

Abbott Laboratories

SAL Alinity Basic Kit

FCC 15.225:2021 13.56 MHz

Report: ABBO0080.5 Rev. 1, Issue Date: September 26, 2021

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: August 05, 2021
Abbott Laboratories
EUT: SAL Alinity Basic Kit

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2021	ANSI C63.10:2013
FCC 15.225:2021	ANSI Cos. 10.2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.2	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions (Less Than 30 MHz)	Yes	Pass	
6.5	Field Strength of Spurious Emissions (Greater Than 30 MHz)	Yes	Pass	
6.8	Frequency Stability	Yes	Pass	
6.9	Occupied Bandwidth	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Changed the dates on all sheets based on CE data.	2022-09-26	2, 10, 16
	Removed access point frequency stability measurements	2022-09-26	N/A
	Removed divergent radio frequency stability measurements	2022-09-26	N/A
01	Removed accesspoint OBW	2022-09-26	N/A
UT	Removed divergent OBW	2022-09-26	N/A
	Updated the block diagram.	2022-09-26	7-9
	Updated power settings module	2022-09-26	11
	Removed notation that did not apply	2022-09-26	17-19
	Up to 18 GHz was investigated during transmit mode for the "unintentional report". Spurious >30MHz data now reflects this range.	2022-09-26	27-28

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

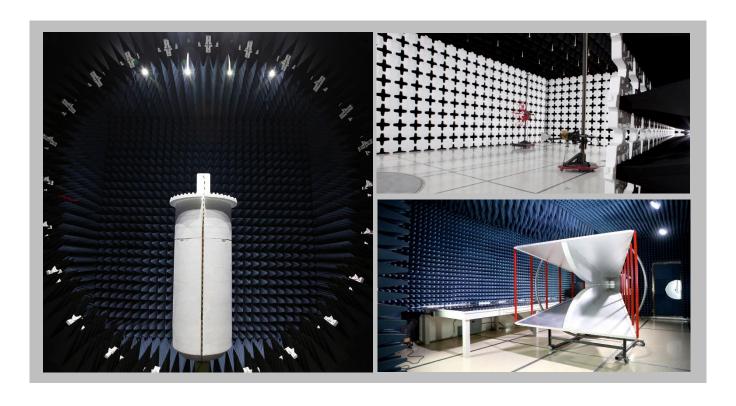
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>


FACILITIES

California	Minnesota	Oregon	Texas	Washington
Labs OC01-17	Labs MN01-11	Labs EV01-12	Labs TX01-09	Labs NC01-05
41 Tesla	9349 W Broadway Ave.	6775 NE Evergreen Pkwy #400	3801 E Plano Pkwy	19201 120 th Ave NE
Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600
(040) 001 0010	(812) 888 8188	(000) 044 4000	(400) 004 0200	(420)304 0000
		A2LA		
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06
	Innovation, Sci	ence and Economic Develop	ment Canada	
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1
		BSMI		
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
		VCCI		
A-0029	A-0109	A-0108	A-0201	A-0110
Re	ecognized Phase I CAB for IS	SED, ACMA, BSMI, IDA, KCC/	RRA, MIC, MOC, NCC, OF	-CA
US0158	US0175	US0017	US0191	US0157

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

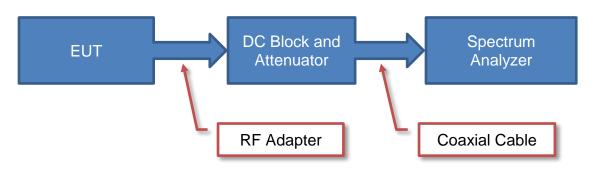
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.6 dB	-2.6 dB

TEST SETUP BLOCK DIAGRAMS

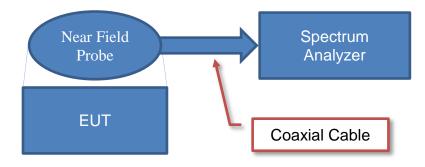


Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements



Sample Calculation (logarithmic units)

Measured Value Measured Level Coffset

71.2 = 42.6 + 28.6

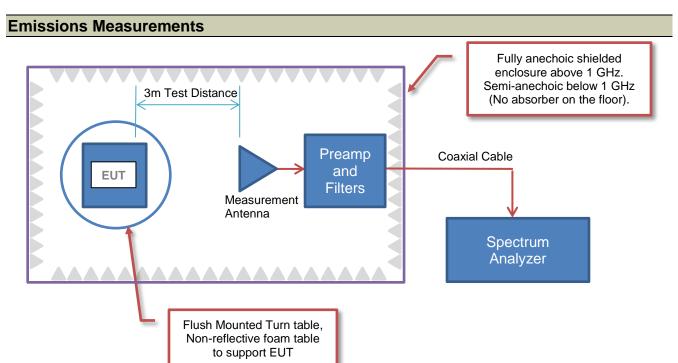
Near Field Test Fixture Measurements

Sample Calculation (logarithmic units)

Measured Value

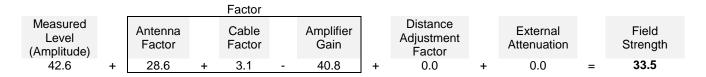
Measured Level

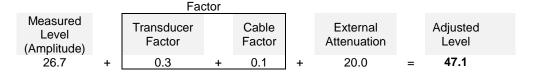
Tolerance


Measured Level

Offset

28.6


TEST SETUP BLOCK DIAGRAMS

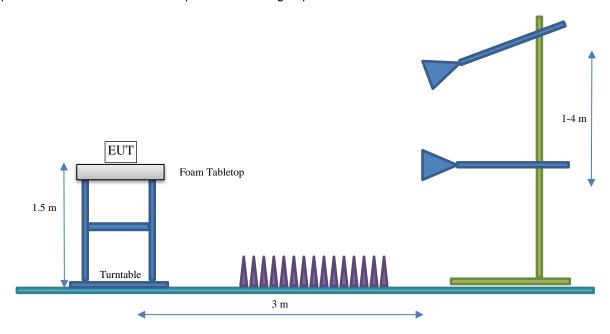


Sample Calculation (logarithmic units)

Radiated Emissions:

Conducted Emissions:

Radiated Power (ERP/EIRP) - Substitution Method:



TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Abbott Laboratories
Address:	1921 Hurd Drive
City, State, Zip:	Irving, TX 75038
Test Requested By:	Don Mendell
EUT:	SAL Alinity Basic Kit
First Date of Test:	June 23, 2021
Last Date of Test:	August 05, 2021
Receipt Date of Samples:	June 15, 2021
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The SAL Alinity CI series is the interface between the GLP systems Track and an Alinity CI-series analyzer. Patient samples to be analyzed by the Alinity CI System are taken directly from the sample tube in the CAR using the pipette unit of an Alinity C or Alinity I processing module. GLP12408 SAL Alinity c end section, which contains an access point and barcode reader, is used to interface with a single Alinity C analyzer.

A SAL Alinity Basic Kit may be used to link several Alinity CI-series analyzers together. The kit contains: 1 T-Element, 2 Track Segment Units, 1 24V Power Supply, and 1 SMC Section. 1 CrossSwitch with 2 RFID radios is contained within the T-Element.

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA INFORMATION

Type	Provided by:	Dimensions
Embedded Inductive Loop	GLP Systems	51mm x 35mm

POWER SETTING

Radio	Modulation	Protocol	Data Rate	Frequency	Power Setting (mW)
RFID	OOK	ISO 13693	26.48 kbps	13.56 MHz	200

^{*}Power is set internally through product firmware at the default maximum.

Configuration ABBO0080 - 2

Software/Firmware Running during test		
Description	Version	
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin	
Firmware	TrackEmvTest_atr_Version_0.0_47120.bin	
Firmware	TrackEmvTest_cp_pp_tac_Version_0.0_46817.bin	
Firmware	TrackEmvTest_scc_Version_0.0_46817.bin	
Firmware	TrackEmvTest_scd_Version_0.0_46817.bin	
Firmware	TrackEmvTest_scx_scr_Version_0.0_46817.bin	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
CrossSwitch Radio	GLP Systems	20005732	ENG05-CS
AccessPoint Radio	GLP Systems	20008971/20008841	ENG02-AP
Divergent Radio	GLP Systems	20031403 A (PCB:20031315)	ENG01-DVR

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
Power Strip	GLP Systems	GLP12015	None
CAN Bus	GLP Systems	None	None
24V Power Supply	GLP Systems	GLP12010	C06A001511
Power Board	GLP Systems	GLP12014	None
AC Line Filter	GLP Systems	GLP12013	0001002
Switch 90 Convergent	GLP Systems	GLP12154	ENG01-CN
Switch 90 Divergent	GLP Systems	GLP12153	ENG01-DV
ChargeLane M	GLP Systems	GLP12553	ENG02-CL M
PassPoint	GLP Systems	GLP12191	ENG02-PP
Drawer Reader	GLP Systems	20001805 Rev C (PCB:20001791 Rev. B)	ENG05-DR

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power Cable	Yes	1.1m	No	AC Mains	AC Line Filter
Auxiliary Bus Line	Yes	1.0m	No	AC Line Filter	24V and 5V Power Supply
Ethernet Cable	Yes	5.0m	No	Laptop	CAN Bus
Ethernet Cable	Yes	1.0m	No	CAN Bus	Switch 90 Divergent
Ethernet Cable	Yes	0.5m	Yes	Switch 90 Divergent	Switch 90 Convergent
Ethernet Cable	Yes	0.5m	Yes	Switch 90 Convergent	ChargeLane
Ethernet Cable	Yes	0.5m	Yes	ChargeLane	CrossSwitch
Ethernet Cable	Yes	0.5m	Yes	CrossSwitch	PassPoint
Ethernet Cable	Yes	0.5m	Yes	PassPoint	AccessPoint
Ethernet Terminator	No	0.6m	No	AccessPoint	Terminated
DC Power Cable	No	0.6m	Yes	Power Board	Switch 90 Divergent
DC Power Cable	No	0.6m	Yes	Power Board	Switch 90 Convergent
DC Power Cable	No	0.6m	Yes	Power Board	ChargeLane
DC Power Cable	No	0.6m	Yes	Power Board	Cross Switch
DC Power Cable	No	0.6m	Yes	Power Board	PassPoint
DC Power Cable	No	0.6m	Yes	Power Board	AccessPoint
DC Power Cable	No	0.6m	Yes	Power Board	Drawer Reade

Configuration ABBO0080-7

Software/Firmware Running during test				
Description	Version			
Firmware	SALGeneric-Alinity_1.3.2.1_46961.bin			
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin			
Firmware	TrackEmvTest_cp_pp_tac_Version_0.0_46817.bin			
Firmware	TrackEmvTest_Version_scsp_0.0_46817.bin			
Firmware	TrackEmvTest_scx_scr_Version_0.0_46817.bin			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
SAL Alinity Basic Kit:		GLP12415	None
T-Element		GLP12412	SAL12412000044
Track Segment Unit	GLP Systems	GLP12100	0001225
Track Segment Unit	GLF Systems	GLP12100	0001200
24V Power Supply		GLP12010	None
SCM Section		GLP12407	None
CrossSwitch Radio 2	GLP Systems	GLP12152/20005732 A1.1	ENG09-CS

Peripherals in test setup	boundary		
Description	Manufacturer	Model/Part Number	Serial Number
SAL Alinity C End Section	GLP Systems	GLP12408	SAL12408000028
AccessPoint Radio 1	GLP Systems	20031615 A (PCB:20008971)	ENG06-AP
Convergent Radio	GLP Systems	PCB: 20005732	ENG02-CN
Divergent Radio	GLP Systems	20031403 A (PCB:20031315)	ENG02-DVR
CrossSwitch Radio 1	GLP Systems	GLP12152/20005732 A1.1	ENG08-CS
5V Power Supply	GLP systems	GLP12011	None
Input Filter	GLP Systems	GLP12013	None
Power Strip	GLP Systems	GLP12015	None
Power Strip	GLP Systems	GLP12015	None
ChargeLane Track Radio (M)	GLP Systems	GLP12553	ENG03-CL M
ChargeLane Track (S)	GLP Systems	GLP12554	ENG03-CL S
CrossSwitch Track Radio 3	GLP Systems	GLP12152	ENG10-CS
CrossSwitch Track Radio 4	GLP Systems	GLP12152	ENG11-CS
CrossSwitch Track Radio 5	GLP Systems	GLP12152	ENG12-CS
CrossSwitch Track Radio 6	GLP Systems	GLP12152	ENG13-CS
Track Segment Unit	GLP Systems	GLP12100	0001186
Car 1	GLP Systems	GLP12677 A	004 9494
Car 2	GLP Systems	GLP12677 A	004 8855

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Cable	No	2.7m	No	AC Mains	Input Filter	
AC Cable	No	2.7m	No	Input Filter	Power Strip	
AC Cable	No	2.7m	No	Input Filter	Power Strip	
Ethernet	Yes	10.0m	No	Laptop	SAL Alinity C End Section	
USB	Yes	5.0m	No	Laptop	SAL Alinity C End Section	

MODIFICATIONS

Equipment Modifications

Equi	Equipment Modifications							
Item	Date	Test	Modification	Note	Disposition of EUT			
1	2021-06-23	Field Strength of Fundamental	Tested as delivered to test station.	None	EUT remained at Element following the test.			
2	2021-06-23	Field Strength of Spurious Emissions (Less than 30 MHz)	Tested as delivered to test station.	None	EUT remained at Element following the test.			
3	2021-06-23	Field Strength of Spurious Emissions (Greater than 30 MHz)	Tested as delivered to test station.	None	EUT remained at Element following the test.			
4	2021-07-30	Field Strength of Fundamental	Tested as delivered to test station.	None	EUT remained at Element following the test.			
5	2021-07-24	Frequency Stability	Tested as delivered to test station.	None	EUT remained at Element following the test.			
6	2021-07-24	Occupied Bandwidth	Tested as delivered to test station.	None	Scheduled testing was completed.			
7	2021-08-05	Powerline Conducted Emissions	Tested as delivered to test station.	None	EUT remained at Element following the test.			

POWERLINE CONDUCTED EMISSIONS

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0080 - 7

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Gauss	TDEMI 30M	ARL	2021-03-23	2022-03-23
Terminator	Fairview Microwave	ST3B-C	RGX	2021-06-04	2022-06-04
Cable - Conducted Cable	Northwest EMC	TXA, HFC, TQU	TXAA	2021-01-26	2022-01-26
LISN	Solar Electronics	9252-50-R-24-BNC	LJL	2020-08-25	2021-08-25
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	2020-08-25	2021-08-25
Power Source/Analyzer	Hewlett Packard	6841A	THC	NCR	NCR

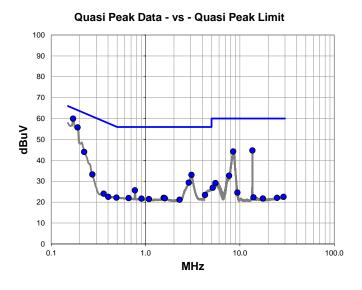
MEASUREMENT BANDWIDTHS

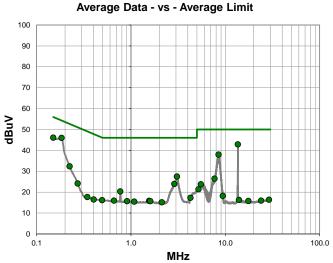
Frequency Range	BWI
(MHz)	(kHz)
0.15 - 30.0	1.0
30.0 - 400.0	10.0
400.0 - 1000.0	100.0
1000.0 - 6000.0	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION


The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.


The EUT was transmitting at its maximum data rate. Measurement with all radios ON not tested as radios do not simultaneously transmit. For each radio, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

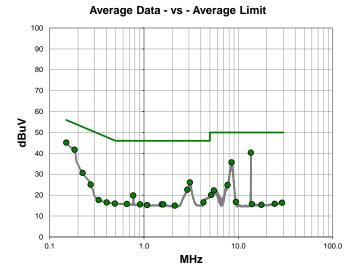
POWERLINE CONDUCTED EMISSIONS

					EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0
Work Order:	ABBO0080	Date:	2021-08-05	~		
Project:	None	Temperature:	20.9 °C	leans	- Hla	
Job Site:	TX02	Humidity:	55.4% RH			
Serial Number:	ENG09-CS	Barometric Pres.:	1022 mbar	Tested by	y: Travis Glasser	
EUT:	SAL AlinityBasic Kit					
Configuration:	7					
Customer:	Abbott Laboratories					
Attendees:	None					
EUT Power:	220VAC/60Hz					
Operating Mode:	Transmitting RFID					
Deviations:	None					
Comments:	CrossSwitch Radio 2.	Both radios ON.				
Test Specifications			Test Meth	od		
FCC 15.207:2021			ANSI C63	.10:2013		_
Run # 4	Line:	Neutral	Ext. Attenuation:	0	Results	Pass

Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	
0.170	39.6	20.4	60.0	65.0	-5.0	
0.190	35.4	20.4	55.8	64.1	-8.3	
13.560	23.7	21.1	44.8	60.0	-15.2	
8.472	23.7	20.6	44.3	60.0	-15.7	
0.223	23.7	20.4	44.1	62.7	-18.6	

	Average Data - vs - Average Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
13.560	21.8	21.1	42.9	50.0	-7.1		
0.184	25.6	20.4	46.0	54.3	-8.3		
0.150	25.7	20.4	46.1	56.0	-9.9		
8.472	17.4	20.6	38.0	50.0	-12.0		
3.066	7.2	20.3	27.5	46.0	-18.5		

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
3.064	12.8	20.3	33.1	56.0	-22.9
2.869	9.1	20.3	29.4	56.0	-26.6
7.678	12.2	20.5	32.7	60.0	-27.3
0.272	12.9	20.4	33.3	61.1	-27.8
0.769	5.5	20.2	25.7	56.0	-30.3
5.503	8.8	20.4	29.2	60.0	-30.8
4.267	3.2	20.3	23.5	56.0	-32.5
5.152	6.6	20.3	26.9	60.0	-33.1
1.552	1.8	20.3	22.1	56.0	-33.9
0.490	2.0	20.2	22.2	56.2	-34.0
0.660	1.8	20.2	22.0	56.0	-34.0
1.598	1.6	20.3	21.9	56.0	-34.1
0.905	1.4	20.3	21.7	56.0	-34.3
1.082	1.3	20.2	21.5	56.0	-34.5
0.359	3.9	20.2	24.1	58.8	-34.7
2.289	0.9	20.3	21.2	56.0	-34.8
0.402	2.4	20.2	22.6	57.8	-35.2
9.393	4.0	20.6	24.6	60.0	-35.4
28.950	-0.1	22.7	22.6	60.0	-37.4
13.930	1.2	21.1	22.3	60.0	-37.7
24.737	-0.1	22.2	22.1	60.0	-37.9
17.534	0.4	21.4	21.8	60.0	-38.2


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.223	12.0	20.4	32.4	52.7	-20.3
2.877	3.7	20.3	24.0	46.0	-22.0
7.678	6.0	20.5	26.5	50.0	-23.5
0.769	0.2	20.2	20.4	46.0	-25.6
5.499	3.4	20.4	23.8	50.0	-26.2
0.272	3.8	20.4	24.2	51.1	-26.9
5.199	1.1	20.3	21.4	50.0	-28.6
4.267	-3.0	20.3	17.3	46.0	-28.7
0.493	-4.0	20.2	16.2	46.1	-29.9
0.660	-4.2	20.2	16.0	46.0	-30.0
1.555	-4.4	20.3	15.9	46.0	-30.1
0.907	-4.6	20.3	15.7	46.0	-30.3
1.598	-4.6	20.3	15.7	46.0	-30.3
1.081	-4.7	20.2	15.5	46.0	-30.5
2.120	-5.1	20.3	15.2	46.0	-30.8
0.402	-3.7	20.2	16.5	47.8	-31.3
0.344	-2.5	20.2	17.7	49.1	-31.4
9.393	-2.3	20.6	18.3	50.0	-31.7
28.972	-6.3	22.7	16.4	50.0	-33.6
13.931	-4.8	21.1	16.3	50.0	-33.7
23.913	-6.1	22.1	16.0	50.0	-34.0
17.532	-5.6	21.4	15.8	50.0	-34.2

POWERLINE CONDUCTED EMISSIONS

					EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0
Work Or	ler: ABBO0080	Date:	2021-08-05	~		
Proj	ect: None	Temperature:	20.9 °C	lem	- He	
Job S	ite: TX02	Humidity:	55.4% RH			
Serial Num	er: ENG09-CS	Barometric Pres.:	1022 mbar	Tested by	: Travis Glasser	
E	JT: SAL AlinityBasic Kit					
Configurat	on: 7					
Custon	er: Abbott Laboratories					
Attende	es: None					
EUT Pov	er: 220VAC/60Hz					
Operating Mo	de: Transmitting RFID					
Deviation	ns: None					
Comme	CrossSwitch Radio 2	P. Both radios ON.				
Test Specification	ns		Test Meth	od		
FCC 15.207:2021			ANSI C63.			
Run # 5	Line	: High Line	Ext. Attenuation:	0	Results	Pass

Quasi Peak Data - vs - Quasi Peak Limit 100 90 80 70 40 30 20 10 0.1 1.0 MHz

	Quasi Pe	ak Data - v	s - Quasi P	eak Limit	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.150	36.6	20.4	57.0	66.0	-9.0
0.184	33.2	20.4	53.6	64.3	-10.7
13.560	21.3	21.1	42.4	60.0	-17.6
8.473	21.3	20.6	41.9	60.0	-18.1
0.223	21.0	20.4	41.4	62.7	-21.3

	Aveia	ye Dala - v	S - Average	7 LIIIIII	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
13.560	19.3	21.1	40.4	50.0	-9.6
0.150	24.8	20.4	45.2	56.0	-10.8
0.184	21.4	20.4	41.8	54.3	-12.5
8.472	15.1	20.6	35.7	50.0	-14.3
3.064	5.8	20.3	26.1	46.0	-19.9

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
3.064	11.4	20.3	31.7	56.0	-24.3
0.272	15.7	20.4	36.1	61.1	-25.0
2.867	7.9	20.3	28.2	56.0	-27.8
7.707	10.6	20.5	31.1	60.0	-28.9
0.769	4.9	20.2	25.1	56.0	-30.9
5.501	7.3	20.4	27.7	60.0	-32.3
4.265	2.4	20.3	22.7	56.0	-33.3
0.490	1.9	20.2	22.1	56.2	-34.1
0.647	1.7	20.2	21.9	56.0	-34.1
1.545	1.5	20.3	21.8	56.0	-34.2
5.152	5.5	20.3	25.8	60.0	-34.2
1.604	1.4	20.3	21.7	56.0	-34.3
0.904	1.3	20.3	21.6	56.0	-34.4
1.081	1.2	20.2	21.4	56.0	-34.6
0.339	4.3	20.2	24.5	59.2	-34.7
0.406	2.5	20.2	22.7	57.7	-35.0
2.117	0.7	20.3	21.0	56.0	-35.0
9.410	2.4	20.6	23.0	60.0	-37.0
29.139	-0.2	22.7	22.5	60.0	-37.5
24.999	-0.2	22.2	22.0	60.0	-38.0
13.936	0.7	21.1	21.8	60.0	-38.2
17.534	0.1	21.4	21.5	60.0	-38.5

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.223	10.3	20.4	30.7	52.7	-22.0
2.877	2.4	20.3	22.7	46.0	-23.3
7.678	4.4	20.5	24.9	50.0	-25.1
0.272	4.7	20.4	25.1	51.1	-26.0
0.769	-0.3	20.2	19.9	46.0	-26.1
5.501	1.9	20.4	22.3	50.0	-27.7
4.265	-3.7	20.3	16.6	46.0	-29.4
5.149	-0.2	20.3	20.1	50.0	-29.9
0.658	-4.4	20.2	15.8	46.0	-30.2
0.490	-4.2	20.2	16.0	46.2	-30.2
0.907	-4.7	20.3	15.6	46.0	-30.4
1.545	-4.7	20.3	15.6	46.0	-30.4
1.600	-4.7	20.3	15.6	46.0	-30.4
1.079	-4.9	20.2	15.3	46.0	-30.7
2.117	-5.3	20.3	15.0	46.0	-31.0
0.402	-3.7	20.2	16.5	47.8	-31.3
0.330	-2.5	20.2	17.7	49.5	-31.8
9.412	-3.8	20.6	16.8	50.0	-33.2
29.049	-6.3	22.7	16.4	50.0	-33.6
24.291	-6.3	22.2	15.9	50.0	-34.1
13.930	-5.4	21.1	15.7	50.0	-34.3
17.530	-6.0	21.4	15.4	50.0	-34.6

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0080 - 7

FREQUENCY RANGE INVESTIGATED

Start Frequency 490 kHz	Stop Frequency 30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2020-07-30	2021-07-30
Antenna - Loop	ETS Lindgren	6502	AZM	2020-07-09	2022-07-09
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2021-05-24	2022-05-24

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDAMENTAL

Project: None Temperature: 21.3 °C												EmiR5 2021.05.14.0	Р	SA-ESCI 2021.03.17	0	
Serial Number See Configuration Barometric Press; 1015 mbar Tested by; Mark Baytan	V						Date:				11	, _				
Serial Number See Configuration See Configuration See Configuration Tested by: Mark Baytan						Те					-	$\epsilon \in$	7/-			
EUT: SAL Allny Basic Kit Configuration: Abort Laboratories Attendees: Don Mendell EUT Power: 2007AC60Hz Deviations: All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both antennas transmitting), AccessPoint Radio. Test mode only without RFID tags. at Specifications C 15.225.2021 Run # 10 Test Distance (m) 10 Antenna Height(s) 1 (m) Results Pass Fig. 1													/			
Customer Abbott Laboratories Abtott La	Ser					Barom	etric Pres.:	1015	mbar		Tested by:	Mark Bayt	an		_	
Customers Abbott Laboratories Attendees Downward Downwar				SAL Alinit	y Basic Kit										_	
Autondoes Comments Comment	Co			Abbott Lo	haratarias										_	
Deviations All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both Comments) All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both Comments) All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both Comments) All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both Comments) All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both Comments) All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both Comments) All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both Comments) All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio, Convergent Radio (both Comments) All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Rad																
Deviations All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both antennas transmitting), AccessPoint Radio. Test mode only without RFID tags. Securifications Test Method ANSI C63.10:2013 ANSI															_	
Deviations None All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both antennas transmitting), AccessPoint Radio. Test mode only without RFID tags. Sepecifications Test Method ANSI C63.10.2013 ANSI C63.10.2013 ANSI C63.10.2013 ANSI C63.10.2013						56 MHz									_	
All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both antennas transmitting), AccessPoint Radio. Test mode only without RFID tags. Sepecifications	Opera	ating Mod	de:	Transmitti	ing iti ib io	.50 1111 12										
All Radios ON - CrossSwitch Radio 1 & 2 (both antennas transmitting), Divergent Radio, Convergent Radio (both antennas transmitting), AccessPoint Radio. Test mode only without RFID tags. Sepecifications		B		None											_	
Section Comments: Commen		Deviation	ns:													
Section Test Method ANSI Ces. 10:2013				All Radios	ON - Cross	sSwitch Ra	dio 1 & 2 (bo	oth antenna	as transmitti	ing), Diver	gent Radio,	Convergen	Radio (bot	th	_	
Run # 10 Test Distance (m) 10 Antenna Height(s) 1(m) Results Pass		Commen	ts:	antennas	transmitting), AccessP	oint Radio.	Test mode	only withou	it RFID tag	js.		•			
Run # 10 Test Distance (m) 10 Antenna Height(s) 1(m) Results Pass									•						_	
Run # 10 Test Distance (m) 10 Antenna Height(s) 1(m) Results Pass	est Spe	cification	าร						Test Meth	od					_	
Run # 10 Test Distance (m) 10 Antenna Height(s) 1(m) Results Pass															_	
No.										.0.20.0						
No.																
No.																
No.																
No.																
Freq Amplitude Factor (eBirry) Test Distance Attenuation (eBirry) Test Distance Attenuation (eBirry) Test Distance Attenuation (eBirry) Test Distance Attenuation Transducer Type Detector Adjustment (eBirry) Test Distance Attenuation Transducer Type Test Distance Adjustment Test Distance Attenuation Test Distance Attenuation Test Distance Attenuation Test Distance Test Distance	Run	# 10		Test Di	istance (m)	10	Antenna	Height(s)		1(m)		Results	Pa	ass	_	
Freq Amplitude Factor (eBirry) Test Distance Attenuation (eBirry) Test Distance Attenuation (eBirry) Test Distance Attenuation (eBirry) Test Distance Attenuation Transducer Type Detector Adjustment (eBirry) Test Distance Attenuation Transducer Type Test Distance Adjustment Test Distance Attenuation Test Distance Attenuation Test Distance Attenuation Test Distance Test Distance															_	
Freq Amplitude Factor (eBirry) Test Distance Attenuation (eBirry) Test Distance Attenuation (eBirry) Test Distance Attenuation (eBirry) Test Distance Attenuation Transducer Type Detector Adjustment (eBirry) Test Distance Attenuation Transducer Type Test Distance Adjustment Test Distance Attenuation Test Distance Attenuation Test Distance Attenuation Test Distance Test Distance	00															
Freq Amplitude Factor Milks Factor Milks Factor Milks Factor Milks	80															
Freq Amplitude Factor Milks Factor Milks Factor Milks Factor Milks																
Freq Amplitude Factor Height (degrees) Test Distance Attenuation Transducer Type Detector Adjustment (deBu/m) (deBu/m) (deBu/m) (degrees) Test Distance Attenuation Transducer Type Detector Adjustment (deBu/m) (degrees) Test Distance Attenuation Transducer Type Detector Type Detector Adjustment (deBu/m) (degrees) Test Distance Type Detector Type Detector Detect	70	+	-													
Freq Amplitude Factor Height (degrees) Test Distance Attenuation Transducer Type Detector Adjustment (deBu/m) (deBu/m) (deBu/m) (degrees) Test Distance Attenuation Transducer Type Detector Adjustment (deBu/m) (degrees) Test Distance Attenuation Transducer Type Detector Type Detector Adjustment (deBu/m) (degrees) Test Distance Type Detector Type Detector Detect																
Freq Amplitude Factor Height (degrees) Test Distance Attenuation Transducer Type Detector Adjustment (deBu/m) (deBu/m) (deBu/m) (degrees) Test Distance Attenuation Transducer Type Detector Adjustment (deBu/m) (degrees) Test Distance Attenuation Transducer Type Detector Type Detector Adjustment (deBu/m) (degrees) Test Distance Type Detector Type Detector Detect	60															
No. Periodic Polarity Pol	00															
No. Periodic Polarity Pol																
20 10 10 13 13 13 13 13 13 14 14 14 14 14 14 14 15 MHz Polarity/ (MHz) Polarity/ (GBW) Regrees) Regree (GBW) Regree (GBW	50															
20 10 10 13 13 13 13 13 13 14 14 14 14 14 14 14 15 MHz Polarity/ (MHz) Polarity/ (GBW) Regrees) Regree (GBW) Regree (GBW	_															
20 10 10 13 13 13 13 13 13 14 14 14 14 14 14 14 15 MHz Polarity/ (MHz) Polarity/ (GBW) Regrees) Regree (GBW) Regree (GBW	\$ 40		_													
20 10 10 13 13 13 13 13 13 14 14 14 14 14 14 14 15 MHz Polarity/ (MHz) Polarity/ (GBW) Regrees) Regree (GBW) Regree (GBW	ă															
20 10 10 13 13 13 13 13 13 14 14 14 14 14 14 14 15 MHz Polarity/ (MHz) Polarity/ (GBW) Regrees) Regree (GBW) Regree (GBW	쁑 ৣ															
10	30															
10																
Test Distance (MHz)	20	+														
Test Distance (MHz)																
Test Distance (MHz)	10	\perp														
Treed (MHz) MHz																
Freq (MHz) MHz	0															
Test Distance (MHz) Transducer (MHz) Transdu	0															
Test Distance (MHz) Transducer (MHz) Transdu																
Freq (MHz)																
Freq (MHz) Amplitude (dB/m) (dB/m) Antenna Height (degrees) Azimuth (degrees) Test Distance (meters) Azimuth (degrees) Test Distance (dB/m) Azimuth (degrees) Test Distance (dB/m) Azimuth (degrees) Test Distance (dB/m) Test Distanc		13		13	13	13	13			ļ	14	14	14	15		
Freq Amplitude (dBuV) (dBuV) (dBum) Antenna Height (degrees) (meters) (degrees) (meters) (degrees) (meters) (degrees) (dBuV) (dBuV) (dBuV) (dBuV/m)								MHz	<u> </u>			■ DV	Δ Λ\/	• OP		
Freq (MHz) Amplitude (dBuV) Factor (dB/m) And plitude (dB/m) Factor (meters) And plitude (degrees) External Attenuation (degrees) Transducer (meters) Detector (meters) Distance Adjustent (dBuV/m) Adjusted (dBuV/m) Spec. Limit (dBuV/m) Compared to Spec. (dB) Comments 13.567 31.8 11.6 1.0 183.0 10.0 0.0 Perp to EUT QP -19.1 24.3 50.5 -26.2 All Radios (dB) 14.010 6.4 11.6 1.0 310.9 10.0 0.0 Perp to EUT QP -19.1 -1.1 29.5 -30.6 All Radios (dB) 12.944 6.0 11.6 1.0 74.0 10.0 0.0 Perp to EUT QP -19.1 -1.5 29.5 -31.0 All Radios (dB) 13.719 13.6 11.6 1.0 145.0 10.0 0.0 Perp to EUT QP -19.1 -1.5 29.5 -31.0 All Radios (dB) 13.401 10.9 11.6 1.0 145.0 10.0 </th <th></th> <th>- FK</th> <th>▼ AV</th> <th><u>- w</u></th> <th></th>												- FK	▼ AV	<u>- w</u>		
Freq (MHz) Amplitude (dBuV) Factor (dB/m) Height (meters) Azimuth (degrees) Test Distance (meters) Attenuation (dB) Type Detector Adjustment (dB) Adjustment (dB) Adjustment (dB) Adjustment (dB) Spec. Limit (dB) Spec. Limit (dB) Comments 13.567 31.8 11.6 1.0 183.0 10.0 0.0 Perp to EUT QP -19.1 24.3 50.5 -26.2 All Radios (dB) 13.553 31.7 11.6 1.0 171.0 10.0 0.0 Perp to EUT QP -19.1 24.2 50.5 -26.2 All Radios (dB) 14.010 6.4 11.6 1.0 310.9 10.0 0.0 Perp to EUT QP -19.1 -1.1 29.5 -30.6 All Radios (dB) 13.719 13.6 11.6 1.0 145.0 10.0 0.0 Perp to EUT QP -19.1 -1.5 29.5 -31.0 All Radios (dB) 13.401 10.9 11.6 1.0 145.0					Ant			Enternal			Dieterre			Company		
(MHz) (dBuV) (dBuV) (dBuV) (dBuV) (degrees) (meters) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dBUV/m) (dBUV/m) (dB) Comments 13.567 31.8 11.6 1.0 183.0 10.0 0.0 Perp to EUT QP -19.1 24.3 50.5 -26.2 All Radios (14.0) 14.010 6.4 11.6 1.0 310.9 10.0 0.0 Perp to EUT QP -19.1 -1.1 29.5 -30.6 All Radios (13.7) 13.719 13.6 11.6 1.0 145.0 10.0 0.0 Perp to EUT QP -19.1 -1.5 29.5 -30.6 All Radios (13.4) 13.719 13.6 11.6 1.0 145.0 10.0 0.0 Perp to EUT QP -19.1 6.1 40.5 -34.4 All Radios (13.4) 13.560 48.7 11.6 1.0 176.0 10.0 0.0 Perp to EUT QP -19.1 <	Frea	Amplitud	de	Factor		Azimuth	Test Distance			Detector		Adjusted	Spec. Limit			
13.567 31.8 11.6 1.0 183.0 10.0 0.0 Perp to EUT QP -19.1 24.3 50.5 -26.2 All Radios (14.010 6.4 11.6 1.0 310.9 10.0 0.0 Perp to EUT QP -19.1 24.2 50.5 -26.3 All Radios (14.010 6.4 11.6 1.0 310.9 10.0 0.0 Perp to EUT QP -19.1 -1.1 29.5 -30.6 All Radios (14.010 6.4 11.6 1.0 74.0 10.0 0.0 Perp to EUT QP -19.1 -1.5 29.5 -31.0 All Radios (13.719 13.6 11.6 1.0 145.0 10.0 0.0 Perp to EUT QP -19.1 6.1 40.5 -34.4 All Radios (13.401 10.9 11.6 1.0 153.9 10.0 0.0 Perp to EUT QP -19.1 3.4 40.5 -37.1 All Radios (13.560 48.7 11.6 1.0 176.0 10.0 0.0 Perp to EUT QP -19.1 41.2 84.0 -42.8 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6	(MHz)								7							
13.553 31.7 11.6 1.0 171.0 10.0 0.0 Perp to EUT QP -19.1 24.2 50.5 -26.3 All Radios (14.010 6.4 11.6 1.0 310.9 10.0 0.0 Perp to EUT QP -19.1 -1.1 29.5 -30.6 All Radios (14.010 6.4 11.6 1.0 14.0 10.0 0.0 Perp to EUT QP -19.1 -1.5 29.5 -30.6 All Radios (14.010 11.6 1.0 14.0 10.0 0.0 Perp to EUT QP -19.1 -1.5 29.5 -31.0 All Radios (14.010 11.6 1.0 14.0 10.0 0.0 Perp to EUT QP -19.1 6.1 40.5 -34.4 All Radios (14.010 11.6 1.0 153.9 10.0 0.0 Perp to EUT QP -19.1 3.4 40.5 -37.1 All Radios (14.010 11.6 1.0 176.0 10.0 0.0 Perp to EUT QP -19.1 41.2 84.0 -42.8 All Radios (14.010 11.6 11.0 15.010 11.0 11.0 0.0 Perp to EUT QP -19.1 41.2 84.0 -42.8 All Radios (14.010 11.01				44.5		1000	400	0.0	D	65	40.1	010	F6 -	60.0		
14.010 6.4 11.6 1.0 310.9 10.0 0.0 Perp to EUT QP -19.1 -1.1 29.5 -30.6 All Radios (12.944 6.0 11.6 1.0 74.0 10.0 0.0 Perp to EUT QP -19.1 -1.5 29.5 -31.0 All Radios (13.719 13.6 11.6 1.0 145.0 10.0 0.0 Perp to EUT QP -19.1 6.1 40.5 -34.4 All Radios (13.401 10.9 11.6 1.0 153.9 10.0 0.0 Perp to EUT QP -19.1 3.4 40.5 -37.1 All Radios (13.401 10.9 11.6 1.0 176.0 10.0 0.0 Perp to EUT QP -19.1 41.2 84.0 -42.8 All Radios (13.560 48.7 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 10.0 10.0 10.0 10.0																
12.944 6.0 11.6 1.0 74.0 10.0 0.0 Perp to EUT QP -19.1 -1.5 29.5 -31.0 All Radios (13.719 13.6 11.6 1.0 145.0 10.0 0.0 Perp to EUT QP -19.1 6.1 40.5 -34.4 All Radios (13.401 10.9 11.6 1.0 153.9 10.0 0.0 Perp to EUT QP -19.1 3.4 40.5 -37.1 All Radios (13.560 48.7 11.6 1.0 176.0 10.0 0.0 Perp to EUT QP -19.1 41.2 84.0 -42.8 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 10.0 10.0 10.0 10.0																
13.719 13.6 11.6 1.0 145.0 10.0 0.0 Perp to EUT QP -19.1 6.1 40.5 -34.4 All Radios (13.401 10.9 11.6 1.0 153.9 10.0 0.0 Perp to EUT QP -19.1 3.4 40.5 -37.1 All Radios (13.560 48.7 11.6 1.0 176.0 10.0 0.0 Perp to EUT QP -19.1 41.2 84.0 -42.8 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 10.0 10.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.560 48.6 11.6 10.0 10.0 10.0 10.0 10.0 10.0 10	12.944														All Radios C	
13.560 48.7 11.6 1.0 176.0 10.0 0.0 Perp to EUT QP -19.1 41.2 84.0 -42.8 All Radios (13.560 48.6 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.719	13.6	11.6 1.0 145.0 10.0 0.0				Perp to EUT	QP	-19.1	6.1	40.5	-34.4	All Radios (
13.560 48.6 11.6 1.0 210.0 10.0 0.0 Para to GND QP -19.1 41.1 84.0 -42.9 All Radios (13.401		9 11.6 1.0 153.9 10.0								40.5 -37.1		All Radios C			
									0.0 Perp to EUT QP -19.1							
	13.560														All Radios C	

FIELD STRENGTH OF FUNDAMENTAL

																								EmiR:	2021.06.	24.0		PSA	A-ESCI 2021.03.17.	0_
Wo		Orc			ABB								ate:				07-3					1	1	,			-			
		roje				lone				Te			ure:				7 °C			-		_	1	=	\leq		7-			
Caria		b S			ENG	X02				Baron			dity:				%R					т.	acted by	Tro	vio C	م ماد	201			
Seria	11 17			SAL				∠ i+		Daron	netr	IC P	res.:		10	JZ I	mba	aı				- 10	ested by:	1118	VIS C	าเสร	sei			_
Conf	ficu			7	AIIIII	ty D	3510	ΚIL																						_
00111	Cus	ton	ner:	Abbo	ott I a	hora	atori	es																						_
				Don			210	-																						_
				220V			z																							_
Operat	ina	Mo	do:	Trans	smitt	ting	RFIE	13	.56	MHz																				_
Operat	9	1110	uc.																											_
D	evi	atio	ns:	None	9																									
				Croo	~C.v.i	tob	Dod	- 2	۸	ll emis	i - r		050.0	roo	tor t	200	20	אם ו	مام	+h	o limi	:4								_
C	om	mei	nts:	CIUS	SOWI	itteri	itaui	10 2	. ^	ii Ciilis	55101	15 W	eie y	ıca	iei ii	IaII	20 1	uDi	Jeio	/V LII	IC 111111	ıı.								
	•																													
Test Speci	ific	atio	ns														Tes	et M	etho	hd										=
FCC 15.22			113																		2013									_
. 00 .0.22																		0. 0												
P "					- 1 -			1		4.0						1->					17							_		=
Run #		30		16	st D	ista	nce	(m)		10		Ant	enna	не	eight	(S)				1	I (m)			H	esul	ts		Pas	SS	=
	П						\top										п					Т				\top				
80 -	\vdash	+			+	+	+++		\Box		+	+					₩	+	+	\vdash		+			++	+		Н		
																	Ш													
70	\Box	-				_						-					₩	\perp	_			-				+		Н		
																	Ш													
60					\perp		1										Ш					_			\perp			Ш		
																	Ш													
50 -																	<u>I</u>													
50]																														
E																														
≥ 40 +	П		П						П																			П		
w//\ngb																														
30					+++		+			-								+	_	\Box		+				+			- 	
																	•													
20 -	\vdash	+			-		+			+++		-				-	•	+				-				+		H		
																	•													
10		-			+					-		-					+	+	_			-			-	+		H	+	
0 +	Ш						₩.		Ц								_		_			4						Ш		
																					T									
₋₁₀]							Ш																							
13	3			13		1	13			13		1	13		1	14			14			14	1	14			14		15	
															М	Hz									n Di	,	A A17		• QP	
																								_	P	`	◆ AV		<u> </u>	
														-	xterna	al.		olarity					Distance						Compared to	
Freq		mplitu			ctor		enna F			zimuth	Te		stance		enuati			Type		De	etector		Adjustment		djusted		Spec. Lim		Spec.	
(MHz)		(dBu\	/)	(dE	3/m)		(meter	rs)	(0	legrees)		(met	ers)		(dB)								(dB)	(d	BuV/m))	(dBuV/m))	(dB)	Comments
14.153		6.2		11	1.6		1.0			141.9		10.	.0		0.0		Per	p to I	EUT		QP		-19.1		-1.3		29.5		-30.8	All Radios ON
13.050		5.7		11	1.6		1.0	1		297.0		10.	.0		0.0		Perp	p to I	EUT		QP		-19.1		-1.8		29.5		-31.3	All Radios ON
13.576		24.3			1.6		1.0			249.9		10.			0.0			p to I			QP		-19.1		16.8		50.5		-33.7	All Radios ON
13.400 13.553		6.6 16.3			1.6 1.6		1.0 1.0			66.0 51.0		10. 10.			0.0			p to I p to I			QP QP		-19.1 -19.1		-0.9 8.8		40.5 50.5		-41.4 -41.7	All Radios ON All Radios ON
13.820		6.3			1.6		1.0			315.9		10.			0.0			p to I			QP		-19.1		-1.2		40.5		-41.7	All Radios ON
13.560		35.6	6	11	1.6		1.0	1		238.9		10.	.0		0.0		Per	p to I	EUT		QP		-19.1		28.1		84.0		-55.9	All Radios ON
13.560		33.1			1.6		1.0			232.1		10.			0.0			p to I			QP OP		-19.1 -19.1		25.6		84.0		-58.4 -64.1	CrossSwitch 2 Radio 1 CrossSwitch 2 Radio 2
13.560		27.4	٠	11	1.6		1.0	'		57.9		10.	.0		0.0		-er	p to I	=01		QP		-19.1		19.9		84.0		-64.1	CIUSSOWIICH Z RAUIO Z

FIELD STRENGTH OF SPURIOUS EMISSIONS (Less Than 30 MHz)

PSA-ESCI 2021.03.17.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0080 - 7

FREQUENCY RANGE INVESTIGATED

_		_	
Start Frequency	490 kHz	Stop Frequency	30 MHz
- ta	.00	0.00 0 9	00=

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2020-07-30	2021-07-30
Antenna - Loop	ETS Lindgren	6502	AZM	2020-07-09	2022-07-09
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2021-05-24	2022-05-24

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF SPURIOUS EMISSIONS (Less Than 30 MHz)

															EmiR5 2021.05.14.0		Р	SA-ESCI 2021.03.17.	0
	Wo	rk Order:	ABBO	0080			Date:	20	021-	06-23	3					_			Ī
		Project:	Nor	ne		Te	mperature:		21.3	3°C				4	6	5.	1		
		Job Site:	TXC)2			Humidity:	5	5.99	% RH						/	•		
;	Serial	Number:	See Config	gurations	В	arom	etric Pres.:	10	015	mbar	•		•	Tested by:	Mark Bayta	an			-
		EUT:	SAL Alinity I	Basic Kit															_
		guration:																	_
	С	ustomer:	Abbott Labo	oratories															_
	At	ttendees:	Don Mende	II															_
	EU	T Power:	220VAC/60																_
Ol	peratii	ng Mode:	Transmitting	g RFID 13.	.56 N	lHz													
	De	eviations:	None																
	Co	mments:	All Radios C antennas tra				adio 1 & 2 (bo Point Radio.								Convergen	it Rad	io (bo	oth	_
Test :	Snecif	fications								Test	Met	tho	d						=
	15.225		1										0:2013	1					_
																			_
R	un#	11	Test Dist	tance (m)		10	Antenna	Height	t(s)				1(m)		Results		Р	ass	_
												Т							
	80																		
	70										_	+							
	60																		
	50				+	+					+	+				+			
dBuV/m	40																		
3																			
몆																			
•	30					*													
	20				_	++						\top							
	10																		
	10																		
	0					+						+				+			
	-10														•				
	0.1	1				1.0)						10.0					100.0	
								М	Hz						■ PK	•	ΑV	QP	
										Pola	arity/								
F		Amplitude	Foots	Intenne Hairi		must.	Test Distance	Externa		Trans	sducer	r	Data	Distance	Adirected	6	Lieris	Compared to	
Fre (MH		Amplitude (dBuV)	Factor A (dB/m)	Antenna Height (meters)		muth grees)	Test Distance (meters)	Attenuat (dB)		l)	/ре		Detector	Adjustment (dB)	Adjusted (dBuV/m)		. Limit ıV/m)	Spec. (dB)	
(IVIF	12)	(abav)	(05/11)	(100	5.003)	(51613)	(00)						(35)	(0007/11)	(000		(00)	Comments
0.7		28.6	10.9	1.0		9.9	10.0	0.0		Perp 1			QP	-19.1	20.4		9.9	-9.5	All Radios ON
0.7		28.1	10.9	1.0		52.9	10.0	0.0		Perp t			QP	-19.1	19.9		9.7	-9.8	All Radios ON
0.7		28.3	10.9	1.0		33.9	10.0	0.0		Perp 1			QP	-19.1	20.1		0.3	-10.2	All Radios ON
27.1		5.9	10.0	1.0		9.0	10.0	0.0		Perp 1			QP	-19.1	-3.2		9.5	-32.7	All Radios ON
27.1		5.3	10.0	1.0		3.0	10.0	0.0		Para t			QP OB	-19.1	-3.8		9.5	-33.3	All Radios ON All Radios ON
27.1	120	3.7	10.0	1.0	12	21.0	10.0	0.0		Para t	וט בל	, ,	QP	-19.1	-5.4	2	9.5	-34.9	All Naulus UN

FIELD STRENGTH OF SPURIOUS EMISSIONS (Greater than 30 MHz)

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0080 - 7

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	18000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2021-05-24	2022-05-24
Cable	Northwest EMC	1-8.2 GHz	TXC	2021-05-24	2022-05-24
Cable	Northwest EMC	8-18 GHz	TXD	2021-04-30	2022-04-30
Amplifier - Pre-Amplifier	Fairview Microwave	FMAM63001	PAS	2021-05-24	2022-05-24
Amplifier - Pre-Amplifier	Miteq	AMF-3D-	PAJ	2021-05-24	2022-05-24
Amplifier - Pre-Amplifier	Miteq	AMF-6F-	PAL	2020-09-17	2021-09-17
Amplifier - Pre-Amplifier	Cernex	FMAM63001	PAX	2021-02-23	2022-02-23
Filter - Low Pass	Micro-Tronics	LPM50004	HHV	2020-07-27	2021-07-27
Antenna - Biconilog	ETS Lindgren	3143B	AYF	2020-06-25	2022-06-25
Antenna - Standard Gain	ETS Lindgren	3160-07	AJF	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-08	AJG	NCR	NCR
Antenna - Double Ridge	ETS Lindgren	3115	AJL	2020-10-20	2021-10-20
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2020-07-30	2021-07-30

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

FIELD STRENGTH OF SPURIOUS EMISSIONS (Greater Than 30 MHz)

										EmiR5 2021.05.14.0	P	SA-ESCI 2021.03.17	.0
Wo	rk Order:	ABBC	0800		Date:	2021-	-06-23		11				
	Project:	No	one	Ter	nperature:	21.	3 °C		4	6	51		
	Job Site:		(02		Humidity:		% RH				1,		
Serial	Number:	See Conf	igurations	Barome	etric Pres.:		mbar		Tested by:	Mark Bayta	an		
		SAL Alinity						Į.					_
Confi	guration:												_
		Abbott Lab	oratories										_
		Don Mende											_
		220VAC/60											_
	ng Mode:		ng RFID 13.	56 MHz									_
De	eviations:	None											_
		All Padice	ON - Cross	Switch Pac	dio 1 & 2 (bo	th antonna	e tranemitti	na) Divora	ont Padio (Convergent	Padio (hot	h antonna	.
Co	mments:	transmitting	g), AccessP	oint Radio	. Test mode	e only withou	out RFID tag	js.	ent ixauio, t	Johnvergent	itadio (boi	iii aiileiiiia	•
est Specif							Test Meth						_
CC 15.225							ANSI C63.	10:2013					_
							I						
Run#	12	Test Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass	=
			,			3 (17)		, ,					_
80 +													
										_			
70													
60 +												+++	
										_			
- ⁵⁰ +													
5					 								
m//ngp													
₫ 40 🕇													
9													
20													
30													
20													
20													
10													
10											$ \cdot \cdot \cdot $		
0 ↓												Ш	
10			100			1000			10000			100000	
						MHz							
						1411 12				■ PK	AV	QP	
							Polarity/						
						External	Transducer		Distance			Compared to	
Freq	Amplitude		Antenna Height	Azimuth	Test Distance	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB/m)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	
545.004	FF ^	0.7	4.07	055.0	2.2	0.0	\/ ·		0.0	45.5	40.0	^-	Comments
515.291	55.2	-9.7 9.5	1.67	255.0	3.0	0.0	Vert	QP OB	0.0	45.5	46.0	-0.5	All Radios O
542.413 433.930	51.0 55.3	-8.5 -13.0	1.8 1.85	220.9 225.9	3.0 3.0	0.0	Vert Horz	QP QP	0.0	42.5	46.0 46.0	-3.5 -3.7	All Radios O All Radios O
433.930	55.3 52.8	-13.0 -11.0	1.85	225.9 273.0	3.0	0.0 0.0	Vert	QP QP	0.0 0.0	42.3 41.8	46.0 46.0	-3.7 -4.2	All Radios O
542.410	50.0	-8.5	1.57	187.0	3.0	0.0	Horz	QP	0.0	41.5	46.0	-4.2 -4.5	All Radios Ol
515.293	51.1	-9.7	1.65	168.0	3.0	0.0	Horz	QP	0.0	41.4	46.0	-4.6	All Radios Of
		٠						٠.			. 5.0		

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	77-IV	MLT	2020-10-15	2023-10-15
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBH	NCR	NCR
Transformer	Staco Energy Products Co.	3PN2520B	XFZ	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUI	2021-02-02	2024-02-02
Probe - Near Field Set	Com-Power	PS-400	IPX	NCR	NCR
Cable	UtiFlex Micro-Coax	UFD1150A-1-0720-200200	TXJ	2020-09-22	2021-09-22
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2021-01-06	2022-01-06

TEST DESCRIPTION

The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

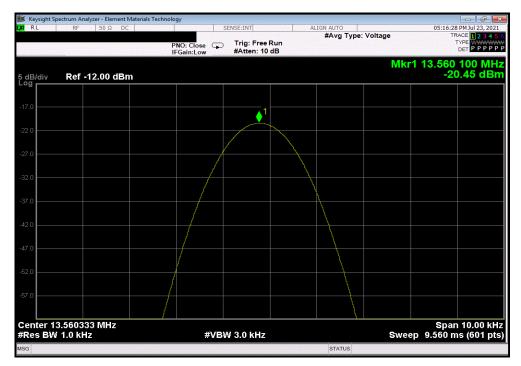
Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -20 ° to +50° C and at 10°C intervals.

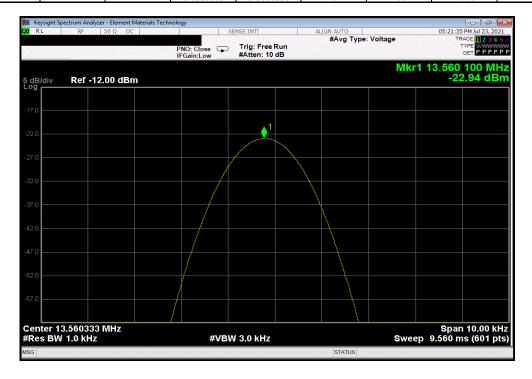
The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm. The formula to check for compliance is:

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

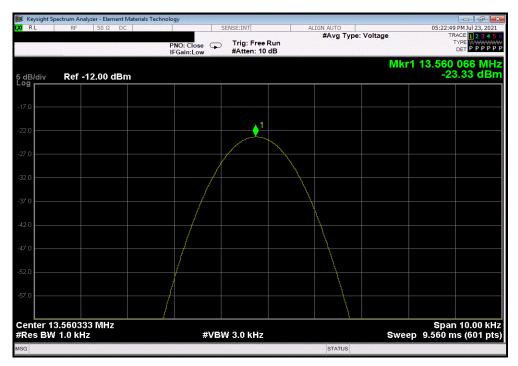
EUT: GLP12408 SAL Alinity C End Section
Serial Number: ENG05-CS
Customer: Abbott Laboratories Work Order: ABBO0080 Date: 24-Jul-21 Temperature: 25 °C Humidity: 48.4% RH Barometric Pres.: 1019 mbar Attendees: Don Mendell Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Power: 220VAC/60Hz Test Method Job Site: TX05 FCC 15.225:2021 COMMENTS CrossSwitch Radio/Convergent Radio. Both radios are electrically identical and share the same PCB: 20005732, therefore, the data presented accounts for both radios. DEVIATIONS FROM TEST STANDARD 1467+ Configuration # Signature Measured Value (MHz) Assigned Value (MHz) Results (ppm) (ppm) CrossSwitch Radio - Antenna 1 Normal Voltage
Mid Channel, 13.56 MHz 13.56009967 13.56009967 0 100 Pass Extreme Voltage +15%
Mid Channel, 13.56 MHz 13.56009967 13.56009967 100 Pass ne Voltage -15% Mid Channel, 13.56 MHz 13.56006633 13.56009967 2.5 100 Pass mperature +50°C Mid Channel, 13.56 MHz 13.55998267 13.56009967 100 8.6 Pass mperature +40°C Mid Channel, 13.56 MHz 13.560016 13.56009967 6.2 100 Pass e Temperature +30°C Mid Channel, 13.56 MHz 13.56004967 13.56009967 100 Pass 3.7 me Temperature +20°C Mid Channel, 13.56 MHz 13.56006633 13.56009967 100 Pass 2.5 me Temperature +10°C Mid Channel, 13.56 MHz 13.56014967 13.56009967 3.7 100 Pass nperature 0°C Mid Channel, 13.56 MHz 13.560183 13.56009967 6.1 100 Pass e Temperature -10°C Mid Channel, 13.56 MHz 100 13.56009967 Pass 13.5602 7.4 mperature -20°C Mid Channel, 13.56 MHz 13.560183 13.56009967 6.1 100 Pass CrossSwitch Radio - Antenna 2 Normal Voltage
Mid Channel, 13.56 MHz 13.56003267 13.56003267 0 100 Pass Extreme Voltage +15% Mid Channel, 13.56 MHz ne Voltage -15% 13.56009967 13.56003267 4.9 100 Pass Mid Channel, 13.56 MHz mperature +50°C 13.560016 13 56003267 12 100 Pass Mid Channel, 13.56 MHz 13.55994933 13.56003267 6.1 100 Pass ne Temperature +40°C Mid Channel 13 56 MHz 13 55993367 13 56003267 7.3 100 Pass mperature +30°C Mid Channel, 13.56 MHz 13.55998333 13.56003267 3.6 100 Pass ie Temperature +20°C Mid Channel, 13.56 MHz mperature +10°C 13.560066 13.56003267 2.5 100 Pass Mid Channel, 13.56 MHz e Temperature 0°C 13.560066 13.56003267 100 Pass Mid Channel, 13.56 MHz 13.56009967 13.56003267 4.9 100 Pass ne Temperature -10°C Mid Channel, 13,56 MHz 13.56011633 13 56003267 61 100 Pass Extreme Temperature -20°C Mid Channel, 13.56 MHz 13.56008367 13.56003267 3.8 100 Pass

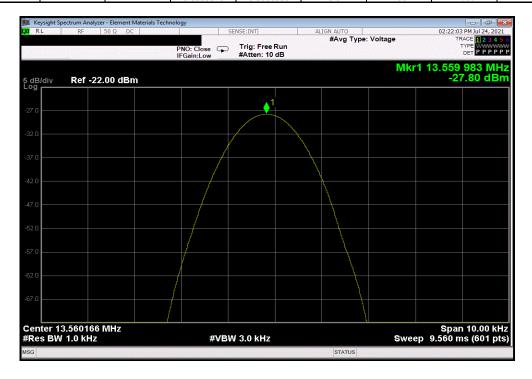


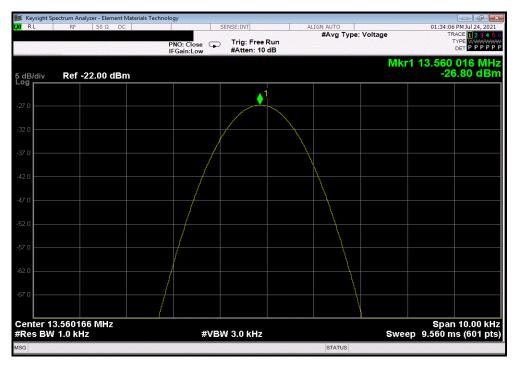
 CrossSwitch Radio - Antenna 1, Normal Voltage, Mid Channel, 13.56 MHz

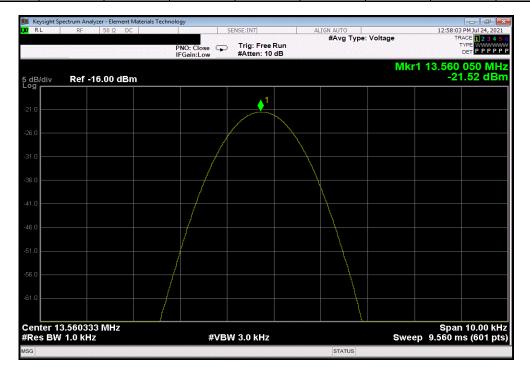

 Measured
 Assigned
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

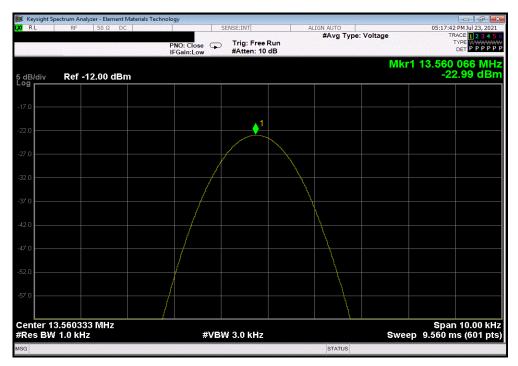

 13.56009967
 13.56009967
 0
 100
 Pass


		CrossSwitch Radio - Antenna 1,	Extreme Voltage	+15%, Mid Char	nel, 13.56 MHz	
		Measured	Assigned	Error	Limit	
_		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
l l	<u> </u>	13.56009967	13.56009967	0	100	Pass

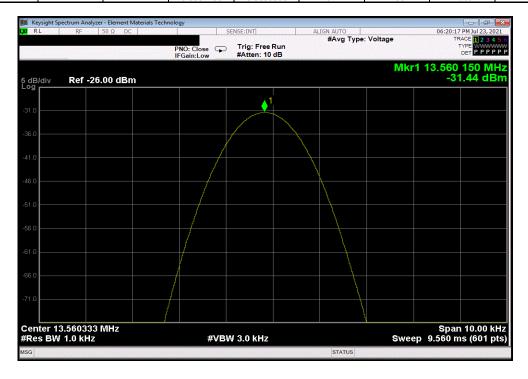



(CrossSwitch Radio - Ar	ntenna 1, Ex	treme Temperatu	re +50°C, Mid Cl	nannel, 13.56 MH	Z
	M	easured	Assigned	Error	Limit	
	Val	lue (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.	55998267	13.56009967	8.6	100	Pass

(CrossSwitch Radio	o - Antenna 1, Ex	treme Temperatu	re +30°C, Mid Cl	nannel, 13.56 MH	Z
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.56004967	13.56009967	3.7	100	Pass



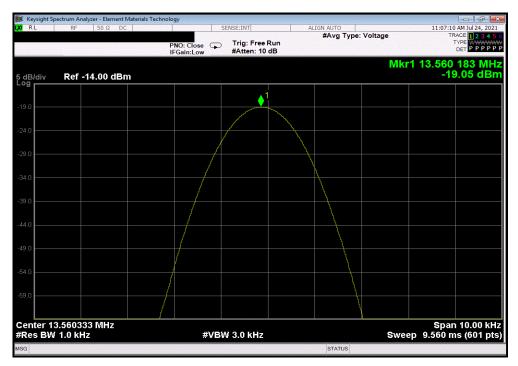
 CrossSwitch Radio - Antenna 1, Extreme Temperature +20°C, Mid Channel, 13.56 MHz


 Measured Assigned Error Limit

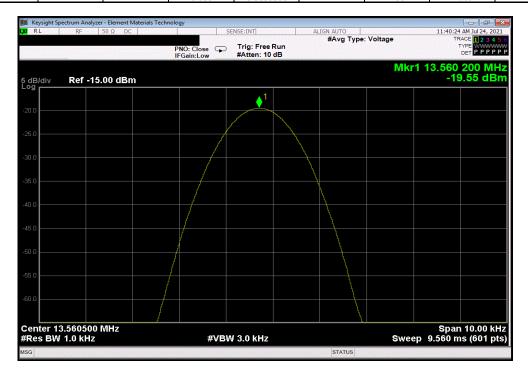
 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 13.56006633
 13.56009967
 2.5
 100
 Pass

(CrossSwitch Radio	- Antenna 1, Ex	treme Temperatu	re +10°C, Mid Cl	nannel, 13.56 MH	Z
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.56014967	13.56009967	3.7	100	Pass



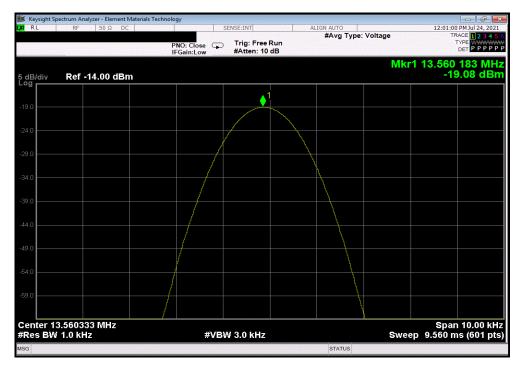
CrossSwitch Radio - Antenna 1, Extreme Temperature 0°C, Mid Channel, 13.56 MHz


Measured Assigned Error Limit

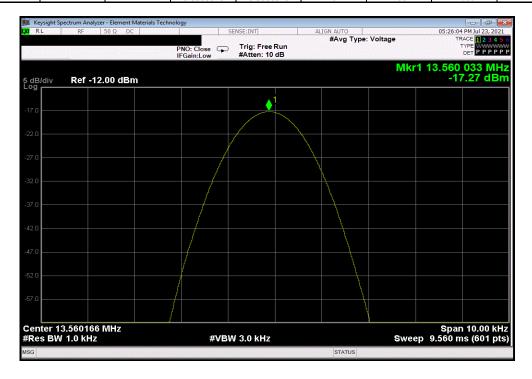
Value (MHz) Value (MHz) (ppm) (ppm) Results

13.560183 13.56009967 6.1 100 Pass

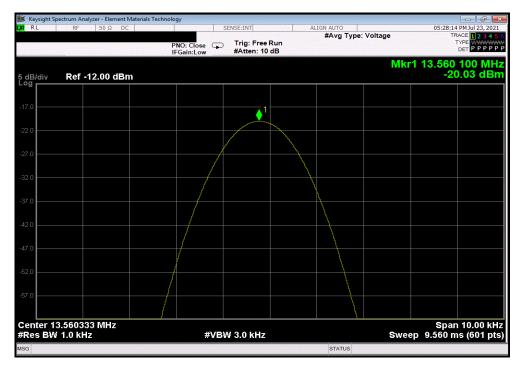
(CrossSwitch Radi	o - Antenna 1, Ex	treme Temperatu	re -10°C, Mid Ch	nannel, 13.56 MH	Z
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.5602	13.56009967	7.4	100	Pass

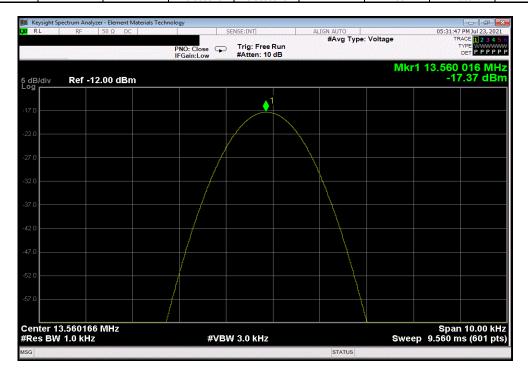


 CrossSwitch Radio - Antenna 1, Extreme Temperature -20°C, Mid Channel, 13.56 MHz

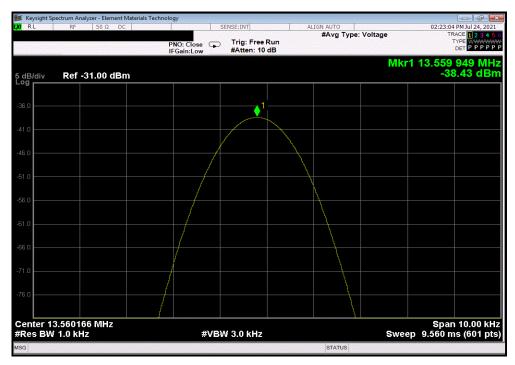

 Measured
 Assigned
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

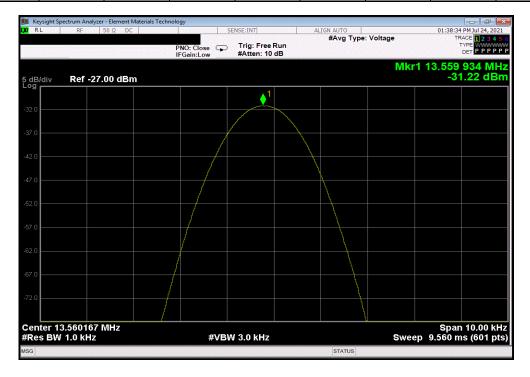

 13.560183
 13.56009967
 6.1
 100
 Pass


	CrossSwitch	Radio - Antenna	a 2, Normal Volta	ge, Mid Channel	, 13.56 MHz	
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
i		13.56003267	13.56003267	0	100	Pass

	CrossSwitch Radio - Antenna 2	, Extreme Voltage	-15%, Mid Chan	nel, 13.56 MHz	
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560016	13.56003267	1.2	100	Pass

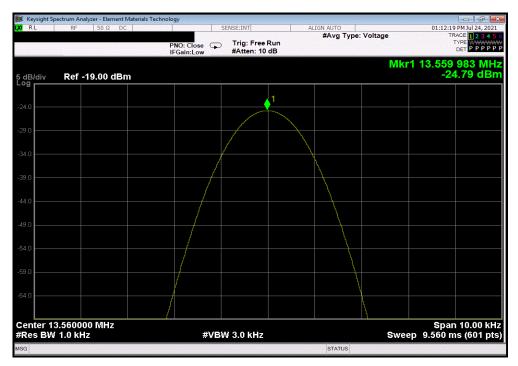


 CrossSwitch Radio - Antenna 2, Extreme Temperature +50°C, Mid Channel, 13.56 MHz

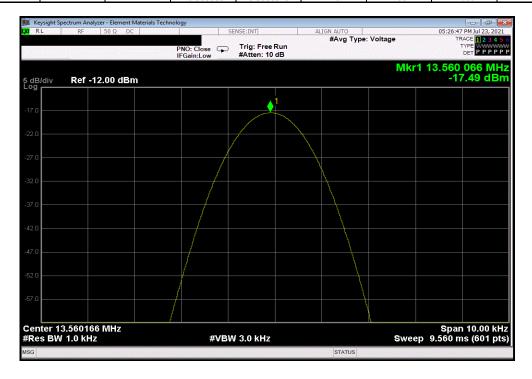

 Measured Assigned Error Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 13.55994933
 13.56003267
 6.1
 100
 Pass

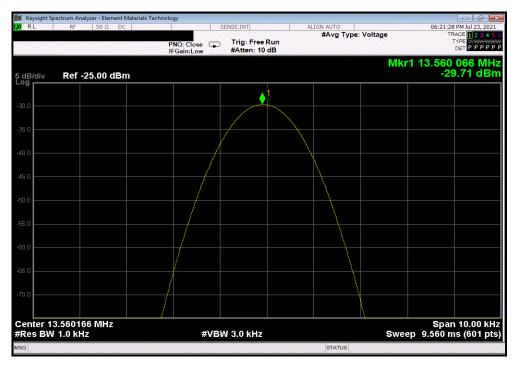


CrossSwitch Radio - Antenna 2, Extreme Temperature +40°C, Mid Channel, 13.56 MHz								
		Measured	Assigned	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		13.55993367	13.56003267	7.3	100	Pass		

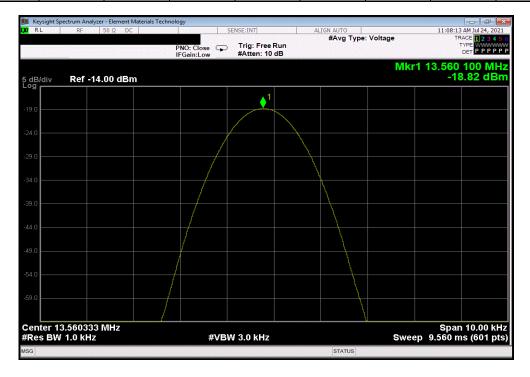


CrossSwitch Radio - Antenna 2, Extreme Temperature +30°C, Mid Channel, 13.56 MHz								
		Measured	Assigned	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		13.55998333	13.56003267	3.6	100	Pass		

CrossSwitch Radio - Antenna 2, Extreme Temperature +20°C, Mid Channel, 13.56 MHz									
		Measured	Assigned	Error	Limit				
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results			
		13.560066	13.56003267	2.5	100	Pass			



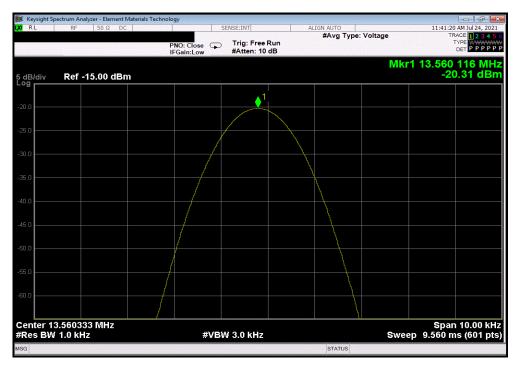
CrossSwitch Radio - Antenna 2, Extreme Temperature +10°C, Mid Channel, 13.56 MHz


Measured Assigned Error Limit

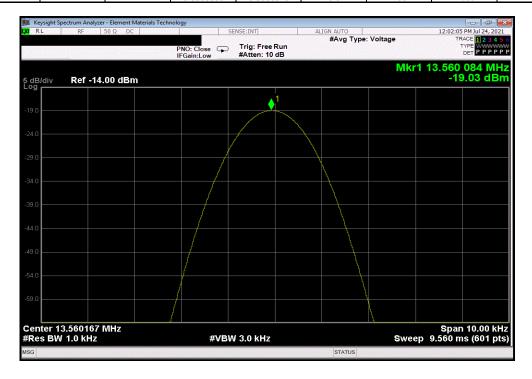
Value (MHz) Value (MHz) (ppm) (ppm) Results

13.560066 13.56003267 2.5 100 Pass

CrossSwitch Radio - Antenna 2, Extreme Temperature 0°C, Mid Channel, 13.56 MHz								
		Measured	Assigned	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		13.56009967	13.56003267	4.9	100	Pass		



 CrossSwitch Radio - Antenna 2, Extreme Temperature -10°C, Mid Channel, 13.56 MHz


 Measured
 Assigned
 Error
 Limit

 Value (MHz)
 Value (MHz)
 (ppm)
 (ppm)
 Results

 13.56011633
 13.56003267
 6.1
 100
 Pass

CrossSwitch Radio - Antenna 2, Extreme Temperature -20°C, Mid Channel, 13.56 MHz								
		Measured	Assigned	Error	Limit			
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results		
		13.56008367	13.56003267	3.8	100	Pass		

OCCUPIED BANDWIDTH

XMit 2020.12.30.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	Com-Power	PS-400	IPX	NCR	NCR
Cable	UtiFlex Micro-Coax	UFD1150A-1-0720-200200	TXJ	2020-09-22	2021-09-22
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2021-01-06	2022-01-06

TEST DESCRIPTION

As defined in FCC 15.215 Part (c), intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise by specified in the specific rule section under which the equipment operates, is contained within the frequency band designed in the rule section under which the equipment is operated.

The 20 dB bandwidth must be contained within the band 13.110-14.010 MHz.

The emissions bandwidth was measured with the EUT configured for continuous modulated operation.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

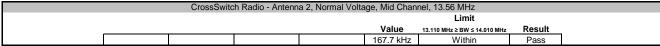
The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to find the emissions bandwidth.

OCCUPIED BANDWIDTH

EUT: GLP12409 SAL Alinity C End Section
Serial Number: ENG05-CS
Customer: Abbott Laboratories
Attendees: Don Mendell
Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Work Order: ABBO0080
Date: 24-Jul-21
Temperature: 25 °C Humidity: 48.4% RH
Barometric Pres.: 1019 mbar Job Site: TX05 FCC 15.225:2021 ANSI C63.10:2013 COMMENTS CrossSwitch Radio/Convergent Radio. Both radios are electrically identical and share the same PCB: 20005732, therefore, the data presented accounts for both radios. Emissions bandwidth taken with a 26 dB bandwidth. This is worst case as compared with the 20 dB bandwidth called out in FCC 15.215. DEVIATIONS FROM TEST STANDARD None 146,+ Configuration # 2 Signature Limit 13.110 MHz ≥ BW ≤ 14.010 MHz Value Result CrossSwitch Radio - Antenna 1 Normal Voltage CrossSwitch Radio - Antenna 2 Normal Voltage Mid Channel, 13.56 MHz 166.1 kHz Within Pass 167.7 kHz Within Pass

OCCUPIED BANDWIDTH


CrossSwitch Radio - Antenna 1, Normal Voltage, Mid Channel, 13.56 MHz


Limit

Value 13.110 MHz ≥ BW ≤ 14.010 MHz Result

166.1 kHz Within Pass

End of Test Report