

Abbot Laboratories

GLP12260 Aliquoter Module

FCC 15.225:2021 13.56 MHz Radio

Report: ABBO0078 Rev. 2, Issue Date: August 29, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or reexport/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Abbot Laboratories

Last Date of Test: August 17, 2021 EUT: GLP12260 Aliquoter Module

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2021	ANSI C63.10:2013
FCC 15.225:2021	ANSI C63. 10.2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.4	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions (Less Than 30 MHz)	Yes	Pass	
6.5	Field Strength of Spurious Emissions (Greater Than 30 MHz)	Yes	Pass	
6.4 6.5 6.8	Frequency Stability	Yes	Pass	
6.9	Occupied Bandwidth	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Removed track radio data from Field Strength of Fundamental	2021-09-02	32-36
01	Changed Powerline CE spec from Class A to FCC 15.209	2021-09-02	16, 18, 20, 22, 24, 26, 28 and 30
	Updated company name	2022-08-29	1, 2
	Updated comment	2022-08-29	20
02	Fixed scaling issue and updated comment	2022-08-29	38
02	Updated power settings	2022-08-29	11
	Updated block diagram	2022-08-29	7
	Recalculated frequency stability values	2022-08-29	44

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

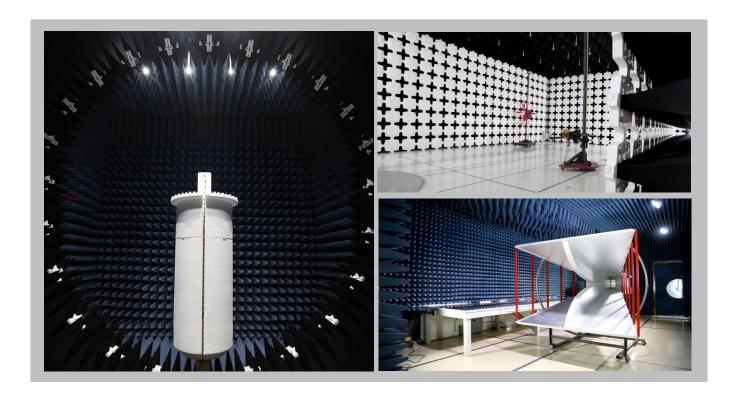
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

<u>California</u> <u>Minnesota</u> <u>Oregon</u> <u>Texas</u> <u>Washington</u>


FACILITIES

California	Minnesota	Oregon	Texas	Washington	
Labs OC01-17	Labs MN01-11	Labs EV01-12	Labs TX01-09	Labs NC01-05	
41 Tesla	9349 W Broadway Ave.	6775 NE Evergreen Pkwy #400	3801 E Plano Pkwy	19201 120 th Ave NE	
Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600	
(040) 001 0010	(812) 888 8188	(000) 044 4000	(400) 004 0200	(420)304 0000	
		A2LA			
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06	
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1	
		BSMI			
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110	
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	US0017	US0191	US0157	

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

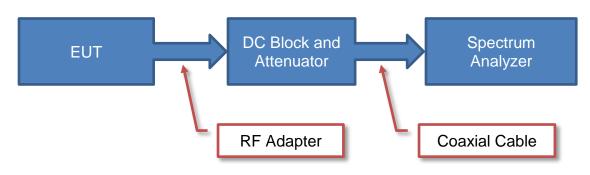
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.6 dB	-2.6 dB

TEST SETUP BLOCK DIAGRAMS

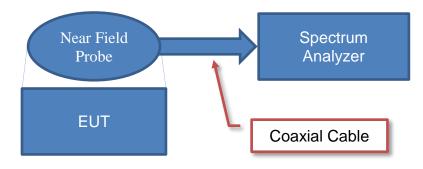


Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

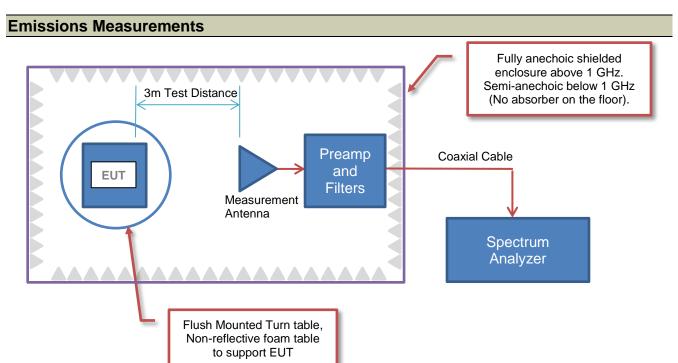


Sample Calculation (logarithmic units)

Measured Value Measured Level Coffset

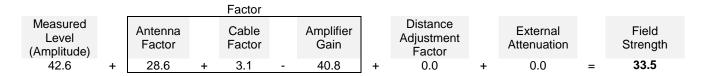
71.2 = 42.6 + 28.6

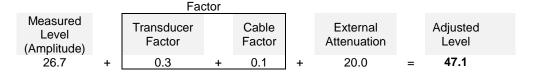
Near Field Test Fixture Measurements


Sample Calculation (logarithmic units)

Measured Value Measured Level Coffset

71.2 = 42.6 + 28.6


TEST SETUP BLOCK DIAGRAMS

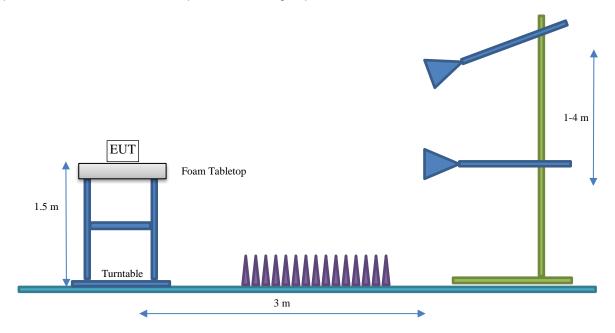


Sample Calculation (logarithmic units)

Radiated Emissions:

Conducted Emissions:

Radiated Power (ERP/EIRP) - Substitution Method:



TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Abbott Laboratories
Address:	1921 Hurd Drive
City, State, Zip:	Irving, TX 75038
Test Requested By:	Don Mendell
EUT:	GLP12260 Aliquoter Module
First Date of Test:	July 8, 2021
Last Date of Test:	August 17, 2021
Receipt Date of Samples:	June 10, 2021
Equipment Design Stage:	Production unit
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The Aliquot Module distributes the material of a primary sample to secondary tubes. During the aliquoting process, secondary tubes are assigned and labeled with a customer-specific barcode. This barcode is verified before the tubes leave the module. This module contains a total of 4 RFID readers (3 access points and 1 cross switch).

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA INFORMATION

Туре	Provided by:	Dimensions
Embedded Inductive Loop	GLP Systems	51mm x 35mm

POWER SETTING

Radio	Modulation	Protocol	Data Rate	Frequency	Power Setting (mW)
RFID	OOK	ISO 13693	26.48 kbps	13.56 MHz	200

^{*}Power is set internally through product firmware at the default maximum.

^{*}Antenna information/power setting is identical for each 13.56 MHz radio.

CONFIGURATIONS

Configuration ABBO0078- 2

Software/Firmware Running during test			
Description	Version		
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin		
Firmware	TrackEmvTest_atr_Version_0.0_47120.bin		
Firmware	TrackEmvTest_cp_pp_tac_Version_0.0_46817.bin		
Firmware	TrackEmvTest_scc_Version_0.0_46817.bin		
Firmware	TrackEmvTest_scx_scr_Version_0.0_46817.bin		
Firmware	TrackEmvTest_scd_Version_0.0_46817.bin		

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
CrossSwitch Radio	GLP Systems	20005732	ENG05-CS	
AccessPoint Radio	GLP Systems	20008971/20008841	ENG02-AP	

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Power Strip	GLP Systems	GLP12015	None	
CAN Bus	GLP Systems	None	None	
24V Power Supply	GLP Systems	GLP12010	C06A001511	
Power Board	GLP Systems	GLP12014	None	
AC Line Filter	GLP Systems	GLP12013	0001002	
PassPoint Track Radio	GLP Systems	GLP12191	ENG02-PP	
ChargeLane M Track Radio	GLP Systems	GLP12553	ENG02-CL M	
Switch 90 Convergent Track Radio	GLP Systems	GLP12154	ENG01-CN	
Switch 90 Divergent Track Radio	GLP Systems	GLP12153	ENG01-DV	
Drawer Reader Radio	GLP Systems	20001805 Rev C (PCB: 20001791 Rev B)	ENG05-DR	

CONFIGURATIONS

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
AC Power Cable	Yes	1.1m	No	AC Mains	AC Line Filter		
Auxiliary Bus Line	Yes	1.0m	No	AC Line Filter	24V Power Supply		
Ethernet Cable	Yes	5.0m	No	Laptop	CAN Bus		
Ethernet Cable	Yes	1.0m	No	CAN Bus	Switch 90 Divergent		
Ethernet Cable	Yes	0.5m	Yes	Switch 90 Divergent	Switch 90 Convergent		
Ethernet Cable	Yes	0.5m	Yes	Switch 90 Convergent	ChargeLane		
Ethernet Cable	Yes	0.5m	Yes	ChargeLane	CrossSwitch		
Ethernet Cable	Yes	0.5m	Yes	CrossSwitch	PassPoint		
Ethernet Cable	Yes	0.5m	Yes	PassPoint	AccessPoint		
Ethernet Terminator	No	0.6m	No	AccessPoint	Terminated		
DC Power Cable	No	0.6m	Yes	Power Board	Switch 90 Divergent		
DC Power Cable	No	0.6m	Yes	Power Board	Switch 90 Convergent		
DC Power Cable	No	0.6m	Yes	Power Board	ChargeLane		
DC Power Cable	No	0.6m	Yes	Power Board	Cross Switch		
DC Power Cable	No	0.6m	Yes	Power Board	PassPoint		
DC Power Cable	No	0.6m	Yes	Power Board	AccessPoint		
DC Power Cable	No	0.6m	Yes	Power Board	Drawer Reader		

CONFIGURATIONS

Configuration ABBO0078-6

Software/Firmware Running during test			
Description	Version		
Firmware	TrackEmvTest_ap_wp_Version_0.0_46817.bin		
Firmware	TrackEmvTest_scc_Version_0.0_46817.bin		
Firmware	TrackEmvTest_scd_Version_0.0_46817.bin		
Firmware	TrackEmvTest_scx_scr_Version_0.0_46817.bin		
Firmware	Aliquoter_Version_2.5_47948.bin		

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Aliquoter Module	GLP Systems	GLP12260	AM000057			
AccessPoint Radio 1	GLP Systems	20008971/20008841	ENG03-AP			
AccessPoint Radio 2	GLP Systems	20008971/20008841	ENG04-AP			
AccessPoint Radio 3	GLP Systems	20008971/20008841	ENG05-AP			
CrossSwitch Radio	GLP Systems	20005732	ENG06-CS			

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
CAN Bus	GLP Systems	None	None			
Power Strip	GLP Systems	GLP12015	None			
AC Line Filter	GLP Systems	GLP12013	None			
Module Power Supply	GLP Systems	20027692	0001439			
24V Power Supply	GLP Systems	GLP12010	0001045			
CrossSwitch Track Radio	GLP Systems	GLP12152	ENG07-CS			
Convergent 90 Track Radio	GLP Systems	GLP12154	ENG02-CN			
Divergent 90 Track Radio	GLP Systems	GLP12153	ENG02-DV			
Car 1	GLP Systems	GLP12677	0033406			
Car 2	GLP Systems	GLP12677	0033416			
Car 3	GLP Systems	GLP12677	0033506			
Car 4	GLP Systems	GLP12677	0033514			
Laptop	Dell	Optiplex XE3	71HQQ72			

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
AC Power Cable	No	2.7m	No	AC Mains	AC Line Filter		
AC Power Cable	No	2.7m	No	AC Line Filter	24V Power Supply		
Ethernet	Yes	10.0m	No	Laptop	Aliquoter Module		
USB	No	5.0m	No	Laptop	Aliquoter Module		

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2021-07-08	Field Strength of Spurious Emissions (Greater Than 30 MHz)	Tested as delivered to test station.	None	EUT remained at Element following the test.
2	2021-07-09	Field Strength of Fundamental	Tested as delivered to test station.	None	EUT remained at Element following the test.
3	2021-07-09	Field Strength of Spurious Emissions (Less Than 30 MHz)	Tested as delivered to test station.	None	EUT remained at Element following the test.
4	2021-07-21	Occupied Bandwidth	Tested as delivered to test station.	None	EUT remained at Element following the test.
5	2021-07-24	Frequency Stability	Tested as delivered to test station.	None	EUT remained at Element following the test.
6	2021-08-17	Powerline Conducted Emissions	Tested as delivered to test station.	None	Scheduled testing was completed.

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0078 - 6

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Gauss	TDEMI 30M	ARL	2021-03-23	2022-03-23
Terminator	Fairview Microwave	ST3B-C	RGX	2021-06-04	2022-06-04
Cable - Conducted Cable	Northwest EMC	TXA, HFC, TQU	TXAA	2021-01-26	2022-01-26
LISN	Solar Electronics	9252-50-R-24-BNC	LJL	2020-08-25	2021-08-25
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	2020-08-25	2021-08-25
Power Source/Analyzer	Hewlett Packard	6841A	THC	NCR	NCR

MEASUREMENT BANDWIDTHS

Frequency Range	BWI
(MHz)	(kHz)
0.15 - 30.0	1.0
30.0 - 400.0	10.0
400.0 - 1000.0	100.0
1000.0 - 6000.0	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

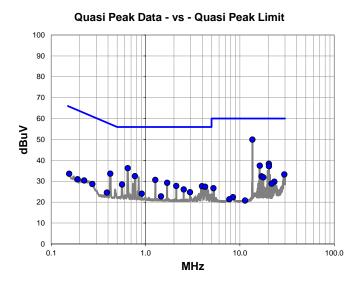
TEST DESCRIPTION

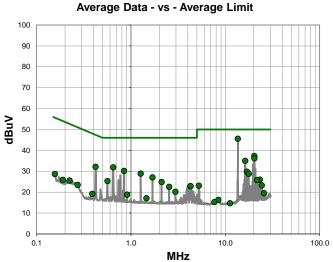
The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. Measurement with all radios ON not tested as radios do not simultaneously transmit. For each radio, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

FCC KDB 174176 D01 AC Conducted FAQ v01r01, June 3, 2015 Section Q5:


For a device with a permanent or detachable antenna operating at or below 30 MHz, the FCC will accept measurements performed with a suitable dummy load in lieu of the antenna under the following conditions:

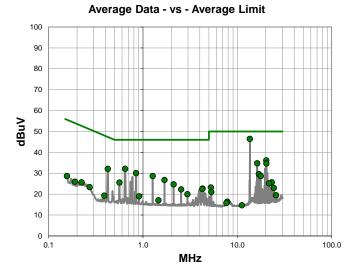

- (1) perform the AC power-line conducted tests with the antenna connected to determine compliance with Section 15.207 limits outside the transmitter's fundamental emission band;
- (2) retest with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network which simulates the antenna in the fundamental frequency band.

All measurements must be performed as specified in clause 6.2 of ANSI C63.10-2013.

					EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0
Work Order:	ABBO0078	Date:	2021-08-17	~		
Project:	None	Temperature:	21.5 °C	lum	Hear	
Job Site:	TX02	Humidity:	59.2% RH			
Serial Number:	ENG06-CS	Barometric Pres.:	1016 mbar	Tested by	: Travis Glasser	
EUT:	GLP12260 Aliquoter N	Module				
Configuration:	6					
Customer:	Abbott Laboratories					
Attendees:	Don Mendell					
EUT Power:	220VAC/60Hz					
Operating Mode:	Transmitting RFID 13	.56 MHz				
Deviations :	None					
Comments		Both RFID readers ac	tive. Test mode onl	y.		
Test Specifications			Test Me	thod		
FCC 15.207:2021			ANSI C6	3.10:2013		
Run # 35	Line:	High Line	Ext. Attenuation	1: 0	Results	Pass

Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
13.560	28.9	21.1	50.0	60.0	-10.0		
0.646	16.1	20.2	36.3	56.0	-19.7		
20.259	16.8	21.6	38.4	60.0	-21.6		
16.227	16.1	21.4	37.5	60.0	-22.5		
20.320	15.6	21.6	37.2	60.0	-22.8		

Average Data - vs - Average Limit							
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
13.560	24.5	21.1	45.6	50.0	-4.4		
20.259	15.7	21.6	37.3	50.0	-12.7		
20.320	14.6	21.6	36.2	50.0	-13.8		
0.649	11.7	20.2	31.9	46.0	-14.1		
16.227	13.6	21.4	35.0	50.0	-15.0		

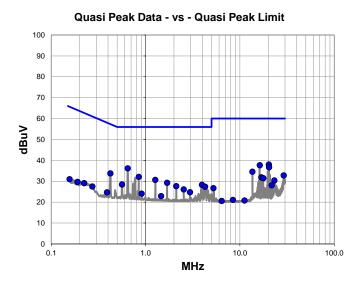

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.769	12.3	20.2	32.5	56.0	-23.5
0.422	13.5	20.2	33.7	57.4	-23.7
1.267	10.4	20.3	30.7	56.0	-25.3
1.690	9.0	20.3	29.3	56.0	-26.7
29.552	10.6	22.7	33.3	60.0	-26.7
0.562	8.3	20.2	28.5	56.0	-27.5
16.900	11.0	21.4	32.4	60.0	-27.6
17.694	10.5	21.4	31.9	60.0	-28.1
2.112	7.5	20.3	27.8	56.0	-28.2
3.954	7.4	20.3	27.7	56.0	-28.3
4.277	7.1	20.3	27.4	56.0	-28.6
2.535	5.8	20.3	26.1	56.0	-29.9
23.129	7.9	21.9	29.8	60.0	-30.2
21.662	7.1	21.8	28.9	60.0	-31.1
2.957	4.5	20.3	24.8	56.0	-31.2
0.908	3.8	20.3	24.1	56.0	-31.9
0.155	13.2	20.4	33.6	65.8	-32.2
0.223	10.0	20.4	30.4	62.7	-32.3
0.272	8.3	20.4	28.7	61.1	-32.4
0.190	10.6	20.4	31.0	64.1	-33.1
1.456	2.5	20.3	22.8	56.0	-33.2
5.237	6.4	20.3	26.7	60.0	-33.3
0.388	4.4	20.2	24.6	58.1	-33.5
8.415	1.8	20.6	22.4	60.0	-37.6
7.712	0.9	20.5	21.4	60.0	-38.6
11.345	-0.1	20.9	20.8	60.0	-39.2

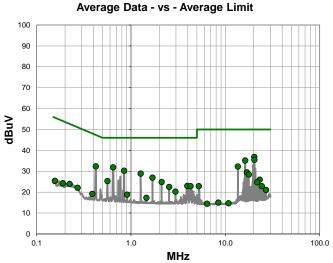
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.422	12.0	20.2	32.2	47.4	-15.2
0.844	10.0	20.2	30.2	46.0	-15.8
1.267	8.6	20.3	28.9	46.0	-17.1
1.690	6.8	20.3	27.1	46.0	-18.9
16.900	8.4	21.4	29.8	50.0	-20.2
0.562	5.1	20.2	25.3	46.0	-20.7
2.112	4.6	20.3	24.9	46.0	-21.1
17.694	7.4	21.4	28.8	50.0	-21.2
4.257	2.6	20.3	22.9	46.0	-23.1
4.277	2.6	20.3	22.9	46.0	-23.1
2.535	2.3	20.3	22.6	46.0	-23.4
23.129	4.1	21.9	26.0	50.0	-24.0
21.662	4.0	21.8	25.8	50.0	-24.2
2.957	-0.1	20.3	20.2	46.0	-25.8
24.349	1.1	22.2	23.3	50.0	-26.7
5.236	2.8	20.3	23.1	50.0	-26.9
0.156	8.3	20.4	28.7	55.7	-27.0
0.223	5.2	20.4	25.6	52.7	-27.1
0.908	-1.5	20.3	18.8	46.0	-27.2
0.272	3.1	20.4	23.5	51.1	-27.6
0.190	5.5	20.4	25.9	54.1	-28.2
1.456	-3.2	20.3	17.1	46.0	-28.9
0.390	-1.0	20.2	19.2	48.1	-28.9
25.694	-2.8	22.3	19.5	50.0	-30.5
8.415	-4.3	20.6	16.3	50.0	-33.7
7.654	-5.2	20.5	15.3	50.0	-34.7
11.188	-6.2	20.9	14.7	50.0	-35.3

								EmiR5 2021.06.24.0	PSA-E	SCI 2021.03.17.0
Wo	rk Order:	ABBO0078	Date:	2021-	08-17	_	7			
	Project:	None	Temperature:	21.5	°C	1	eem)	He	···	_
	Job Site:	TX02	Humidity:	59.2%	RH					
Serial	Number:	ENG06-CS	Barometric Pres.:	1016	mbar		Tested by:	Travis Glass	er	
	EUT:	GLP12260 Aliquoter N	/lodule							
Confi	guration:	6								
С	ustomer:	Abbott Laboratories	out Laboratories							
At	ttendees:	Don Mendell								
EU	T Power:	220VAC/60Hz								
Operation	ng Mode:	Transmitting RFID 13	ransmitting RFID 13.56 MHz							
De	eviations:	None	None							
Co	omments:	CrossSwitch Radio 1.	Both RFID readers ad	ctive. Test r	node only.					
Test Specif	fications				Test Metho	od				
FCC 15.207					ANSI C63.	10:2013	!			
	-									
Run#	36	Line:	Neutral	Ext. Att	enuation:	0		Results	Pass	3

Quasi Peak Data - vs - Quasi Peak Limit 100 90 80 70 40 30 20 10 0.1 1.0 MHz

Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
13.560	29.7	21.1	50.8	60.0	-9.2		
0.646	16.3	20.2	36.5	56.0	-19.5		
16.227	16.0	21.4	37.4	60.0	-22.6		
20.259	15.7	21.6	37.3	60.0	-22.7		
0.769	12.8	20.2	33.0	56.0	-23.0		

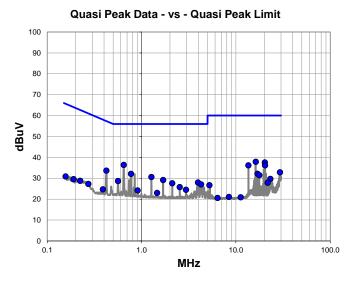

Average Data - vs - Average Limit					
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
13.560	25.4	21.1	46.5	50.0	-3.5
0.647	12.0	20.2	32.2	46.0	-13.8
20.259	14.6	21.6	36.2	50.0	-13.8
16.227	13.4	21.4	34.8	50.0	-15.2
20.320	13.1	21.6	34.7	50.0	-15.3

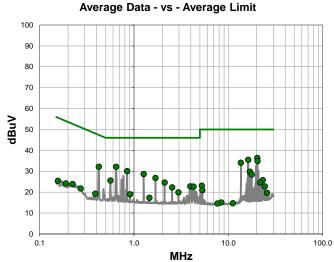

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.423	13.5	20.2	33.7	57.4	-23.7
29.545	13.3	22.7	36.0	60.0	-24.0
20.320	14.3	21.6	35.9	60.0	-24.1
1.267	10.2	20.3	30.5	56.0	-25.5
29.966	11.6	22.6	34.2	60.0	-25.8
1.690	8.9	20.3	29.2	56.0	-26.8
0.562	8.5	20.2	28.7	56.0	-27.3
16.900	10.8	21.4	32.2	60.0	-27.8
2.112	7.2	20.3	27.5	56.0	-28.5
3.954	7.1	20.3	27.4	56.0	-28.6
17.694	9.9	21.4	31.3	60.0	-28.7
4.277	6.8	20.3	27.1	56.0	-28.9
27.695	7.7	22.5	30.2	60.0	-29.8
23.127	8.0	21.9	29.9	60.0	-30.1
2.535	5.6	20.3	25.9	56.0	-30.1
21.662	6.9	21.8	28.7	60.0	-31.3
2.956	4.2	20.3	24.5	56.0	-31.5
0.907	3.8	20.3	24.1	56.0	-31.9
0.156	13.2	20.4	33.6	65.7	-32.1
0.223	10.0	20.4	30.4	62.7	-32.3
0.272	8.3	20.4	28.7	61.1	-32.4
0.190	10.7	20.4	31.1	64.1	-33.0
5.236	6.4	20.3	26.7	60.0	-33.3
0.390	4.6	20.2	24.8	58.1	-33.3
1.458	2.4	20.3	22.7	56.0	-33.3
7.832	1.8	20.6	22.4	60.0	-37.6
7.655	1.3	20.5	21.8	60.0	-38.2
11.188	-0.1	20.9	20.8	60.0	-39.2

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.423	11.9	20.2	32.1	47.4	-15.3
0.844	9.9	20.2	30.1	46.0	-15.9
1.267	8.4	20.3	28.7	46.0	-17.3
1.690	6.5	20.3	26.8	46.0	-19.2
16.900	8.2	21.4	29.6	50.0	-20.4
0.562	5.4	20.2	25.6	46.0	-20.4
17.694	7.3	21.4	28.7	50.0	-21.3
2.112	4.4	20.3	24.7	46.0	-21.3
4.277	2.4	20.3	22.7	46.0	-23.3
4.257	2.2	20.3	22.5	46.0	-23.5
2.535	2.0	20.3	22.3	46.0	-23.7
23.129	3.8	21.9	25.7	50.0	-24.3
21.662	3.4	21.8	25.2	50.0	-24.8
2.957	-0.3	20.3	20.0	46.0	-26.0
5.237	2.9	20.3	23.2	50.0	-26.8
24.349	0.8	22.2	23.0	50.0	-27.0
0.908	-1.3	20.3	19.0	46.0	-27.0
0.156	8.3	20.4	28.7	55.7	-27.0
0.223	5.3	20.4	25.7	52.7	-27.0
0.272	3.0	20.4	23.4	51.1	-27.7
0.190	5.6	20.4	26.0	54.1	-28.1
0.390	-0.9	20.2	19.3	48.1	-28.8
5.298	0.8	20.3	21.1	50.0	-28.9
1.456	-3.2	20.3	17.1	46.0	-28.9
25.694	-2.8	22.3	19.5	50.0	-30.5
7.832	-4.2	20.6	16.4	50.0	-33.6
7.654	-4.7	20.5	15.8	50.0	-34.2
11.172	-6.2	20.9	14.7	50.0	-35.3

					EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0
Work Order:	: ABBO0078	Date:	2021-08-17	~		
Project	None	Temperature:	21.5 °C	lem	Hla	
Job Site	TX02	Humidity:	59.2% RH		1	
Serial Number:	ENG03-AP	Barometric Pres.:	1016 mbar	Tested by:	Travis Glasser	
EUT	GLP12260 Aliquoter I	Module				
Configuration	6					
Customer	Abbott Laboratories					
Attendees	Don Mendell					
EUT Power:	220VAC/60Hz					
Operating Mode	Transmitting RFID 13	.56 MHz				
Deviations	None					
Comments	AccessPoint #1					
Test Specifications			Test Meth	od		
FCC 15.207:2021	•		ANSI C63	.10:2013		
Run # 43	Line:	High Line	Ext. Attenuation:	0	Results	Pass

Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
0.646	16.0	20.2	36.2	56.0	-19.8		
20.259	16.4	21.6	38.0	60.0	-22.0		
16.227	16.3	21.4	37.7	60.0	-22.3		
20.381	15.1	21.6	36.7	60.0	-23.3		
0.423	13.6	20.2	33.8	57.4	-23.6		

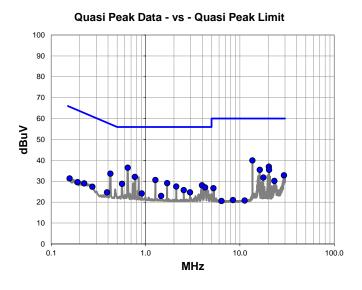

Average Data - vs - Average Limit								
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)			
20.259	15.3	21.6	36.9	50.0	-13.1			
0.647	11.7	20.2	31.9	46.0	-14.1			
20.320	13.9	21.6	35.5	50.0	-14.5			
16.227	13.8	21.4	35.2	50.0	-14.8			
0.423	12.2	20.2	32.4	47.4	-15.0			

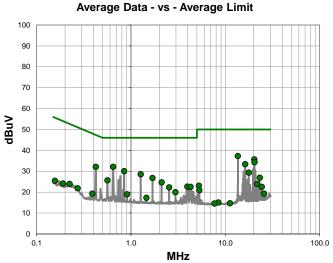

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.846	11.9	20.2	32.1	56.0	-23.9
1.267	10.4	20.3	30.7	56.0	-25.3
13.559	13.5	21.1	34.6	60.0	-25.4
1.691	9.0	20.3	29.3	56.0	-26.7
29.122	10.1	22.7	32.8	60.0	-27.2
0.562	8.3	20.2	28.5	56.0	-27.5
3.954	8.0	20.3	28.3	56.0	-27.7
16.839	10.5	21.4	31.9	60.0	-28.1
2.112	7.4	20.3	27.7	56.0	-28.3
17.694	10.1	21.4	31.5	60.0	-28.5
4.276	7.1	20.3	27.4	56.0	-28.6
23.129	8.5	21.9	30.4	60.0	-29.6
2.535	5.8	20.3	26.1	56.0	-29.9
2.957	4.5	20.3	24.8	56.0	-31.2
21.662	6.3	21.8	28.1	60.0	-31.9
0.907	3.8	20.3	24.1	56.0	-31.9
1.458	2.6	20.3	22.9	56.0	-33.1
5.237	6.4	20.3	26.7	60.0	-33.3
0.390	4.5	20.2	24.7	58.1	-33.4
0.223	8.7	20.4	29.1	62.7	-33.6
0.272	7.1	20.4	27.5	61.1	-33.6
0.190	9.3	20.4	29.7	64.1	-34.4
0.156	10.6	20.4	31.0	65.7	-34.7
8.412	0.5	20.6	21.1	60.0	-38.9
11.175	-0.1	20.9	20.8	60.0	-39.2
6.397	0.2	20.4	20.6	60.0	-39.4

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.846	10.1	20.2	30.3	46.0	-15.7
1.268	8.6	20.3	28.9	46.0	-17.1
13.559	11.2	21.1	32.3	50.0	-17.7
1.690	6.7	20.3	27.0	46.0	-19.0
16.900	8.1	21.4	29.5	50.0	-20.5
0.562	5.1	20.2	25.3	46.0	-20.7
2.112	4.6	20.3	24.9	46.0	-21.1
17.694	7.1	21.4	28.5	50.0	-21.5
3.954	2.7	20.3	23.0	46.0	-23.0
4.276	2.6	20.3	22.9	46.0	-23.1
2.535	2.2	20.3	22.5	46.0	-23.5
23.129	4.1	21.9	26.0	50.0	-24.0
21.662	3.0	21.8	24.8	50.0	-25.2
2.957	0.0	20.3	20.3	46.0	-25.7
5.236	2.6	20.3	22.9	50.0	-27.1
24.349	0.7	22.2	22.9	50.0	-27.1
0.908	-1.5	20.3	18.8	46.0	-27.2
1.456	-3.0	20.3	17.3	46.0	-28.7
0.223	3.6	20.4	24.0	52.7	-28.7
26.974	-1.3	22.4	21.1	50.0	-28.9
0.390	-1.0	20.2	19.2	48.1	-28.9
0.272	1.7	20.4	22.1	51.1	-29.0
0.190	3.9	20.4	24.3	54.1	-29.8
0.156	5.0	20.4	25.4	55.7	-30.3
8.412	-5.6	20.6	15.0	50.0	-35.0
10.794	-6.1	20.8	14.7	50.0	-35.3
6.397	-5.9	20.4	14.5	50.0	-35.5

					EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0			
Work Order:	ABBO0078	Date:	2021-08-17	~					
Project:	None	Temperature:	21.5 °C	lum	Hear				
Job Site:	TX02	Humidity:	59.2% RH						
Serial Number:	ENG03-AP	Barometric Pres.:	1016 mbar	Tested by	: Travis Glasser				
EUT:	GLP12260 Aliquoter N	Module				·			
Configuration:	6								
Customer:	Abbott Laboratories								
Attendees:	Don Mendell	Mendell							
EUT Power:	220VAC/60Hz								
Operating Mode:	Transmitting RFID 13	ransmitting RFID 13.56 MHz							
Deviations:	None								
Comments:	AccessPoint #1								
Test Specifications			Test Meth	nod					
FCC 15.207:2021	ļ		ANSI C63						
Run # 44	Line:	Neutral	Ext. Attenuation:	0	Results	Pass			

	Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
0.646	16.2	20.2	36.4	56.0	-19.6		
16.227	16.5	21.4	37.9	60.0	-22.1		
20.259	16.0	21.6	37.6	60.0	-22.4		
0.423	13.5	20.2	33.7	57.4	-23.7		
13.560	15.1	21.1	36.2	60.0	-23.8		

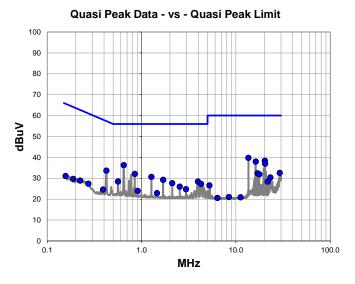

Average Data - vs - Average Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	
20.259	14.8	21.6	36.4	50.0	-13.6	
0.647	12.0	20.2	32.2	46.0	-13.8	
16.227	14.1	21.4	35.5	50.0	-14.5	
20.381	13.3	21.6	34.9	50.0	-15.1	
0.423	12.0	20.2	32.2	47.4	-15.2	

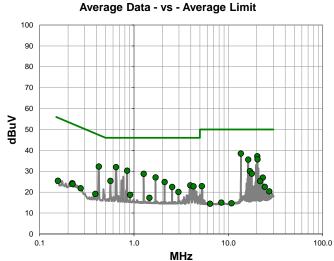

Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
14.6	21.6	36.2	60.0	-23.8
11.9	20.2	32.1	56.0	-23.9
10.3	20.3	30.6	56.0	-25.4
8.9	20.3	29.2	56.0	-26.8
10.2	22.7	32.9	60.0	-27.1
8.5	20.2	28.7	56.0	-27.3
10.8	21.4	32.2	60.0	-27.8
7.7	20.3	28.0	56.0	-28.0
7.3	20.3	27.6	56.0	-28.4
10.1	21.4	31.5	60.0	-28.5
6.8	20.3	27.1	56.0	-28.9
5.5	20.3	25.8	56.0	-30.2
7.8	21.9	29.7	60.0	-30.3
4.2	20.3	24.5	56.0	-31.5
3.9	20.3	24.2	56.0	-31.8
6.1	21.8	27.9	60.0	-32.1
2.7	20.3	23.0	56.0	-33.0
6.4	20.3	26.7	60.0	-33.3
4.5	20.2	24.7	58.1	-33.4
6.9	20.4	27.3	61.1	-33.8
8.4	20.4	28.8	62.7	-33.9
9.2	20.4	29.6	64.1	-34.5
10.5	20.4	30.9	65.7	-34.8
0.5	20.6	21.1	60.0	-38.9
0.0	20.9	20.9	60.0	-39.1
0.2	20.4	20.6	60.0	-39.4
	(dBuV) 14.6 11.9 10.3 8.9 10.2 8.5 10.8 7.7 7.3 10.1 6.8 5.5 7.8 4.2 3.9 6.1 2.7 6.4 4.5 6.9 8.4 9.2 10.5 0.5 0.0	(dBuV) (dB) 14.6 21.6 11.9 20.2 10.3 20.3 8.9 20.3 10.2 22.7 8.5 20.2 10.8 21.4 7.7 20.3 7.3 20.3 10.1 21.4 6.8 20.3 5.5 20.3 7.8 21.9 4.2 20.3 3.9 20.3 6.1 21.8 2.7 20.3 6.4 20.3 4.5 20.2 6.9 20.4 8.4 20.4 9.2 20.4 10.5 20.4 0.5 20.6 0.0 20.9	(dBuV) (dB) (dBuV) 14.6 21.6 36.2 11.9 20.2 32.1 10.3 20.3 30.6 8.9 20.3 29.2 10.2 22.7 32.9 8.5 20.2 28.7 10.8 21.4 32.2 7.7 20.3 28.0 7.3 20.3 27.6 6.8 20.3 27.1 5.5 20.3 25.8 7.8 21.9 29.7 4.2 20.3 24.5 3.9 20.3 24.5 3.9 20.3 24.5 3.9 20.3 24.5 6.1 21.8 27.9 2.7 20.3 23.0 6.4 20.3 26.7 4.5 20.2 24.7 6.9 20.4 27.3 8.4 20.4 28.8 9.2 20.4 29.6 10.5 20.4 30.9 0.5 20.6 21.1 0.0 20.9	(dBuV) (dB) (dBuV) (dBuV) 14.6 21.6 36.2 60.0 11.9 20.2 32.1 56.0 10.3 20.3 30.6 56.0 8.9 20.3 29.2 56.0 10.2 22.7 32.9 60.0 8.5 20.2 28.7 56.0 10.8 21.4 32.2 60.0 7.7 20.3 28.0 56.0 7.3 20.3 27.6 56.0 10.1 21.4 31.5 60.0 6.8 20.3 27.1 56.0 5.5 20.3 25.8 56.0 7.8 21.9 29.7 60.0 4.2 20.3 24.5 56.0 6.1 21.8 27.9 60.0 2.7 20.3 24.2 56.0 6.4 20.3 26.7 60.0 4.5 20.2 24.7 58.1

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.846	9.9	20.2	30.1	46.0	-15.9
13.560	13.0	21.1	34.1	50.0	-15.9
1.268	8.4	20.3	28.7	46.0	-17.3
1.690	6.5	20.3	26.8	46.0	-19.2
16.900	8.4	21.4	29.8	50.0	-20.2
0.562	5.4	20.2	25.6	46.0	-20.4
2.112	4.3	20.3	24.6	46.0	-21.4
17.694	7.0	21.4	28.4	50.0	-21.6
3.954	2.5	20.3	22.8	46.0	-23.2
4.274	2.4	20.3	22.7	46.0	-23.3
2.535	2.0	20.3	22.3	46.0	-23.7
23.129	3.9	21.9	25.8	50.0	-24.2
21.662	2.8	21.8	24.6	50.0	-25.4
2.957	-0.4	20.3	19.9	46.0	-26.1
5.237	2.8	20.3	23.1	50.0	-26.9
0.908	-1.3	20.3	19.0	46.0	-27.0
24.349	0.6	22.2	22.8	50.0	-27.2
1.458	-3.0	20.3	17.3	46.0	-28.7
0.390	-0.9	20.2	19.3	48.1	-28.8
0.223	3.5	20.4	23.9	52.7	-28.8
5.297	0.6	20.3	20.9	50.0	-29.1
0.272	1.4	20.4	21.8	51.1	-29.3
0.190	3.8	20.4	24.2	54.1	-29.9
25.694	-2.6	22.3	19.7	50.0	-30.3
0.156	5.0	20.4	25.4	55.7	-30.3
8.412	-5.5	20.6	15.1	50.0	-34.9
11.159	-6.2	20.9	14.7	50.0	-35.3
7.648	-5.9	20.5	14.6	50.0	-35.4

					EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0
Work Order:	ABBO0078	Date:	2021-08-17	~		
Project:	: None	Temperature:	21.5 °C	lum	2 Hear	
Job Site:	TX02	Humidity:	59.2% RH		· Long	
Serial Number:	ENG04-AP	Barometric Pres.:	1016 mbar	Tested	by: Travis Glasser	
EUT:	GLP12260 Aliquoter I	Module				
Configuration:	6					
Customer	Abbott Laboratories					
Attendees	Don Mendell					
EUT Power:	: 220VAC/60Hz					
Operating Mode	Transmitting RFID 13	.56 MHz				
Deviations	None					
Comments	AccessPoint #2					
Test Specifications			Test Met	hod		
FCC 15.207:2021	1			3.10:2013		
Run # 45	Line:	Neutral	Ext. Attenuation	0	Results	Pass

	Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
0.646	16.3	20.2	36.5	56.0	-19.5		
13.560	18.9	21.1	40.0	60.0	-20.0		
20.259	15.4	21.6	37.0	60.0	-23.0		
0.423	13.5	20.2	33.7	57.4	-23.7		
0.769	11.9	20.2	32.1	56.0	-23.9		

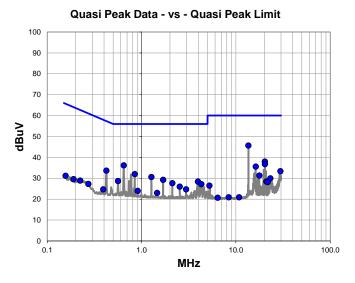

Average Data - vs - Average Limit							
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
13.560	16.2	21.1	37.3	50.0	-12.7		
0.647	12.0	20.2	32.2	46.0	-13.8		
20.259	14.1	21.6	35.7	50.0	-14.3		
0.423	12.0	20.2	32.2	47.4	-15.2		
20.381	12.8	21.6	34.4	50.0	-15.6		

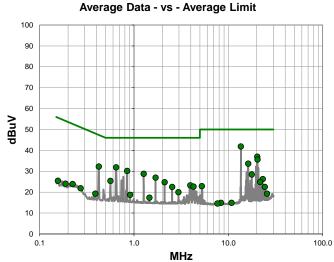

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
16.227	14.1	21.4	35.5	60.0	-24.5
20.381	13.9	21.6	35.5	60.0	-24.5
1.268	10.3	20.3	30.6	56.0	-25.4
1.690	8.8	20.3	29.1	56.0	-26.9
29.267	10.2	22.7	32.9	60.0	-27.1
0.562	8.6	20.2	28.8	56.0	-27.2
3.954	7.8	20.3	28.1	56.0	-27.9
17.694	10.4	21.4	31.8	60.0	-28.2
2.112	7.2	20.3	27.5	56.0	-28.5
4.276	6.8	20.3	27.1	56.0	-28.9
23.127	8.3	21.9	30.2	60.0	-29.8
2.535	5.5	20.3	25.8	56.0	-30.2
2.957	4.4	20.3	24.7	56.0	-31.3
0.908	3.9	20.3	24.2	56.0	-31.8
1.458	2.7	20.3	23.0	56.0	-33.0
5.236	6.4	20.3	26.7	60.0	-33.3
0.390	4.5	20.2	24.7	58.1	-33.4
0.223	8.6	20.4	29.0	62.7	-33.7
0.272	7.0	20.4	27.4	61.1	-33.7
0.156	11.0	20.4	31.4	65.7	-34.3
0.190	9.2	20.4	29.6	64.1	-34.5
8.412	0.4	20.6	21.0	60.0	-39.0
11.220	-0.1	20.9	20.8	60.0	-39.2
6.366	0.2	20.4	20.6	60.0	-39.4

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.846	9.9	20.2	30.1	46.0	-15.9
16.227	12.0	21.4	33.4	50.0	-16.6
1.267	8.3	20.3	28.6	46.0	-17.4
1.690	6.5	20.3	26.8	46.0	-19.2
0.562	5.5	20.2	25.7	46.0	-20.3
17.694	8.0	21.4	29.4	50.0	-20.6
2.112	4.4	20.3	24.7	46.0	-21.3
23.129	5.0	21.9	26.9	50.0	-23.1
3.954	2.4	20.3	22.7	46.0	-23.3
4.276	2.3	20.3	22.6	46.0	-23.4
2.535	2.0	20.3	22.3	46.0	-23.7
21.662	2.2	21.8	24.0	50.0	-26.0
2.957	-0.3	20.3	20.0	46.0	-26.0
5.237	2.8	20.3	23.1	50.0	-26.9
0.908	-1.3	20.3	19.0	46.0	-27.0
24.349	0.4	22.2	22.6	50.0	-27.4
1.458	-3.0	20.3	17.3	46.0	-28.7
0.223	3.6	20.4	24.0	52.7	-28.7
0.390	-0.9	20.2	19.3	48.1	-28.8
5.298	0.6	20.3	20.9	50.0	-29.1
0.272	1.5	20.4	21.9	51.1	-29.2
0.190	3.8	20.4	24.2	54.1	-29.9
0.156	5.1	20.4	25.5	55.7	-30.2
25.694	-3.0	22.3	19.3	50.0	-30.7
8.412	-5.5	20.6	15.1	50.0	-34.9
11.189	-6.2	20.9	14.7	50.0	-35.3
7.648	-5.9	20.5	14.6	50.0	-35.4

					EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0
Work Order:	ABBO0078	Date:	2021-08-17	~		
Project:	None	Temperature:	21.5 °C	lem	- He	
Job Site:	TX02	Humidity:	59.2% RH			
Serial Number:	ENG04-AP	Barometric Pres.:	1016 mbar	Tested by	: Travis Glasser	
EUT:	GLP12260 Aliquoter I	Module				·
Configuration:	6					
Customer:	Abbott Laboratories					
Attendees:	Don Mendell					
EUT Power:	220VAC/60Hz					
Operating Mode:	Transmitting RFID 13	.56 MHz				
Deviations:	None					
Comments	AccessPoint #2					
Test Specifications			Test Meth	od		
FCC 15.207:2021	-		ANSI C63	.10:2013		_
Run # 46	Line:	High Line	Ext. Attenuation:	0	Results	Pass

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.646	16.1	20.2	36.3	56.0	-19.7
13.560	18.7	21.1	39.8	60.0	-20.2
20.259	16.8	21.6	38.4	60.0	-21.6
16.227	16.6	21.4	38.0	60.0	-22.0
20.381	15.4	21.6	37.0	60.0	-23.0

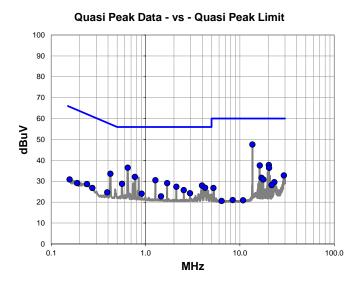

	Average Data - vs - Average Limit							
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)			
13.560	17.4	21.1	38.5	50.0	-11.5			
20.259	15.6	21.6	37.2	50.0	-12.8			
0.644	11.8	20.2	32.0	46.0	-14.0			
20.381	14.1	21.6	35.7	50.0	-14.3			
16.227	14.2	21.4	35.6	50.0	-14.4			

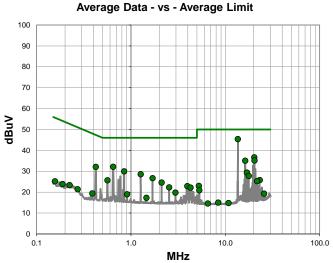

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.423	13.5	20.2	33.7	57.4	-23.7
0.846	11.9	20.2	32.1	56.0	-23.9
1.268	10.4	20.3	30.7	56.0	-25.3
1.690	9.0	20.3	29.3	56.0	-26.7
29.099	9.9	22.7	32.6	60.0	-27.4
0.562	8.3	20.2	28.5	56.0	-27.5
3.954	8.1	20.3	28.4	56.0	-27.6
16.900	11.0	21.4	32.4	60.0	-27.6
17.694	10.5	21.4	31.9	60.0	-28.1
2.112	7.4	20.3	27.7	56.0	-28.3
4.273	7.0	20.3	27.3	56.0	-28.7
23.129	8.5	21.9	30.4	60.0	-29.6
2.535	5.7	20.3	26.0	56.0	-30.0
2.957	4.5	20.3	24.8	56.0	-31.2
21.662	6.6	21.8	28.4	60.0	-31.6
0.908	3.7	20.3	24.0	56.0	-32.0
1.456	2.6	20.3	22.9	56.0	-33.1
5.237	6.3	20.3	26.6	60.0	-33.4
0.390	4.4	20.2	24.6	58.1	-33.5
0.272	7.0	20.4	27.4	61.1	-33.7
0.223	8.5	20.4	28.9	62.7	-33.8
0.188	9.3	20.4	29.7	64.1	-34.4
0.156	10.7	20.4	31.1	65.7	-34.6
8.414	0.4	20.6	21.0	60.0	-39.0
11.192	0.0	20.9	20.9	60.0	-39.1
6.366	0.2	20.4	20.6	60.0	-39.4

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.423	12.1	20.2	32.3	47.4	-15.1
0.846	10.1	20.2	30.3	46.0	-15.7
1.268	8.5	20.3	28.8	46.0	-17.2
1.691	6.8	20.3	27.1	46.0	-18.9
16.900	8.7	21.4	30.1	50.0	-19.9
0.562	5.2	20.2	25.4	46.0	-20.6
2.114	4.6	20.3	24.9	46.0	-21.1
17.694	7.5	21.4	28.9	50.0	-21.1
3.954	3.0	20.3	23.3	46.0	-22.7
23.129	5.1	21.9	27.0	50.0	-23.0
4.273	2.5	20.3	22.8	46.0	-23.2
2.535	2.2	20.3	22.5	46.0	-23.5
21.662	3.5	21.8	25.3	50.0	-24.7
2.957	-0.2	20.3	20.1	46.0	-25.9
5.236	2.6	20.3	22.9	50.0	-27.1
0.908	-1.6	20.3	18.7	46.0	-27.3
24.349	0.4	22.2	22.6	50.0	-27.4
0.222	3.9	20.4	24.3	52.8	-28.5
1.456	-3.0	20.3	17.3	46.0	-28.7
0.223	3.5	20.4	23.9	52.7	-28.8
0.390	-1.0	20.2	19.2	48.1	-28.9
0.272	1.5	20.4	21.9	51.1	-29.2
27.122	-2.1	22.5	20.4	50.0	-29.6
0.156	5.1	20.4	25.5	55.7	-30.2
8.412	-5.6	20.6	15.0	50.0	-35.0
10.792	-6.1	20.8	14.7	50.0	-35.3
6.397	-5.9	20.4	14.5	50.0	-35.5

								EmiR5 2021.06.24.0	PSA-ESCI 2021.03.17.0
Wor	rk Order:	ABBO0078	Date:	2021-	08-17	_	7		
	Project:	None	Temperature:	21.5	5 °C	1	em	He	· · · · · ·
	Job Site:	TX02	Humidity:	59.29	6 RH			- 10	
Serial	Number:	ENG05-AP	Barometric Pres.:	1016	mbar	•	Tested by:	Travis Glasse	er
	EUT:	GLP12260 Aliquoter N	Module						
Config	guration:	6							
Cı	ustomer:	Abbott Laboratories							
Att	tendees:	Don Mendell							
EUT	T Power:	220VAC/60Hz							
Operatin	ng Mode:	Transmitting RFID 13.	56 MHz						
De	viations:	None							
Cor	mments:	AccessPoint #3							
Test Specifi	ications				Test Metho	od			
FCC 15.207					ANSI C63.	10:2013	!		
Run#	47	Line:	High Line	Ext. At	enuation:	0		Results	Pass

Quasi Peak Data - vs - Quasi Peak Limit							
Freq Amplitude Factor Adjusted Spec. Limit Spec. (MHz) (dBuV) (dB) (dBuV) (dBuV) (dBuV)							
13.559	24.6	21.1	45.7	60.0	-14.3		
0.646	16.0	20.2	36.2	56.0	-19.8		
20.259	16.4	21.6	38.0	60.0	-22.0		
20.320	15.2	21.6	36.8	60.0	-23.2		
0.423	13.5	20.2	33.7	57.4	-23.7		


Average Data - vs - Average Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	
13.559	20.8	21.1	41.9	50.0	-8.1	
20.259	15.4	21.6	37.0	50.0	-13.0	
0.647	11.7	20.2	31.9	46.0	-14.1	
20.381	14.0	21.6	35.6	50.0	-14.4	
0.423	12.1	20.2	32.3	47.4	-15.1	


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.846	11.8	20.2	32.0	56.0	-24.0
16.227	14.2	21.4	35.6	60.0	-24.4
1.268	10.3	20.3	30.6	56.0	-25.4
29.578	10.7	22.7	33.4	60.0	-26.6
1.691	9.0	20.3	29.3	56.0	-26.7
0.562	8.5	20.2	28.7	56.0	-27.3
3.954	8.1	20.3	28.4	56.0	-27.6
2.114	7.4	20.3	27.7	56.0	-28.3
17.694	9.9	21.4	31.3	60.0	-28.7
4.291	6.9	20.3	27.2	56.0	-28.8
23.129	8.1	21.9	30.0	60.0	-30.0
2.536	5.7	20.3	26.0	56.0	-30.0
2.959	4.4	20.3	24.7	56.0	-31.3
20.991	6.8	21.7	28.5	60.0	-31.5
21.662	6.4	21.8	28.2	60.0	-31.8
0.908	3.7	20.3	24.0	56.0	-32.0
1.458	2.7	20.3	23.0	56.0	-33.0
0.391	4.5	20.2	24.7	58.0	-33.3
5.236	6.2	20.3	26.5	60.0	-33.5
0.272	6.9	20.4	27.3	61.1	-33.8
0.223	8.5	20.4	28.9	62.7	-33.8
0.190	9.2	20.4	29.6	64.1	-34.5
0.156	10.8	20.4	31.2	65.7	-34.5
8.362	0.3	20.6	20.9	60.0	-39.1
10.792	0.1	20.8	20.9	60.0	-39.1
6.397	0.3	20.4	20.7	60.0	-39.3

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.846	10.0	20.2	30.2	46.0	-15.8
16.227	12.3	21.4	33.7	50.0	-16.3
1.268	8.5	20.3	28.8	46.0	-17.2
1.691	6.7	20.3	27.0	46.0	-19.0
0.562	5.2	20.2	25.4	46.0	-20.6
2.114	4.5	20.3	24.8	46.0	-21.2
17.694	7.1	21.4	28.5	50.0	-21.5
3.954	3.0	20.3	23.3	46.0	-22.7
4.273	2.4	20.3	22.7	46.0	-23.3
2.536	2.2	20.3	22.5	46.0	-23.5
23.129	4.4	21.9	26.3	50.0	-23.7
21.662	3.1	21.8	24.9	50.0	-25.1
2.959	-0.3	20.3	20.0	46.0	-26.0
5.237	2.6	20.3	22.9	50.0	-27.1
0.908	-1.6	20.3	18.7	46.0	-27.3
24.349	0.3	22.2	22.5	50.0	-27.5
1.458	-2.9	20.3	17.4	46.0	-28.6
0.390	-0.9	20.2	19.3	48.1	-28.8
0.223	3.5	20.4	23.9	52.7	-28.8
0.272	1.5	20.4	21.9	51.1	-29.2
0.188	3.7	20.4	24.1	54.1	-30.0
0.156	5.1	20.4	25.5	55.7	-30.2
25.694	-3.0	22.3	19.3	50.0	-30.7
8.362	-5.7	20.6	14.9	50.0	-35.1
10.792	-5.9	20.8	14.9	50.0	-35.1
7.648	-5.9	20.5	14.6	50.0	-35.4

					EmiR5 20	21.06.24.0	PSA-ESCI 2021.03.17.0
Work Order:	ABBO0078	Date:	2021-08-17				
Project:	: None	Temperature:	21.5 °C	1		41	
Job Site:	TX02	Humidity:	59.2% RH	1596/95/1599			1
Serial Number:	ENG05-AP	Barometric Pres.:	1016 mbar	Те	sted by: Travi	s Glasser	
EUT:	GLP12260 Aliquoter I	Module					
Configuration:	6						
Customer	Abbott Laboratories						_
Attendees	Don Mendell						
EUT Power:	220VAC/60Hz						
Operating Mode	Transmitting RFID 13	.56 MHz					
Deviations	None						
Comments	AccessPoint #3						
Test Specifications			Test Me	thod			
FCC 15.207:2021	+			3.10:2013			
Run # 48	Line:	Neutral	Ext. Attenuatio	n: 0	Re	sults	Pass

Quasi Peak Data - vs - Quasi Peak Limit							
Freq Amplitude Factor Adjusted Spec. Limit Spec. (dBuV) (dB) (dBuV) (dBuV) (dBuV)							
13.560	26.5	21.1	47.6	60.0	-12.4		
0.646	16.3	20.2	36.5	56.0	-19.5		
20.259	16.2	21.6	37.8	60.0	-22.2		
16.229	16.2	21.4	37.6	60.0	-22.4		
20.381	14.8	21.6	36.4	60.0	-23.6		

Average Data - vs - Average Limit							
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
13.560	24.3	21.1	45.4	50.0	-4.6		
20.259	15.1	21.6	36.7	50.0	-13.3		
0.647	12.0	20.2	32.2	46.0	-13.8		
20.381	13.6	21.6	35.2	50.0	-14.8		
16.227	13.7	21.4	35.1	50.0	-14.9		

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.423	13.4	20.2	33.6	57.4	-23.8
0.769	11.9	20.2	32.1	56.0	-23.9
1.268	10.2	20.3	30.5	56.0	-25.5
1.691	8.8	20.3	29.1	56.0	-26.9
0.562	8.6	20.2	28.8	56.0	-27.2
29.214	10.1	22.7	32.8	60.0	-27.2
3.954	7.7	20.3	28.0	56.0	-28.0
16.899	10.3	21.4	31.7	60.0	-28.3
2.114	7.1	20.3	27.4	56.0	-28.6
17.694	9.5	21.4	30.9	60.0	-29.1
4.273	6.6	20.3	26.9	56.0	-29.1
2.536	5.5	20.3	25.8	56.0	-30.2
23.127	7.7	21.9	29.6	60.0	-30.4
2.957	4.0	20.3	24.3	56.0	-31.7
21.664	6.4	21.8	28.2	60.0	-31.8
0.907	3.8	20.3	24.1	56.0	-31.9
5.237	6.5	20.3	26.8	60.0	-33.2
1.456	2.5	20.3	22.8	56.0	-33.2
0.391	4.5	20.2	24.7	58.0	-33.3
0.238	8.3	20.4	28.7	62.1	-33.4
0.272	6.4	20.4	26.8	61.1	-34.3
0.156	10.5	20.4	30.9	65.7	-34.8
0.188	8.8	20.4	29.2	64.1	-34.9
8.362	0.4	20.6	21.0	60.0	-39.0
10.792	0.1	20.8	20.9	60.0	-39.1
6.395	0.2	20.4	20.6	60.0	-39.4

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.423	11.9	20.2	32.1	47.4	-15.3
0.846	9.8	20.2	30.0	46.0	-16.0
1.268	8.3	20.3	28.6	46.0	-17.4
1.691	6.4	20.3	26.7	46.0	-19.3
0.562	5.5	20.2	25.7	46.0	-20.3
16.900	8.0	21.4	29.4	50.0	-20.6
2.114	4.3	20.3	24.6	46.0	-21.4
17.694	6.4	21.4	27.8	50.0	-22.2
3.954	2.6	20.3	22.9	46.0	-23.1
2.536	2.0	20.3	22.3	46.0	-23.7
4.273	1.9	20.3	22.2	46.0	-23.8
23.129	3.9	21.9	25.8	50.0	-24.2
21.662	3.5	21.8	25.3	50.0	-24.7
2.959	-0.5	20.3	19.8	46.0	-26.2
5.236	2.7	20.3	23.0	50.0	-27.0
0.908	-1.3	20.3	19.0	46.0	-27.0
1.458	-3.0	20.3	17.3	46.0	-28.7
0.390	-0.8	20.2	19.4	48.1	-28.7
5.298	0.6	20.3	20.9	50.0	-29.1
0.223	3.0	20.4	23.4	52.7	-29.3
0.272	1.0	20.4	21.4	51.1	-29.7
0.188	3.5	20.4	23.9	54.1	-30.2
0.156	4.8	20.4	25.2	55.7	-30.5
25.694	-3.0	22.3	19.3	50.0	-30.7
8.411	-5.6	20.6	15.0	50.0	-35.0
10.792	-6.0	20.8	14.8	50.0	-35.2
6.519	-5.8	20.4	14.6	50.0	-35.4

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0078 - 6

FREQUENCY RANGE INVESTIGATED

Start Frequency 490 kHz	Stop Frequency 30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2021-05-24	2022-05-24
Antenna - Loop	ETS Lindgren	6502	AZM	2020-07-09	2022-07-09
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2020-07-30	2021-07-30

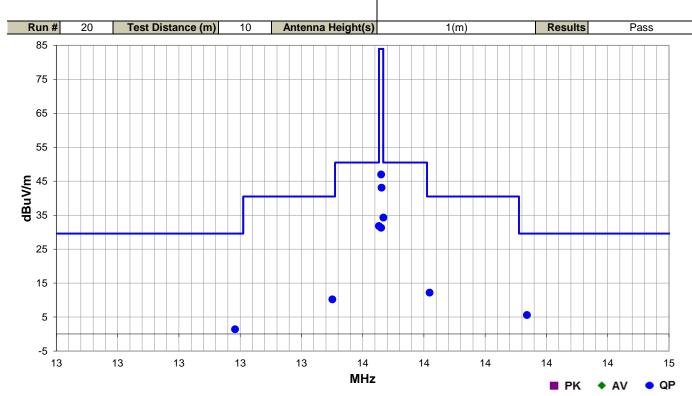
TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector


PK = Peak Detector

AV = RMS Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

				EmiR5 2021.06.24.0 PSA-ESCI 2021.03.17.0								
Work Order:	ABBO0078	Date:	2021-07-09	11 2								
Project:	None	Temperature:	21.5 °C	146,4								
Job Site:	TX02	Humidity:	54.9% RH									
Serial Number:	See Configurations	Barometric Pres.:	1019 mbar	Tested by: Mark Baytan								
EUT:	GLP12260 Aliquoter N	/lodule										
Configuration:	6											
Customer:	Abbott Laboratories											
Attendees:	Don Mendell	Don Mendell										
EUT Power:	220VAC/60Hz											
Operating Mode:	Transmitting RFID 13.56 MHz											
Deviations:	None											
Comments:	All Radios ON. Test	mode only.										
Test Specifications			Test Me	thod								
FCC 15.225:2021			ANSI C	63.10:2013								

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
13.567	41.8	11.6	1.0	228.0	10.0	0.0	Perp to EUT	QP	-19.1	34.3	50.5	-16.2
13.553	39.3	11.6	1.0	327.0	10.0	0.0	Perp to EUT	QP	-19.1	31.8	50.5	-18.7
14.036	13.1	11.6	1.0	313.0	10.0	0.0	Perp to EUT	QP	-19.1	5.6	29.5	-23.9
13.083	8.9	11.6	1.0	63.9	10.0	0.0	Perp to EUT	QP	-19.1	1.4	29.5	-28.1
13.719	19.7	11.6	1.0	158.0	10.0	0.0	Perp to EUT	QP	-19.1	12.2	40.5	-28.3
13.401	17.7	11.6	1.0	301.0	10.0	0.0	Perp to EUT	QP	-19.1	10.2	40.5	-30.3
13.560	54.5	11.6	1.0	81.0	10.0	0.0	Perp to EUT	QP	-19.1	47.0	84.0	-37.0
13.561	50.6	11.6	1.0	259.0	10.0	0.0	Para to GND	QP	-19.1	43.1	84.0	-40.9
13.560	38.8	11.6	1.0	279.9	10.0	0.0	Para to EUT	QP	-19.1	31.3	84.0	-52.7

Wo	rk Order:	ABBO0078		Date:	2021.	-07-09			EmiR5 2021.06.24.0		PSA-ESCI 2021.03.
	Project		Te	mperature:		5 °C		4	4/	5.1	
	Job Site:			Humidity:		% RH				7	
	Number		Barom	etric Pres.:		mbar		Tested by:	Mark Bavta	an	
		GLP12260 Aliquote						,			
Confi	guration										
C	ustomer	Abbott Laboratories									
		Don Mendell									
		220VAC/60Hz									
	ng Mode	T 'W' DEID	3.56 MHz								
De	eviations	None									
Co	mments	AccessPoint Radio	1. All emiss	ions were gr	eater than	20 dB belov	w the limit.				
st Speci	fications					Test Meth	od				
C 15.22						ANSI C63.		•			
Run #	21	Test Distance (n	1) 10	Antenna	Height(s)		1(m)		Results	Р	ass
85 —						п					
75											
75											
65											
55											
E 45 \dotplus											
45 + 35 +											
~ 기											
5 35						_					
<u> </u>			 					$ \cdot \cdot \downarrow $			
25											
15											+++
5											
Ĭ											
-5 [⊥] 13		13 13	13	13	14	14		14	14	14	15
13		10 10	13	13	MHz		•	17	■ PK	• AV	• QP
						Polarity/					
Freq (MHz)	Amplitude (dBuV)	Factor Antenna Hei (dB/m) (meters)	ght Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared Spec. (dB)
3.567	35.0	11.6 1.0	360.0 176.0	10.0	0.0	Perp to EUT		-19.1 -19.1	27.5	50.5 50.5	-23.0

34.2

11.9

8.6

17.1

16.0

44.7

11.6

11.6

11.6

11.6

11.6

11.6

1.0

1.0

1.0

1.0

1.0

1.0

176.0

152.0

33.0

320.0

81.0

345.0

10.0

10.0

10.0

10.0

10.0

10.0

13.553

14.036

13.083

13.718

13.401

13.560

0.0

0.0

0.0

0.0

0.0

0.0

Perp to EUT

QΡ

QP

QΡ

QP

QP

QP

-19.1

-19.1

-19.1

-19.1

-19.1

-19.1

26.7

4.4

1.1

9.6

8.5

37.2

50.5

29.5

29.5

40.5

40.5

84.0

-23.8

-25.1

-28.4

-30.9

-32.0

-46.8

PSA-ESCI 2021.03.17.0

	rk Order:		Date:	2021-07-09	09				
	Project:	None	Temperature:	21.5 °C	°C				
	Job Site:		Humidity:						
Serial	Number:		Barometric Pres.:	1019 mbar	Tested by:	Mark Baytan			
		GLP12260 Aliquoter	Module		•	-			
Config	guration:	6							
Ci	ustomer:	Abbott Laboratories							
At	tendees:	Don Mendell							
		220VAC/60Hz							
Operatin		T ''' DEID 4	3.56 MHz						
De	viations:								
Cor	mments:		. All emissions were gr	eater than 20 dB belo	w the limit.				
Test Specif	ications			Test Met	nod				
FCC 15.225		1		ANSI C63					
Run #	22	Test Distance (m	10 Antenna	Height(s)	1(m)	Results	Pass		
85									
75									
75 — 65 —									
65 -									
65									
65									
65									
65									
65 —									
65									
65 — 55 — 45 — 45 — 45 — 45 — 45 — 45 —									
65									
65 — 55 — 45 — 45 — 45 — 45 — 45 — 45 —									
65									
65 — 55 — 45 — 45 — 25 — 25 —									

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
14.142	8.3	11.6	1.0	278.0	10.0	0.0	Perp to EUT	QP	-19.1	0.8	29.5	-28.7
13.567	29.0	11.6	1.0	355.0	10.0	0.0	Perp to EUT	QP	-19.1	21.5	50.5	-29.0
13.109	6.5	11.6	1.0	121.0	10.0	0.0	Perp to EUT	QP	-19.1	-1.0	29.5	-30.5
13.553	27.3	11.6	1.0	12.0	10.0	0.0	Perp to EUT	QP	-19.1	19.8	50.5	-30.7
13.718	12.3	11.6	1.0	213.0	10.0	0.0	Perp to EUT	QP	-19.1	4.8	40.5	-35.7
13.401	11.0	11.6	1.0	80.0	10.0	0.0	Perp to EUT	QP	-19.1	3.5	40.5	-37.0
13.560	39.6	11.6	1.0	3.0	10.0	0.0	Perp to EUT	QP	-19.1	32.1	84.0	-51.9

14

MHz

14

14

■ PK

13

13

13

13

13

15

QP

AV

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2021.03.17.0

EmiR5 2021.06.24.0

										EMIR5 2021.06.24.0	P	'SA-ESCI 2021.03.
Wo	rk Order:		O0078		Date:		07-09		11			
	Project:		one	Ter	nperature:	21.	5 °C		4	46	2/	
	Job Site:		X02		Humidity:		% RH					
Serial	Number:		905-AP		etric Pres.:	1019	mbar		Tested by:	Mark Bayta	an	
	EUT:	GLP1226	0 Aliquoter N	/lodule		•				•		
Confid	guration:		·									
C	ustomer:	Abbott La	boratories									
At	tendees:	Don Mend	dell									
		220VAC/6										
	ng Mode:	T	ing RFID 13	.56 MHz								
De	viations:	None										
Co	mments:		oint Radio 3.	All emissi	ons were gr	eater than	20 dB belov	v the limit.				
ot Coocif	ications						Test Meth	٠ ما	ı			
C 15.225	ications						ANSI C63.					
D	00	T		40				4/)				
Run#	23	lest Di	istance (m)	10	Antenna	Height(s)		1(m)		Results	L P	ass
85 —												
75												
₆₅												
65												
55												
00												
E 45 🕂												
45 — 35 —												
∑												
₿ 35 ┼												
							•					
05									$ \cdot \cdot $			
25												
							-					
15											+	$\perp \perp \perp$
5			++++								+++	+
_			📍									
-5 ⊥		40	40	40	40				4.4	4.4	44	
13		13	13	13	13	14	14		14	14	14	15
						MHz				■ PK	◆ AV	• QP
							Polarity/					
Erog	Amplitude	Enster	Antonna Haisht	A minor oth	Toot Distance	External	Transducer	Detector	Distance	Adjusted	Snor Limit	Compared
Freq	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)
(MHz)	(GDGV)	(42/111)	(matera)	(dogrees)	(moters)	(ub)			(4D)	(abav/iii)	(GDGV/III)	(05)
4.142	7.9	11.6	1.0	310.9	10.0	0.0	Perp to EUT	QP	-19.1	0.4	29.5	-29.1
13 567	28.0	11.6	1.0	03.0	10.0	0.0	Perp to EUT		-10.1	21 /	50.5	-20.1

28.9

28.5

6.5

11.7

10.8

38.9

11.6

11.6

11.6

11.6

11.6

11.6

1.0

1.0

1.0

1.0

1.0

1.0

93.9

45.9

148.9

231.0

56.0

99.9

10.0

10.0

10.0

10.0

10.0

10.0

13.567

13.553

12.977

13.719

13.401

13.560

0.0

0.0

0.0

0.0

0.0

0.0

Perp to EUT

QΡ

QΡ

QΡ

QP

QΡ

QP

-19.1

-19.1

-19.1

-19.1

-19.1

-19.1

21.4

21.0

-1.0

4.2

3.3

31.4

50.5

50.5

29.5

40.5

40.5

84.0

-29.1

-29.5

-30.5

-36.3

-37.2

-52.6

FIELD STRENGTH OF FUNDAMENTAL

										EmiR5 2021.06.24.0	F	PSA-ESCI 2021.03.17.	0
W	ork Order:		O0078		Date:	2021	-07-09		4	, _			1
	Project		one	Te	mperature:		5 °C				7-	-	
	Job Site:		X02		Humidity:		% RH				/		_
Seria	al Number:		06-CS		etric Pres.:	1019) mbar		Tested by:	Mark Bayta	an		_
			Aliquoter N	Module									_
	figuration												_
		Abbott Lab											_
		Don Mend											_
Е	UT Power:	220VAC/6											_
Onera	ting Mode	Transmittii	ng RFID 13	.56 MHz									
Орега	ting would												_
	Deviations	None											
•	Seviations												_
			ch Radio.	All emission	ns were gre	ater than 2	0 dB below	the limit.					
C	comments:	:											
													_
Test Spec	cifications	I					Test Metho	nd	1				
FCC 15.22							ANSI C63.						-
FCC 13.22	25.2021						ANSI COS.	10.2013					
													_
Run #	26	lest Di	stance (m)	10	Antenna	Height(s)		1(m)		Results	l P	ass	_
ı													
80 -													
°0 T													
70 -													
,,,													
60													
00													
_ 50													
ے کے													
≥													
w//ngp							<u> </u>						
ᇴ													
30 -							•						
							~						
20 -													
40													
10 -						-							
0													
1;	3	13	13	13	13	14	14		14	14	14	15	
.,	~		10			MHz			• •			10	
						IVITIZ	•			■ PK	AV	QP	
							Delta in A						
			Antenna			External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Height	Azimuth	Test Distance	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB/m)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	0
12 552	36.0	11.6	1.0	227.0	10.0	0.0	Dorn to ELIT	OB	10.1	20.5	50 F	22.0	Comments
13.553 13.576	36.0 34.9	11.6 11.6	1.0 1.0	237.0 267.0	10.0 10.0	0.0 0.0	Perp to EUT Perp to EUT	QP QP	-19.1 -19.1	28.5 27.4	50.5 50.5	-22.0 -23.1	All Radios Of All Radios Of
14.036	13.7	11.6	1.0	219.0	10.0	0.0	Perp to EUT	QP QP	-19.1 -19.1	6.2	50.5 29.5	-23.1 -23.3	All Radios O
13.083	9.1	11.6	1.0	110.0	10.0	0.0	Perp to EUT	QP	-19.1	1.6	29.5	-23.3	All Radios O
13.718	18.9	11.6	1.0	220.9	10.0	0.0	Perp to EUT	QP	-19.1	11.4	40.5	-29.1	All Radios O
13.401	17.4	11.6	1.0	249.9	10.0	0.0	Perp to EUT	QP	-19.1	9.9	40.5	-30.6	All Radios O
13.560	47.0	11.6	1.0	321.0	10.0	0.0	Perp to EUT	QP	-19.1	39.5	84.0	-44.5	All Radios O
13.560	43.9	11.6	1.0	289.0	10.0	0.0	Perp to EUT	QP	-19.1	36.4	84.0	-47.6	Radio 1
13.560	40.0	11.6	1.0	192.0	10.0	0.0	Perp to EUT	QP	-19.1	32.5	84.0	-51.5	Radio 2

FIELD STRENGTH OF SPURIOUS EMISSIONS (Less Than 30 MHz)

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0078 - 6

FREQUENCY RANGE INVESTIGATED

Start Fragues av 400 kl Iz	Cton Fraguesou	20 MIL
Start Frequency 490 kHz	Stop Frequency	30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2021-05-24	2022-05-24
Antenna - Loop	ETS Lindgren	6502	AZM	2020-07-09	2022-07-09
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2020-07-30	2021-07-30

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

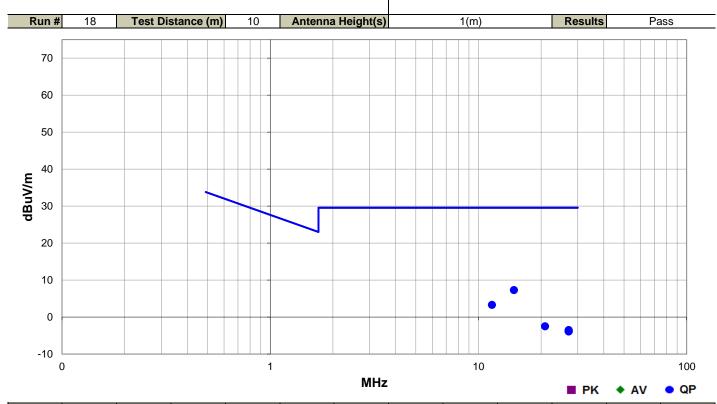
PK = Peak Detector

AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF SPURIOUS EMISSIONS (Less Than 30 MHz)



				EmiR5 2021.06.24.0 PSA-ESCI 2021.03.17.0
Work Order:	ABBO0078	Date:	2021-07-09	11 3
Project:	None	Temperature:	21.5 °C	Mx Byt
Job Site:	TX02	Humidity:	54.9% RH	
Serial Number:	See Configurations	Barometric Pres.:	1019 mbar	Tested by: Mark Baytan
EUT:	GLP12260 Aliquoter N	/lodule		•
Configuration:	6			
Customer:	Abbott Laboratories			
Attendees:	Don Mendell			
EUT Power:	220VAC/60Hz			
Operating Mode:	Transmitting RFID 13.	56 MHz		
Deviations:	None			
Comments:	All Radios ON. Test m	node only.		

Test Specifications

FCC 15.225:2021

Test Method ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
14.795	14.9	11.5	1.0	40.9	10.0	0.0	Perp to EUT	QP	-19.1	7.3	29.5	-22.2
11.612	10.8	11.6	1.0	90.0	10.0	0.0	Perp to EUT	QP	-19.1	3.3	29.5	-26.2
20.887	5.5	11.1	1.0	114.0	10.0	0.0	Perp to EUT	QP	-19.1	-2.5	29.5	-32.0
27.122	5.6	10.0	1.0	36.0	10.0	0.0	Para to GND	QP	-19.1	-3.5	29.5	-33.0
27.120	5.3	10.0	1.0	27.0	10.0	0.0	Para to EUT	QP	-19.1	-3.8	29.5	-33.3
27.112	5.2	10.0	1.0	3.0	10.0	0.0	Perp to EUT	QP	-19.1	-3.9	29.5	-33.4

FIELD STRENGTH OF SPURIOUS EMISSIONS (Greater than 30 MHz)

PSA-ESCI 2021.03.17.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting RFID 13.56 MHz

POWER SETTINGS INVESTIGATED

220VAC/60Hz

CONFIGURATIONS INVESTIGATED

ABBO0078 - 6

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 18000 MHz	
---	--

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Northwest EMC	RE 9kHz - 1GHz	TXB	2021-05-24	2022-05-24
Cable	Northwest EMC	1-8.2 GHz	TXC	2021-05-24	2022-05-24
Cable	Northwest EMC	8-18 GHz	TXD	2021-04-30	2022-04-30
Amplifier - Pre-Amplifier	Fairview Microwave	FMAM63001	PAS	2021-05-24	2022-05-24
Amplifier - Pre-Amplifier	Miteq	AMF-3D-	PAJ	2021-05-24	2022-05-24
Amplifier - Pre-Amplifier	Miteq	AMF-6F-	PAL	2020-09-17	2021-09-17
Amplifier - Pre-Amplifier	Cernex	FMAM63001	PAX	2021-02-23	2022-02-23
Filter - Low Pass	Micro-Tronics	LPM50004	HHV	2021-07-27	2022-07-27
Antenna - Biconilog	ETS Lindgren	3143B	AYF	2020-06-25	2022-06-25
Antenna - Standard Gain	ETS Lindgren	3160-07	AJF	NCR	NCR
Antenna - Standard Gain	ETS Lindgren	3160-08	AJG	NCR	NCR
Antenna - Double Ridge	ETS Lindgren	3115	AJL	2020-10-20	2021-10-20
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	2020-07-30	2021-07-30

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

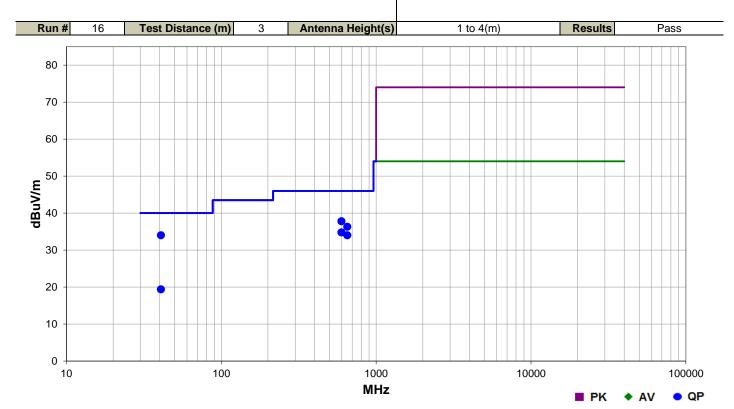
QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.


FIELD STRENGTH OF SPURIOUS EMISSIONS (GREATER THAN 30 MHz)

				EmiR5 2021.05.14.0 PSA-ESCI 2021.03.17.0
Work Order:	ABBO0078	Date:	2021-07-08	11
Project:	None	Temperature:	20.4 °C	Mr Bytan
Job Site:	TX02	Humidity:	56.2% RH	
Serial Number:	See Configurations	Barometric Pres.:	1016 mbar	Tested by: Mark Baytan
EUT:	GLP12260 Aliquoter N	/lodule		•
Configuration:	6			
Customer:	Abbott Laboratories			
Attendees:	Don Mendell			
EUT Power:	220VAC/60Hz			
Operating Mode:	Transmitting RFID 13.	56 MHz		
Deviations:	None			
Comments:	All Radios ON. Test m	node only.		

 Test Specifications
 Test Method

 FCC 15.225:2021
 ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
40.688	57.2	-23.2	1.0	61.0	3.0	0.0	Vert	QP	0.0	34.0	40.0	-6.0
596.645	46.1	-8.3	1.34	180.0	3.0	0.0	Vert	QP	0.0	37.8	46.0	-8.2
650.890	43.1	-6.8	1.4	141.0	3.0	0.0	Vert	QP	0.0	36.3	46.0	-9.7
596.640	43.1	-8.3	1.0	136.9	3.0	0.0	Horz	QP	0.0	34.8	46.0	-11.2
650.885	40.8	-6.8	1.1	156.0	3.0	0.0	Horz	QP	0.0	34.0	46.0	-12.0
40.696	42.6	-23.2	1.0	109.0	3.0	0.0	Horz	QP	0.0	19.4	40.0	-20.6

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

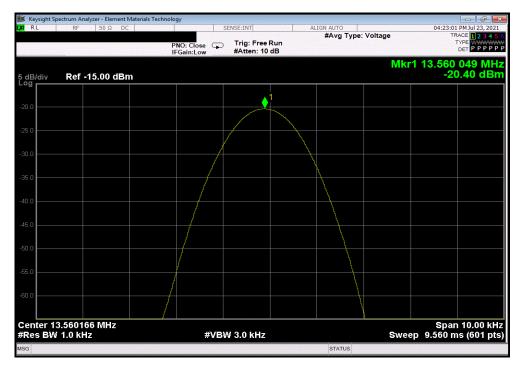
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	77-IV	MLT	2020-10-15	2023-10-15
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBH	NCR	NCR
Transformer	Staco Energy Products Co.	3PN2520B	XFZ	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUI	2021-02-02	2024-02-02
Probe - Near Field Set	ETS Lindgren	7405	IPS	NCR	NCR
Cable	UtiFlex Micro-Coax	UFD1150A-1-0720-200200	TXJ	2020-09-22	2021-09-22
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2021-01-06	2022-01-06

TEST DESCRIPTION

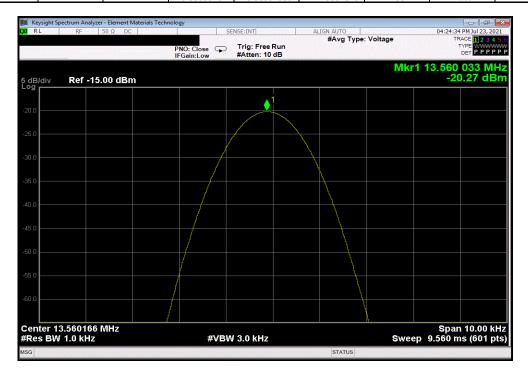
The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

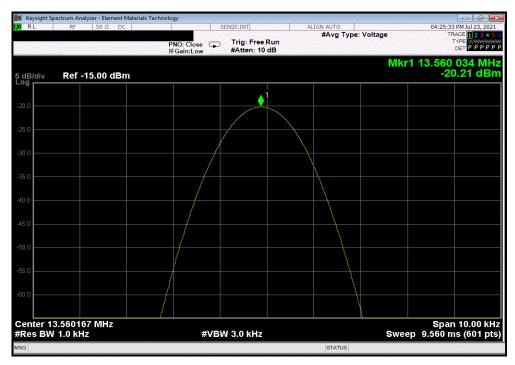
The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -20 ° to +50° C and at 10°C intervals.

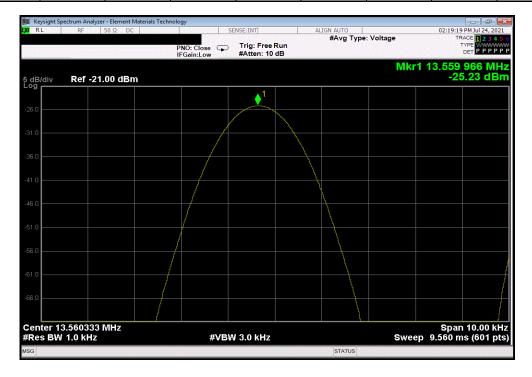

The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm. The formula to check for compliance is:

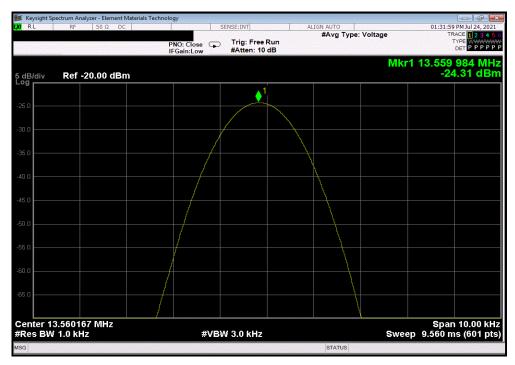
ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

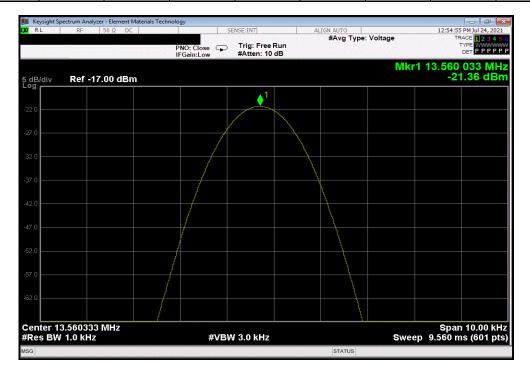


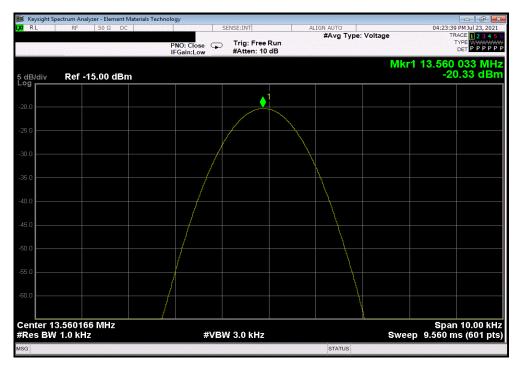
EUT: GLP12260 Aliquoter Module
Serial Number: ENG02-AP
Customer: Abbott Laboratories
Attendees: Don Mendell Work Order: ABBO0078
Date: 24-Jul-21
Temperature: 25 °C Humidity: 47.8% RH
Barometric Pres.: 1019 mbar Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Power: 220VAC/60Hz Test Method Job Site: TX05 FCC 15.225:2021 COMMENTS DEVIATIONS FROM TEST STANDARD 146,4 Configuration # 2 Signature Measured Value (MHz) Value (MHz) Results (ppm) (ppm) Normal Voltage Mid Channel, 13.56 MHz 13.56004933 13.56004933 0 100 Pass Extreme Voltage +15% Mid Channel, 13.56 MHz 13.56003267 13.56004933 -1.229051576 100 Pass Mid Channel, 13.56 MHz 13.56003367 13.56004933 -1.155305531 100 Pass re +50°C Mid Channel, 13.56 MHz ure +40°C 13.55996633 13.56004933 -6.120921684 100 Pass Mid Channel, 13.56 MHz ure +30°C 13.55998367 13.56004933 -4.842607751 100 Pass Mid Channel, 13.56 MHz 13.560033 13.56004933 -1.204494143 100 Pass ure +20°C Mid Channel, 13.56 MHz 13 56003267 13.56004933 -1 229051576 100 Pass re +10°C Mid Channel, 13.56 MHz ure 0°C 13.56009967 13.56004933 3.711933398 100 Pass Mid Channel, 13.56 MHz 13.560116 13.56004933 4.916427541 100 Pass re -10°C Mid Channel, 13.56 MHz Extreme Temperature -20°C 13.560133 13.56004933 6.170110296 100 Pass Mid Channel, 13.56 MHz 13.56011633 13.56004933 4.940984974 100 Pass

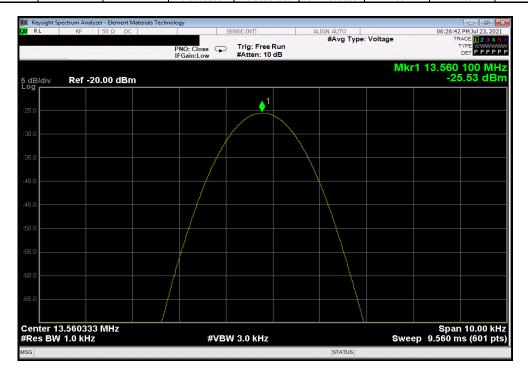


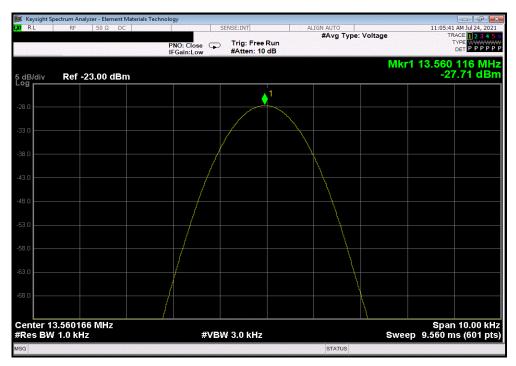

		Extreme Voltage	e +15%, Mid Cha	nnel, 13.56 MHz		
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
1	_	13.56003267	13.56004933	-1.229051576	100	Pass



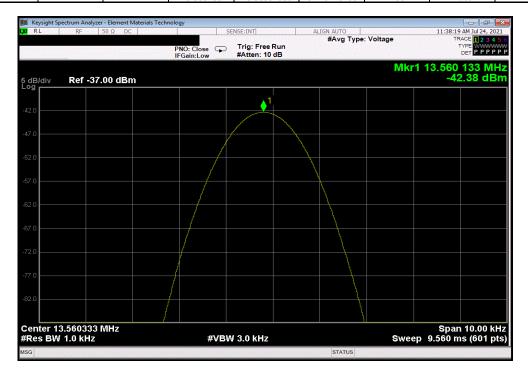

	E:	xtreme Temperat	ure +50°C, Mid C	hannel, 13.56 MF	łz	
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.55996633	13.56004933	-6.120921684	100	Pass



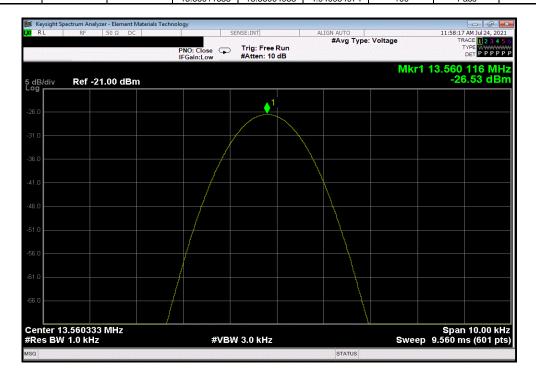

	Ex	treme Temperat	ure +30°C, Mid C	Channel, 13.56 MF	·lz	
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
_		13.560033	13.56004933	-1.204494143	100	Pass



	Ex	treme Temperat	ure +10°C, Mid C	Channel, 13.56 MF	·lz	
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
_		13.56009967	13.56004933	3.711933398	100	Pass

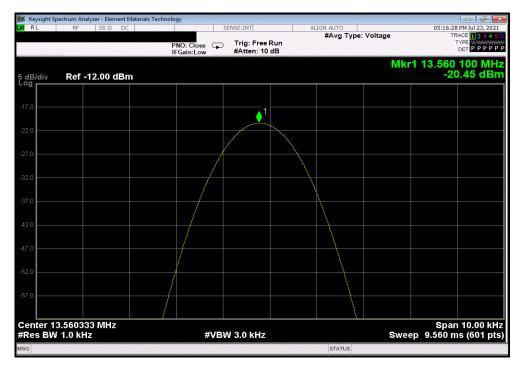


| Extreme Temperature 0°C, Mid Channel, 13.56 MHz
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.560116 | 13.56004933 | 4.916427541 | 100 Pass

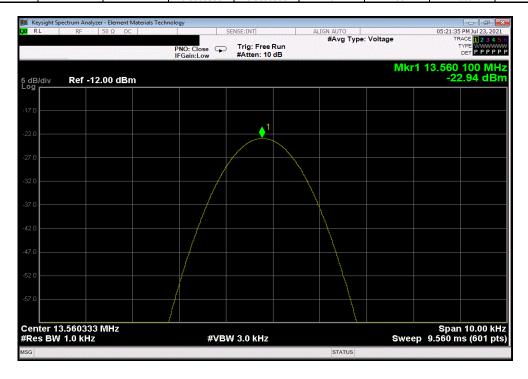


	Ex	xtreme Temperat	ture -10°C, Mid C	hannel, 13.56 MF	łz	
		Measured	Nominal	Error	Limit	
_		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.560133	13.56004933	6.170110296	100	Pass

| Extreme Temperature -20°C, Mid Channel, 13.56 MHz
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.56011633 | 13.56004933 | 4.940984974 | 100 Pass

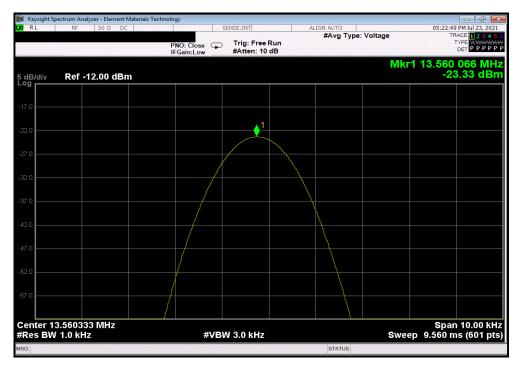


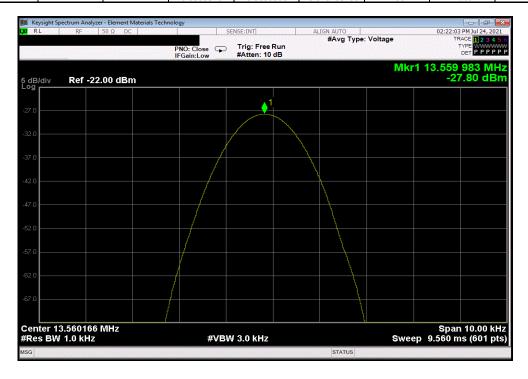
EUT: GLP12260 Aliquoter Module
Serial Number: ENG05-CS
Customer: Abbott Laboratories Work Order: ABBO0078
Date: 24-Jul-21 Temperature: 25 °C Attendees: Don Mendell Humidity: 47.8% RH Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Barometric Pres.: 1019 mbar Power: 220VAC/60Hz Test Method Job Site: TX05 FCC 15.225:2021 COMMENTS DEVIATIONS FROM TEST STANDARD 1469+ Configuration # 2 Signature Measured Value (MHz) Value (MHz) Results (ppm) (ppm) Antenna 1 Normal Voltage Mid Channel, 13.56 MHz 13.56009967 13.56009967 0 100 Pass Extreme Voltage +15%
Mid Channel, 13.56 MHz 13.56009967 13.56009967 100 Pass Voltage -15% Mid Channel, 13.56 MHz 13.56006633 13.56009967 -2.458241519 100 Pass nperature +50°C Mid Channel, 13.56 MHz 13.55998267 -8.628255166 100 13.56009967 Pass mperature +40°C Mid Channel, 13.56 MHz 13.560016 13.56009967 -6.170087393 100 Pass e Temperature +30°C Mid Channel, 13.56 MHz 13.56004967 -3.687288532 13.56009967 100 Pass mperature +20°C Mid Channel, 13.56 MHz 13.56006633 13.56009967 -2.458241519 100 Pass ne Temperature +10°C Mid Channel, 13.56 MHz 13.56014967 3.687288532 13.56009967 100 Pass nperature 0°C Mid Channel, 13.56 MHz 13.560183 13.56009967 6.145456305 100 Pass mperature -10°C Mid Channel, 13.56 MHz 7.399134407 13.56009967 100 Pass 13.5602 mperature -20°C Mid Channel, 13.56 MHz 13.560183 13.56009967 6.145456305 100 Pass Antenna 2 Normal Voltage Mid Channel, 13.56 MHz 13.56003267 13.56003267 0 100 Pass tage +15% Mid Channel, 13.56 MHz ltage -15% 13.56009967 13.56003267 4.940991047 100 Pass Mid Channel, 13.56 MHz mperature +50°C 13.560016 13 56003267 -1.229126833 100 Pass Mid Channel, 13.56 MHz 13.55994933 13.56003267 -6.145560416 100 Pass e Temperature +40°C Mid Channel 13 56 MHz 13 55993367 13 56003267 -7 300867367 100 Pass mperature +30°C Mid Channel, 13.56 MHz 13.55998333 13.56003267 -3.638191825 100 Pass ie Temperature +20°C Mid Channel, 13.56 MHz mperature +10°C 13.560066 13.56003267 2.458179919 100 Pass Mid Channel, 13.56 MHz e Temperature 0°C 13.560066 13.56003267 2.458179919 100 Pass Mid Channel, 13.56 MHz 13.56009967 13.56003267 4.940991047 100 Pass ne Temperature -10°C Mid Channel, 13,56 MHz 13.56011633 13 56003267 6.170044133 100 Pass Extreme Temperature -20°C Mid Channel, 13.56 MHz 13.56008367 13.56003267 3.761052886 100 Pass



Antenna 1, Normal Voltage, Mid Channel, 13.56 MHz

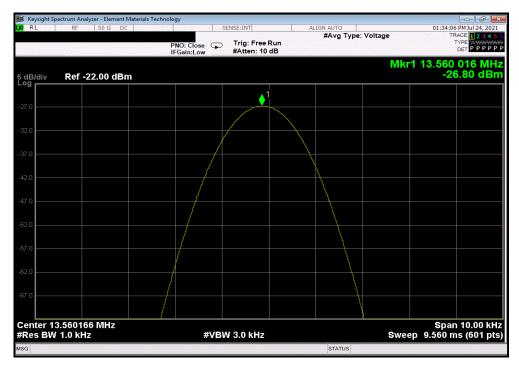
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.56009967 | 13.56009967 | 0 | 100 | Pass

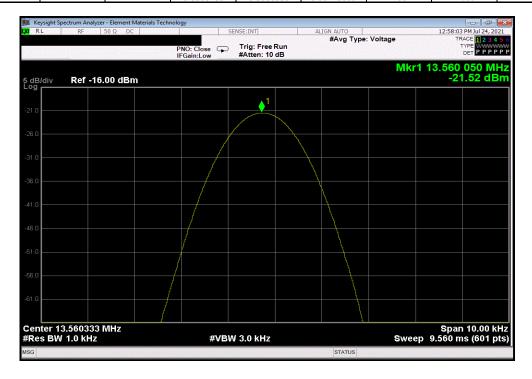

	Antenna 1, Extreme V	oltage +15%, Mic	d Channel, 13.56	MHz	
	Measured	Nominal	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.56009967	13.56009967	0	100	Pass



Antenna 1, Extreme Voltage -15%, Mid Channel, 13.56 MHz

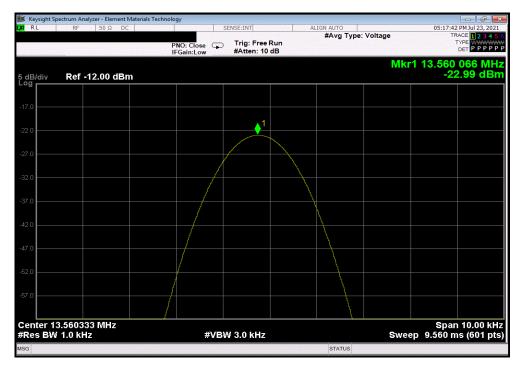
| Measured Nominal Error Limit | Value (MHz) (ppm) (ppm) Results |
| 13.56006633 | 13.56009967 | -2.458241519 | 100 Pass

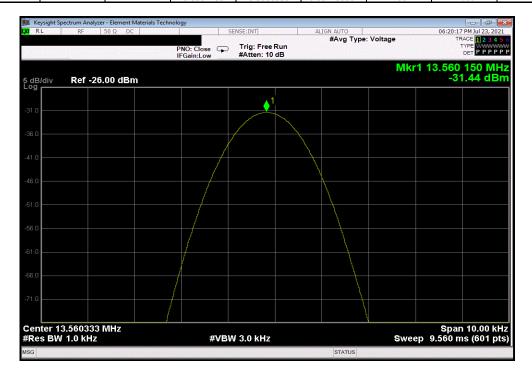

	Antenna	1, Extreme Tem	perature +50°C,	Mid Channel, 13.	56 MHz	
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
_		13.55998267	13.56009967	-8.628255166	100	Pass



Antenna 1, Extreme Temperature +40°C, Mid Channel, 13.56 MHz

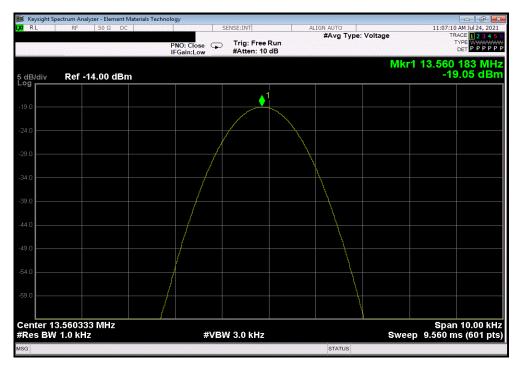
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.560016 | 13.56009967 | -6.170087393 | 100 Pass

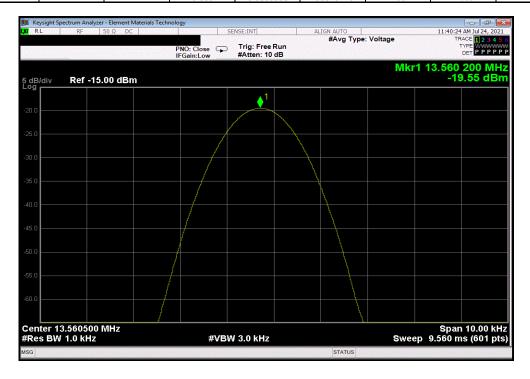

		Antenna	a 1, Extreme Tem	perature +30°C,	Mid Channel, 13.	56 MHz	
			Measured	Nominal	Error	Limit	
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
1	_		13.56004967	13.56009967	-3.687288532	100	Pass



Antenna 1, Extreme Temperature +20°C, Mid Channel, 13.56 MHz

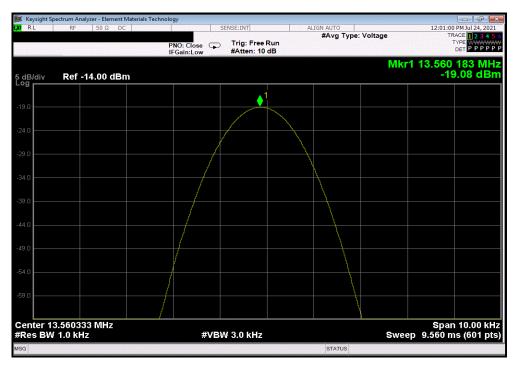
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.56006633 | 13.56009967 | -2.458241519 | 100 Pass

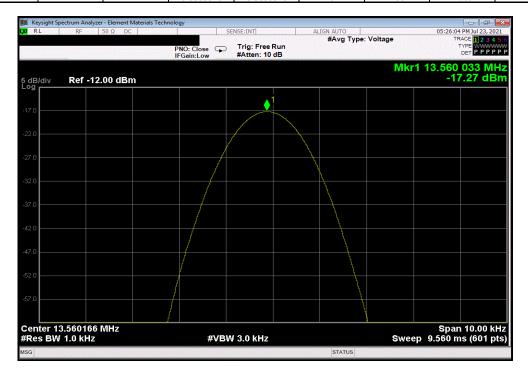

	Antenna	a 1, Extreme Tem	perature +10°C,	Mid Channel, 13.	56 MHz	
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
i		13.56014967	13.56009967	3.687288532	100	Pass



Antenna 1, Extreme Temperature 0°C, Mid Channel, 13.56 MHz

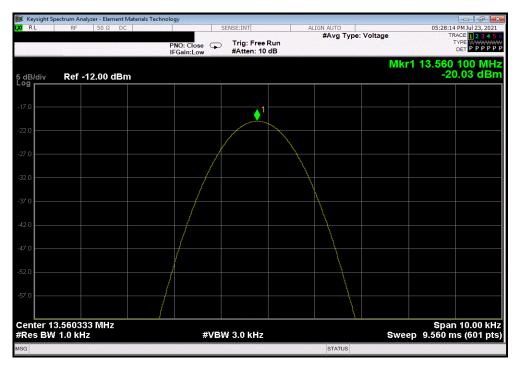
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.560183 | 13.56009967 | 6.145456305 | 100 Pass

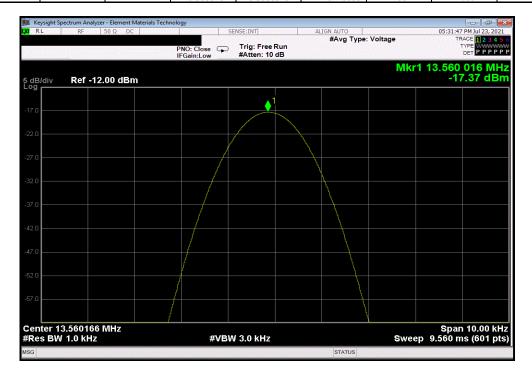

	Antenn	a 1, Extreme Ten	nperature -10°C,	Mid Channel, 13.	56 MHz	
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.5602	13.56009967	7.399134407	100	Pass



Antenna 1, Extreme Temperature -20°C, Mid Channel, 13.56 MHz

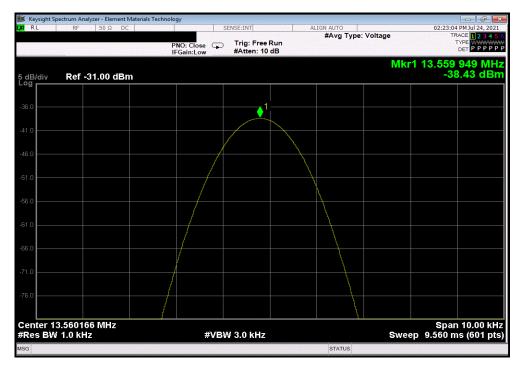
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.560183 | 13.56009967 | 6.145456305 | 100 Pass

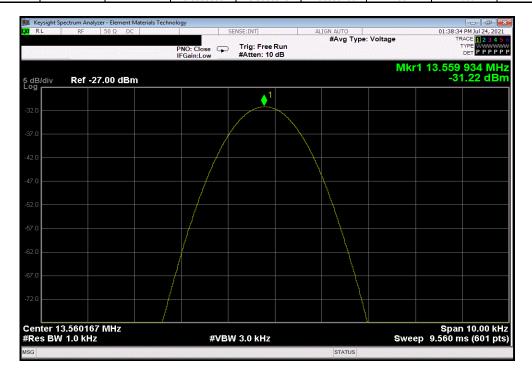

	Antenna 2, Norma	al Voltage, Mid Ch	nannel, 13.56 MH	z	
	Measured	Nominal	Error	Limit	
	 Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
i	13.56003267	13.56003267	0	100	Pass



Antenna 2, Extreme Voltage +15%, Mid Channel, 13.56 MHz

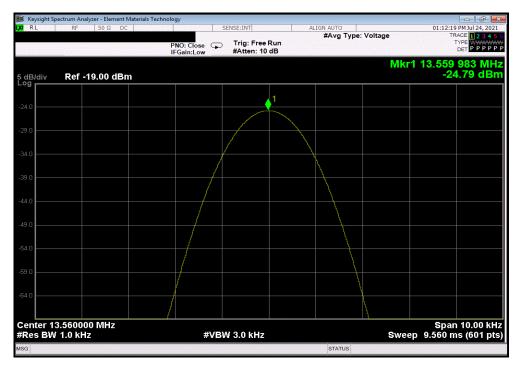
| Measured Nominal Error Limit | Value (MHz) Value (MHz) (ppm) (ppm) Results | 13.56009967 | 13.56003267 | 4.940991047 | 100 Pass

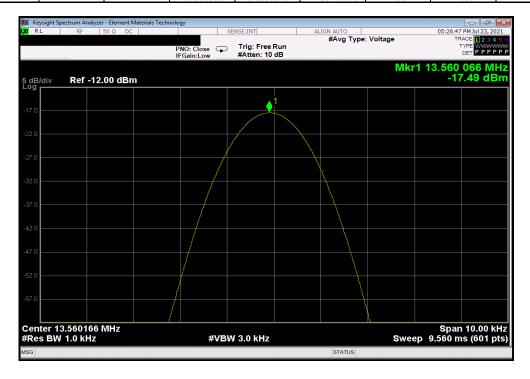

	Antei	nna 2, Extreme \	/oltage -15%, Mid	d Channel, 13.56	MHz	
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
İ		13.560016	13.56003267	-1.229126833	100	Pass



Antenna 2, Extreme Temperature +50°C, Mid Channel, 13.56 MHz

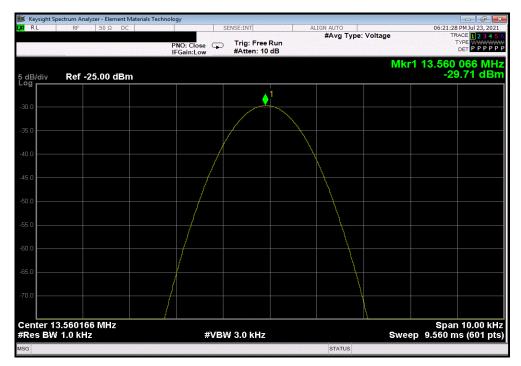
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.55994933 | 13.56003267 | -6.145560416 | 100 Pass

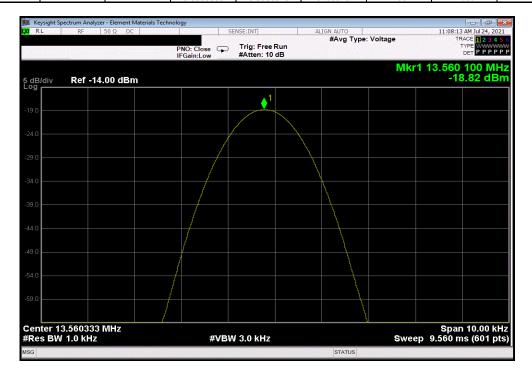

	Antenna	2, Extreme Tem	perature +40°C,	Mid Channel, 13.	56 MHz	
		Measured	Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
1		13.55993367	13.56003267	-7.300867367	100	Pass



Antenna 2, Extreme Temperature +30°C, Mid Channel, 13.56 MHz

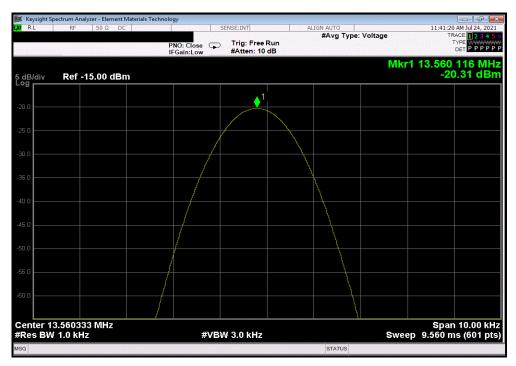
| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.55998333 | 13.56003267 | -3.638191825 | 100 Pass

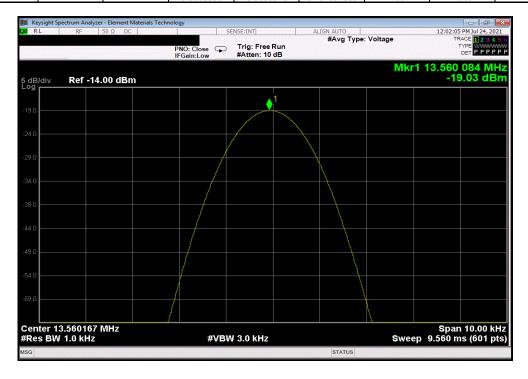

	Antenna 2, Extreme Temperature +20°C, Mid Channel, 13.56 MHz						
			Measured	Nominal	Error	Limit	
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
1	_		13.560066	13.56003267	2.458179919	100	Pass



Antenna 2, Extreme Temperature +10°C, Mid Channel, 13.56 MHz

| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.560066 | 13.56003267 | 2.458179919 | 100 Pass


Antenna 2, Extreme Temperature 0°C, Mid Channel, 13.56 MHz						
	Measured	Nominal	Error	Limit		
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
_	13.56009967	13.56003267	4.940991047	100	Pass	



Antenna 2, Extreme Temperature -10°C, Mid Channel, 13.56 MHz

| Measured Nominal Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 13.56011633 | 13.56003267 | 6.170044133 | 100 Pass

	Antenna 2, Extreme Temperature -20°C, Mid Channel, 13.56 MHz						
		Measured	Nominal	Error	Limit		
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results	
1		13.56008367	13.56003267	3.761052886	100	Pass	

XMit 2020.12.30

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	ETS Lindgren	7405	IPS	NCR	NCR
Cable	UtiFlex Micro-Coax	UFD1150A-1-0720-200200	TXJ	2020-09-22	2021-09-22
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFN	2021-01-06	2022-01-06

TEST DESCRIPTION

As defined in FCC 15.215 Part (c), intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise by specified in the specific rule section under which the equipment operates, is contained within the frequency band designed in the rule section under which the equipment is operating.

The 20 dB bandwidth must be contained within the band 13.110-14.010 MHz.

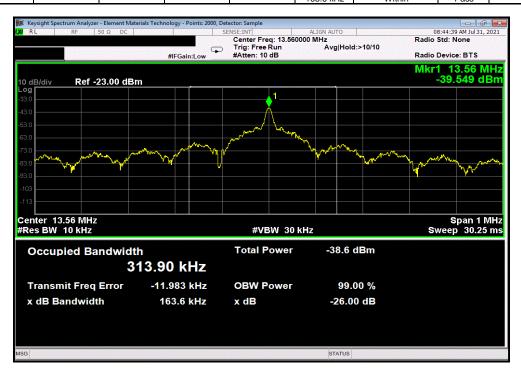
The emissions bandwidth was measured with the EUT configured for continuous modulated operation.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to find the emissions bandwidth.

TbtTx 2021.03.19.1 XMit 2020.12.30.0 EUT: GLP12260 Aliquoter Module
Serial Number: ENG02-AP
Customer: Abbott Laboratories
Attendees: Don Mendell
Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Work Order: ABBO0078
Date: 29-Jul-21
Temperature: 21.1 °C
Humidity: 57.8% RH
Barometric Pres.: 1021 mbar
Job Site: TX02 Power: 220VAC/60Hz Test Method FCC 15.225:2021 ANSI C63.10:2013 AccessPoint Radio. Emissions bandwidth taken with a 26 dB bandwidth. This is worst case as compared with the 20 dB bandwidth called out in FCC 15.215. DEVIATIONS FROM TEST STANDARD
None 146,4 Configuration # 2 Signature Limit Value 13.110 MHz ≥ BW ≤ 14.010 MHz Result Normal Voltage Mid Channel, 13.56 MHz Pass



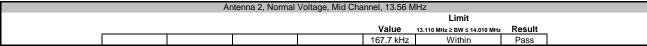
Normal Voltage, Mid Channel, 13.56 MHz

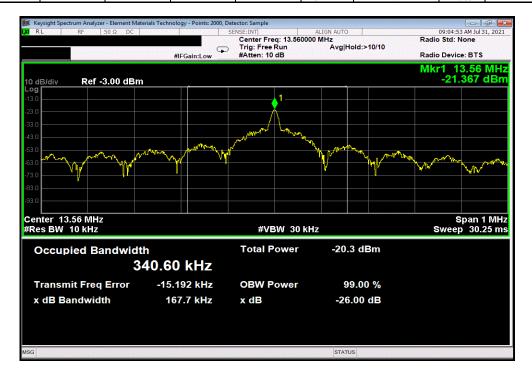
Limit

Value 13.110 MHz ≥ BW ≤ 14.010 MHz Result

163.6 kHz Within Pass

EUT: GLP12260 Aliquoter Module
Serial Number: ENG05-CS
Customer: Abbott Laboratories Work Order: ABBO0078 Date: 29-Jul-21 Temperature: 21.1 °C Attendees: Don Mendell
Project: None
Tested by: Mark Baytan
TEST SPECIFICATIONS Humidity: 57.8% RH
Barometric Pres.: 1021 mbar
Job Site: TX02 Power: 220VAC/60Hz Test Method FCC 15.225:2021 CrossSwitch Radio. Emissions bandwidth taken with a 26 dB bandwidth. This is worst case as compared with the 20 dB bandwidth called out in FCC 15.215. DEVIATIONS FROM TEST STANDARD None 1464 Configuration # 2 Signature Limit Value 13.110 MHz ≥ BW ≤ 14.010 MHz Result Antenna 1 Normal Voltage Mid Channel, 13.56 MHz 166.1 kHz Within Pass Antenna 2 Normal Voltage Mid Channel, 13.56 MHz 167.7 kHz Within Pass


Antenna 1, Normal Voltage, Mid Channel, 13.56 MHz


Limit

Value 13.110 MHz ≥ BW ≤ 14.010 MHz Result

166.1 kHz Within Pass

End of Test Report