-23.7

											EmiR5 2022.03.10.0		PSA-ESCI 2022.1.12.0
Wo	rk Order:		O0083	т	Date:	2		06-01		4	, /	7 .	
	Project: Job Site:		one X02	Tel	mperature: Humidity:			3 °C % RH		1		71	
	Number:		03-AP	Parame	etric Pres.:			‰ кп mbar		Tooted by	Mark Bayta	n	
Seriai			3 AccessPoi		enic Fres		1019	IIIDai		rested by.	Mark Dayla		
Confi	guration:		3 Accesse of	nt Night									
		Abbott Lat	horatories										
	ttendees:		boratorioo										
		220VAC/6	60Hz										
	ng Mode:	T	ng RFID 13.	56 MHz									
De	eviations:	None											
Co	mments:	None											
Test Speci								Test Meth					
FCC 15.22	5:2022							ANSI C63.	10:2013				
Run#	87	Test Di	stance (m)	3	Antenna	a Heigl	ht(s)		1 to 4(m)		Results	Р	ass
							_						
80													
00													
70							-						
60 +													
_ 50 +													
E 30													
⋝													
M//Map						_							
ਰ ∣													
				T									
30 +							+				+ •		
					• •								
20					•								
10							+						
_													
0 10			-				100						1000
10													1000
							//Hz				■ PK	◆ AV	• QP
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	Exter Attenu (dE	ation	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
40.100	58.1	-23.1	1.0	306.0	3.0	0.	0	Vert	QP	0.0	35.0	40.0	-5.0
54.918	53.7	-26.9	1.0	148.0	3.0	0.	0	Vert	QP	0.0	26.8	40.0	-13.2
67.807	52.7	-26.0	1.0	234.0	3.0	0.		Vert	QP	0.0	26.7	40.0	-13.3
488.165	42.5	-11.1	1.08	262.0	3.0	0.		Horz	QP	0.0	31.4	46.0	-14.6
67.786 488.166	50.9 40.6	-26.1 -11.1	2.28 1.5	95.0 171.0	3.0 3.0	0. 0.		Horz Vert	QP QP	0.0 0.0	24.8 29.5	40.0 46.0	-15.2 -16.5
54.859	48.2	-11.1 -26.9	3.16	231.0	3.0	0.		Horz	QP QP	0.0	29.5 21.3	40.0	-16.5 -18.7
40.357	43.9	-23.3	2.2	42.0	3.0	0.		Horz	QP	0.0	20.6	40.0	-19.4
						٥.							

									1		EmiR5 2022.03.10.0		PSA-ESCI 2022.1.12.0
Wo	rk Order:		O0083	T	Date:			-06-01		11	, /	7 .	
	Project: Job Site:		one X02	Tei	mperature: Humidity:			3 °C		1		7-	
	Number:	ENC.	304-AP	Parame	etric Pres.:			% RH mbar		Tooted by	Mark Bayta	n	
Seriai			0 AccessPo		enic Fres		1019	IIIDai		rested by.	IVIAIK Dayla	111	
Confi	guration:		U ACCESSE C	Jilit Celitei									
		Abbott La	boratories										
At	tendees:	None	Doratorioo										
EU	T Power:	220VAC/6	60Hz										
Operati	ng Mode:	Transmitti	ing RFID 13	3.56 MHz									
De	eviations:	None											
Co	mments:	None											
Test Specif	fications							Test Meth	od				
FCC 15.225								ANSI C63.					
Run#	88	Test D	istance (m)) 3	Antenna	ı Heio	ght(s)		1 to 4(m)		Results	Р	ass
								•					
80 +													
70													
60													
_ 50													
ے ت													
≥													
m//mgp						+							
ס													
20				Ĭ									
30													
20					• •								
10													
0 ↓													
10							100						1000
							MHz				- 514		• 05
											■ PK	◆ AV	• QP
Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Heigh (meters)	nt Azimuth (degrees)	Test Distance (meters)	Atter	ternal nuation dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
40.103	57.7	-23.1	1.0	132.0	3.0		0.0	Vert	QP	0.0	34.6	40.0	-5.4
488.028	44.0	-11.2	1.0	160.0	3.0		0.0	Horz	QP	0.0	32.8	46.0	-13.2
68.166 488.175	52.0 42.8	-26.0 -11.1	3.1 1.59	129.0 330.0	3.0 3.0		0.0 0.0	Horz Vert	QP QP	0.0 0.0	26.0 31.7	40.0 46.0	-14.0 -14.3
54.906	50.8	-11.1	1.09	63.0	3.0		0.0	Vert	QP QP	0.0	23.9	40.0	-14.3
68.153	48.3	-26.0	1.0	139.0	3.0	(0.0	Vert	QP	0.0	22.3	40.0	-17.7
54.913	47.9	-26.9	2.62	215.0	3.0		0.0	Horz	QP	0.0	21.0	40.0	-19.0
40.133	42.9	-23.1	2.68	62.0	3.0	(0.0	Horz	QP	0.0	19.8	40.0	-20.2

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	77-IV	MLT	2020-10-15	2023-10-15
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBH	NCR	NCR
Transformer	Staco Energy Products Co.	3PN2520B	XFZ	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUI	2021-02-02	2024-02-02
Probe - Near Field Set	ETS Lindgren	7405	IPS	NCR	NCR
Cable	UtiFlex Micro-Coax	UFD1150A-1-0720-200200	TXJ	2020-09-22	2021-09-22
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2021-01-06	2022-01-06

TEST DESCRIPTION

The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was transmitting with an unmodulated carrier.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -20 ° to +50° C and at 10°C intervals.

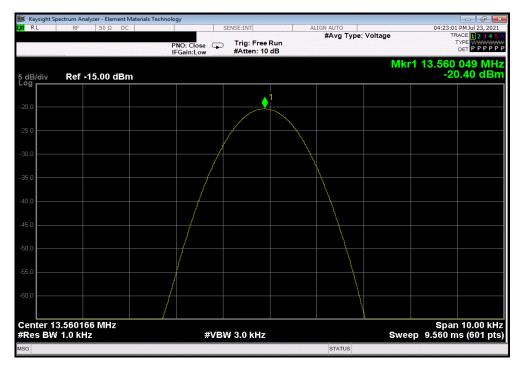
The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm. The formula to check for compliance is:

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

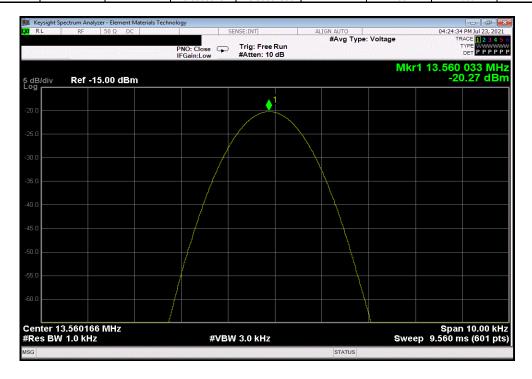
Mid Channel, 13.56 MHz

EUT: AccessPoint Radio
Serial Number: ENG05-AP
Customer: Abbott Laboratories
Attendees: Don Mendell Work Order: ABBO0083
Date: 24-Jul-21
Temperature: 25 °C Humidity: 47.8% RH
Barometric Pres.: 1019 mbar Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Power: 220VAC/60Hz Test Method Job Site: TX05 FCC 15.225:2021 COMMENTS Contains the same AccessController IO (PCB:20008971) present in all variants of the AccessPoint: Center, Left, and Right. DEVIATIONS FROM TEST STANDARD 1464 Configuration # 9 Signature Measured Value (MHz) Value (MHz) Results (ppm) (ppm) Normal Voltage Mid Channel, 13.56 MHz 13.56004933 13.56004933 3.6 100 Pass Extreme Voltage +15% Mid Channel, 13.56 MHz 13.56003267 13.56004933 12 100 Pass Mid Channel, 13.56 MHz 13.56003367 13.56004933 1.2 100 Pass re +50°C Mid Channel, 13.56 MHz sure +40°C 13.55996633 13.56004933 100 Pass Mid Channel, 13.56 MHz ure +30°C 13.55998367 13.56004933 4.8 100 Pass Mid Channel, 13.56 MHz 13.560033 13.56004933 1.2 100 Pass ure +20°C Mid Channel, 13,56 MHz 13.56003267 13.56004933 12 100 Pass re +10°C Mid Channel, 13.56 MHz ure 0°C 13.56009967 13.56004933 3.7 100 Pass Mid Channel, 13.56 MHz 13.560116 13.56004933 4.9 100 Pass re -10°C Mid Channel, 13.56 MHz Extreme Temperature -20°C 13.560133 13.56004933 6.2 100 Pass

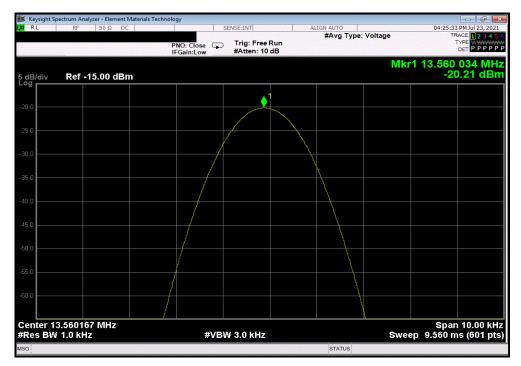
13.56011633

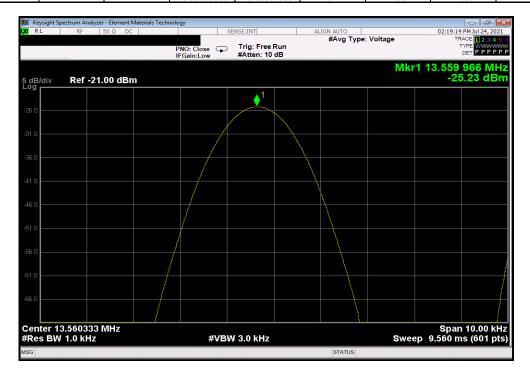

13.56004933

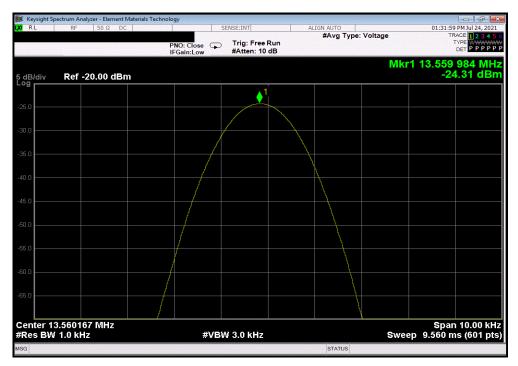
4.9

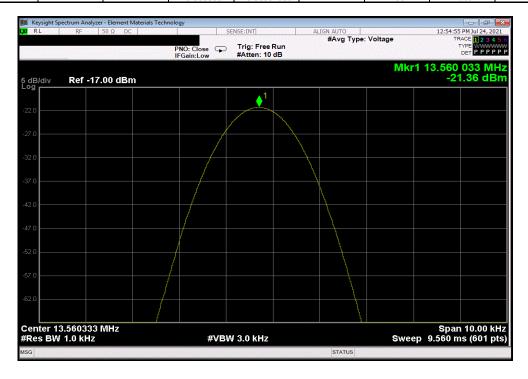

100

Pass



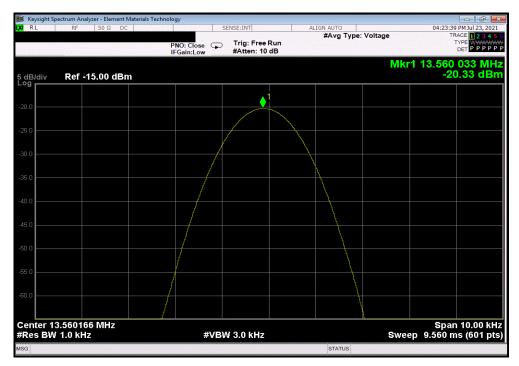

	Extreme Voltage +15%, Mid Channel, 13.56 MHz									
			Measured	Nominal	Error	Limit				
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
1	_		13.56003267	13.56004933	1.2	100	Pass			


Extreme Temperature +50°C, Mid Channel, 13.56 MHz									
	Measured	Nominal	Error	Limit					
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
	13.55996633	13.56004933	6.1	100	Pass				

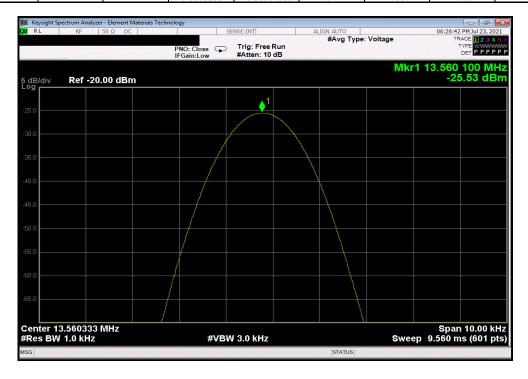


Extreme Temperature +40°C, Mid Channel, 13.56 MHz

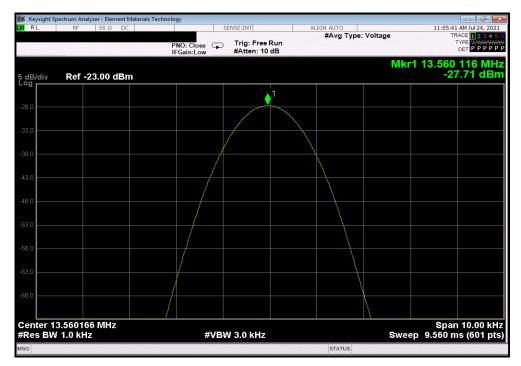
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.55998367 | 13.56004933 | 4.8 | 100 Pass



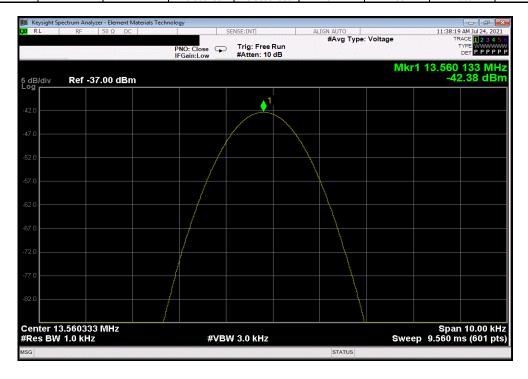
Extreme Temperature +30°C, Mid Channel, 13.56 MHz									
	Measure	ed Nominal	Error	Limit					
	Value (MI	Hz) Value (MHz)	(ppm)	(ppm)	Results				
	13.56003	33 13.56004933	1.2	100	Pass				



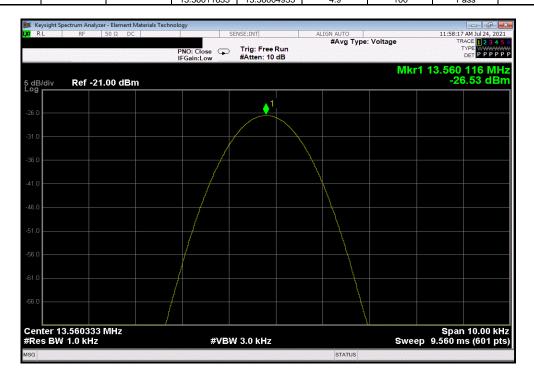
| Extreme Temperature +20°C, Mid Channel, 13.56 MHz
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.56003267 | 13.56004933 | 1.2 | 100 | Pass



	Extreme Temperature +10°C, Mid Channel, 13.56 MHz									
		Measured	Nominal	Error	Limit					
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results				
1	_	13.56009967	13.56004933	3.7	100	Pass				



| Extreme Temperature 0°C, Mid Channel, 13.56 MHz
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.560116 | 13.56004933 | 4.9 | 100 | Pass



	Extreme Temperature -10°C, Mid Channel, 13.56 MHz									
		Measure	d Nominal	Error	Limit					
		Value (MH	z) Value (MHz)	(ppm)	(ppm)	Results				
İ		13.56013	3 13.56004933	6.2	100	Pass				

| Extreme Temperature -20°C, Mid Channel, 13.56 MHz
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.56011633 | 13.56004933 | 4.9 | 100 | Pass

OCCUPIED BANDWIDTH

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	ETS Lindgren	7405	IPS	NCR	NCR
Cable	UtiFlex Micro-Coax	UFD1150A-1-0720-200200	TXJ	2020-09-22	2021-09-22
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2021-01-06	2022-01-06

TEST DESCRIPTION

As defined in FCC 15.215 Part (c), intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise by specified in the specific rule section under which the equipment operates, is contained within the frequency band designed in the rule section under which the equipment is operated.

The 20 dB bandwidth must be contained within the band 13.110-14.010 MHz.

The emissions bandwidth was measured with the EUT configured for continuous modulated operation.

The resolution bandwidth (RBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

OCCUPIED BANDWIDTH

uTv 2021 02 10 1 VMH 2020 12 20

		Work Order:	ABBO0083						
		Date:	29-Jul-21						
		Temperature:	21.1 °C						
Attendees: Don Mendell									
Project: None									
Power:	220VAC/60Hz	Job Site:	TX02						
	Test Method	st Method							
	ANSI C63.10:2013								
COMMENTS									
Emissions bandwidth taken with a 6% RBW and 26 dB bandwidth. This is worst case as compared with the 1-5% RBW and 20 dB bandwidth as called out in FCC 15.215. Contains the same									
AccessController IO (PCB:20008971) present in all variants of the AccessPoint: Center, Left, and Right.									
11									
14-6	5,4-								
	-/-								
			Limit						
		Value	13.110 MHz ≥ BW ≤ 14.010 MHz	Result					
		163.6 kHz	Within	Pass					
•	case as compared v	ANSI C63.10:2013 case as compared with the 1-5% RBW and 20 dB bandv	Date: Temperature: Humidit: Barometric Pres.: Barometric Pres.: Power: 220VAC/60Hz Test Method ANSI C63.10:2013 case as compared with the 1-5% RBW and 20 dB bandwidth as called out in FCC 15.21: Center, Left, and Right. Value	Test Method ANSI C63.10:2013 c case as compared with the 1-5% RBW and 20 dB bandwidth as called out in FCC 15.215. Contains the same Center, Left, and Right. Limit Value 13.110 MHz ≥ BW ≤ 14.010 MHz					

OCCUPIED BANDWIDTH

Normal Voltage, Mid Channel, 13.56 MHz

Limit

Value 13.110 MHz ≥ BW ≤ 14.010 MHz Result

163.6 kHz Within Pass

End of Test Report