

Project No.: ZKT-211227L7253E-3 Page 1 of 71

FCC TEST REPORT FCC ID:2A33Z-N808

Report Number	: ZKT-211227L7253E-3
Date of Test	Dec. 23, 2021 to Jan. 08, 2022
Date of issue	: Jan. 12, 2022
Total number of pages	. 71
Test Result	: PASS
Testing Laboratory	: Shenzhen ZKT Technology Co., Ltd.
Address	. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	: Kiwichat inc
Address	: 355 NE 59th Terrace, Miami, FL, 33137, USA.
Manufacturer's name	: Shenzhen ESINO Industrial Co., Ltd
Address	2F, Bldg G,GaiNianKongJian, HuiMing 1st RD, Guanlan Sub-district, LongHua District, Shenzhen
Test specification:	
Standard	: FCC CFR Title 47 Part 15 Subpart C Section 15.407
Test procedure	ANSI C63.10:2013 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.
Non-standard test method	: N/A
Test Report Form No	: TRF-EL-113_V0
Test Report Form(s) Originator	: ZKT Testing
Master TRF	: Dated: 2020-01-06
test (EUT) is in compliance with the identified in the report. This report shall not be reproduced	en tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document may hal only, and shall be noted in the revision of the document.
Product name	: Kiwi Tablet 1
Trademark	[:] N/A
Model/Type reference	: N808
Ratings	: Input: DC 5V or DC 3.8V Battery

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-211227L7253E-3 Page 3 of 71

Table of Contents		Page
1. VERSION	5	5
2.SUMMARY OF TEST RESULTS	6	5
2.1 1TEST FACILITY	7	,
2.2 MEASUREMENT UNCERTAINTY	7	,
3. GENERAL INFORMATION	8	5
3.1 GENERAL DESCRIPTION OF EUT	8	5
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TEST	ED 11	
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	11	
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12	2
4.EMC EMISSION TEST	13	
4.1 CONDUCTED EMISSION MEASUREMENT	13	6
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	13	
4.1.2 TEST PROCEDURE	13	5
4.1.3 DEVIATION FROM TEST STANDARD	13	5
4.1.4 TEST SETUP	14	-
4.1.5 EUT OPERATING CONDITIONS	14	_
4.1.6 2TEST RESULTS	15	
4.2 RADIATED EMISSION MEASUREMENT	17	
4.2.1 APPLICABLE STANDARD 4.2.2 CONFORMANCE LIMIT	17 17	
4.2.3 MEASURING INSTRUMENTS	18	
4.2.4 TEST CONFIGURATION	18	
4.2.5 TEST PROCEDURE	19	
4.2.6 TEST RESULT	20	
5.POWER SPECTRAL DENSITY TEST	27	,
5.1 APPLIED PROCEDURES / LIMIT	27	,
5.2 TEST PROCEDURE	28	}
5.3 DEVIATION FROM STANDARD	28	}
5.4 TEST SETUP	28	
5.5 EUT OPERATION CONDITIONS	28	
5.6 TEST RESULTS	29	
6. 26DB & 6DB & 99% EMISSION BANDWIDTH	37	
6.1 APPLIED PROCEDURES / LIMIT	37	
6.2 TEST PROCEDURE	37	
6.3 EUT OPERATION CONDITIONS 6.4 TEST RESULTS	38 38	
0.4 ILGI REGULIG	30	,

Project No.: ZKT-211227L7253E-3 Page 4 of 71

Table of Contents		Page
7.MAXIMUM CONDUCTED OUTPUT POWE	P	46
7.1 PPLIED PROCEDURES / LIMIT	R	40 46
7.2 TEST PROCEDURE		46
7.3 DEVIATION FROM STANDARD		47
7.4 TEST SETUP		47
7.5 EUT OPERATION CONDITIONS		47
7.6 TEST RESULTS		48
8.OUT OF BAND EMISSIONS		49
8.1 APPLICABLE STANDARD		49
8.2 TEST PROCEDURE		49
8.3 DEVIATION FROM STANDARD		49
8.4 TEST SETUP		49
8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS		50 50
9.SPURIOUS RF CONDUCTED EMISSIONS 9.1 CONFORMANCE LIMIT		56 50
9.2 MEASURING INSTRUMENTS		56 56
9.3 TEST SETUP		56 56
9.4 TEST PROCEDURE		56
9.5 TEST RESULTS		56
10.FREQUENCY STABILITY MEASUREMEN	NT	63
10.1 LIMIT		63
10.2 TEST PROCEDURES		63
10.3 TEST SETUP LAYOUT		63
10.4 EUT OPERATION DURING TEST		63
10.5 TEST RESULTS		63
11.ANTENNA REQUIREMENT		70
12. TEST SETUP PHOTO		71
13. EUT CONSTRUCTIONAL DETAILS		71

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

Project No.: ZKT-211227L7253E-3 Page 5 of 71

1. VERSION

Report No.	Version	Description	Approved
ZKT-211227L7253E-3	Rev.01	Initial issue of report	Dec. 29, 2021

2.SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Standard			
Section	Test Item	Judgment	Remar
15.209(a), 15.407 (b)(1) 15.407 (b)(4) 15.407 (b)(8)	Spurious Radiated Emissions	PASS	
15.207	Conducted Emission	PASS	
15.407 (a)(12) 15.1049	26 dB and 99% Emission Bandwidth	PASS	
15.407(e)	6 dB bandwidth	N/A	
15.407 (a)(1) 15.407 (a)(3)	Maximum Conducted Output Power	PASS	3
2.1051, 15.407(b)(1) 15.407(b)(4)	Band Edge	PASS	
15.407 (a)(1) 15.407 (a)(3)	Power Spectral Density	PASS	
2.1051, 15.407(b)	Spurious Emissions at Antenna Terminals	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
3	3m cha ber Radiated spurious emission(18GHz-40GH)	U=3.34dB
4 Conducted Adjacent channel		U=1.38dB
5	Conducted output power uncertainty Above 1G	U=1.576dB
6	Conducted output power uncertainty below 1G	U=1.28dB
7	humidity uncertainty	U=5.3%
8	Temperature uncertainty	U=0.59 ℃
9	Radiated disturbance(30MHz- 1000MHz)	U=4.8dB
10	Radiated disturbance(1GHz- 6GHz)	U=4.9dB
11	Radiated disturbance(1GHz- 18GHz)	U=5.0dB

www.zkt-lab.com

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

(12) 123						
Product Name:	Kiwi Tablet 1					
Model No.:	N808					
Model Different .:	N/A					
Sample ID	ZKT-211227L7253	-1				
Sample(s) Status:	Engineer sample					
	IEEE 802.11 WLAN Mode Supported Data Rate Modulation	⊠802.11a/ac/n (20MHz channel bandwidth) ⊠802.11n/ac (40MHz channel bandwidth) ⊠802.11ac(80MHz channel bandwidth) 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS15; 802.11ac(VHT/20/40/80):NSS1, MCS0-MCS9 OFDM with BPSK/QPSK/16QAM/64QAM/256QAM for 802.11a/n/ac;				
Product Description	Operating Frequency Range	 □ 5180-5240MHz for 802.11a/n(HT20)/ac20; 5190-5230MHz for 802.11n(HT40)/ac40; 5210MHz for 802.11 ac80; □ 5745-5825 MHz for 802.11a/n(HT20)/ac20; 5755-5795 MHz for 802.11a/n(HT40)/ac40; 5775MHz for 802.11 ac80; 				
	Number of Channels	 ☑4 channels for 802.11a/n20/ac20 in the 5180-5240MHz band ; 2 channels for 802.11 n40/ac40 in the 5190-5230 MHz band ; 1 channels for 802.11 ac80 in the 5210MHz band ; ☑5 channels for 802.11a/n20/ac20 in the 5745-5825MHz band ; 2 channels for 802.11 n40/ac40 in the 5755-5795 MHz band ; 1 channels for 802.11 ac80 in the 5775MHz band ; 				
Channel List	Please refer to the	Note 2.				
Antenna Type:	Integral Antenna					
Antenna gain:	3.0dBi Max					
Power supply:	Input: DC 5V or DC	C 3.8V Battery				
SWITCHING POWER ADAPTER:	MX15W-0502000UX Input: AC 100-240V 50/60Hz Output: DC 5V/2A					

Note:

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

-	802.11a/n/ac(20MHz) Frequency Channel							
Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	
36	5180	44	5220	-	-		-	
40	5200	48	5240		-	-	-	

802.11n(40MHz) Frequency Channel

	802.11n /ac(40MHz) Frequency Channel							
ChannelFrequenc y (MHz)Frequenc (
38	5190	1	-	-	-	-	-	
46	5230	-	-	-	-	-	-	

802.11ac (80M	802.11ac (80MHz) Frequency Channel					
Channel Frequency (MHz)						
42 5210						

	802.11a/n/ac(20 MHz) Frequency Channel						
Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

802.11n/ac 40MHz Frequency Channel								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
151	5755	159	5795	-	- < <			

802.11ac 80MHz Frequency Channel					
Channel	Frequency (MHz)				
155	5775				

3.2 DESCRIPTION OF TEST MODES

Transmitting mode K	Keep the EUT in continuously transmitting mode
---------------------	--

Remark: During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Pretest Mode	Description
Mode 1	802.11a / n 20 CH36/ CH40/ CH 48 802.11a /n 20 CH149/ CH157/ CH 165
Mode 2	802.11n 40 CH38/ CH 46 802.11n 40 CH 151 / CH 159
Mode 3	802.11 ac80 CH 42/CH 155
Mode 4	802.11a / n 20 CH36/ CH40/ CH 48 802.11a /n 20 CH149/ CH157/ CH 165
Mode 5	Link Mode

Conducted Emission				
Final Test Mode Description				
Mode 5	Link Mode			

For Radiated Emission					
Final Test Mode	Description				
Mode 1	802.11a / n 20 CH36/ CH40/ CH 48 802.11a /n 20 CH149/ CH157/ CH 165				
Mode 2	802.11n 40 CH38/ CH 46 802.11n 40 CH 151 / CH 159				
Mode 3	802.11 ac80 CH 42/CH 155	2			
Mode 4	802.11a / n 20 CH36/ CH40/ CH 48 802.11a /n 20 CH149/ CH157/ CH 165				

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

Test Software	Adb Test Tool
Power level setup	<9dBm

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission

DC	; L	in	е	

Radiated Emission

 _			
_	-		

Conducted Spurious

EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Kiwi Tablet 1	N/A	N808	N/A	EUT
- 6					

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY45109572	Sep. 22, 2021	Sep. 21, 2022
2	Spectrum Analyzer (1GHz-40GHz)	Agilent	E4446A	100363	Sep. 22, 2021	Sep. 21, 2022
3	Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Sep. 22, 2021	Sep. 21, 2022
4	Bilog Antenna (30MHz-1400MHz)	Schwarzbeck	VULB9168	00877	Sep. 22, 2021	Sep. 21, 2022
5	Horn Antenna (1GHz-18GHz)	SCHWARZBEC K	BBHA9120D	1541	Sep. 22, 2021	Sep. 21, 2022
6	Horn Antenna (18GHz-40GHz)	A.H. System	SAS-574	588	Sep. 22, 2021	Sep. 21, 2022
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	N/A	Sep. 22, 2021	Sep. 21, 2022
8	Amplifier (1GHz-40GHz)	全聚达	DLE-161	097	Sep. 22, 2021	Sep. 21, 2022
9	Loop Antenna (9KHz-30MHz)	SCHWARZBEC K	FMZB1519B	014	Sep. 22, 2021	Sep. 21, 2022
10	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Sep. 22, 2021	Sep. 21, 2022
11	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Sep. 22, 2021	Sep. 21, 2022
12	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Sep. 22, 2021	Sep. 21, 2022
13	CMW500 Test	R&S	CMW500	106504	Sep. 22, 2021	Sep. 21, 2022
14	ESG Signal Generator	Agilent	E4421B	GB40051203	Sep. 22, 2021	Sep. 21, 2022
15	Signal Generator	Agilent	N5182A	MY47420215	Sep. 22, 2021	Sep. 21, 2022
16	D.C. Power Supply	LongWei	TPR-6405D	\	\	Λ
17	Software	Frad	EZ-EMC	FA-03A2 RE	١	

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Sep. 22, 2021	Sep. 21, 2022
2	LISN	CYBERTEK	EM5040A	E185040014 9	Sep. 22, 2021	Sep. 21, 2022
3	Test Cable	N/A	C01	N/A	Sep. 22, 2021	Sep. 21, 2022
4	Test Cable	N/A	C02	N/A	Sep. 22, 2021	Sep. 21, 2022
5	EMI Test Receiver	R&S	ESRP3	101946	Sep. 22, 2021	Sep. 21, 2022
6	Absorbing Clamp	DZ	ZN23201	N/A	Sep. 22, 2021	Sep. 21, 2022

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

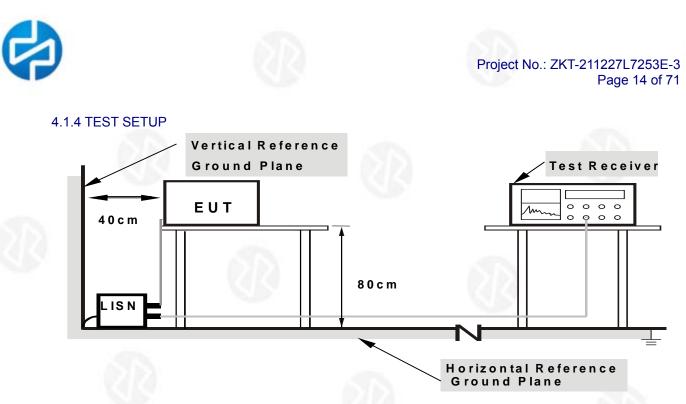
4.1 CONDUCTED EMISSION MEASUREMENT

		2.2	
	Test Requirement:	FCC Part15 C Section 15.207	
6	Test Method:	ANSI C63.10:2013	
	Test Frequency Range:	150KHz to 30MHz	
1	Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto	

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (Standard	
	Quasi-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:


(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

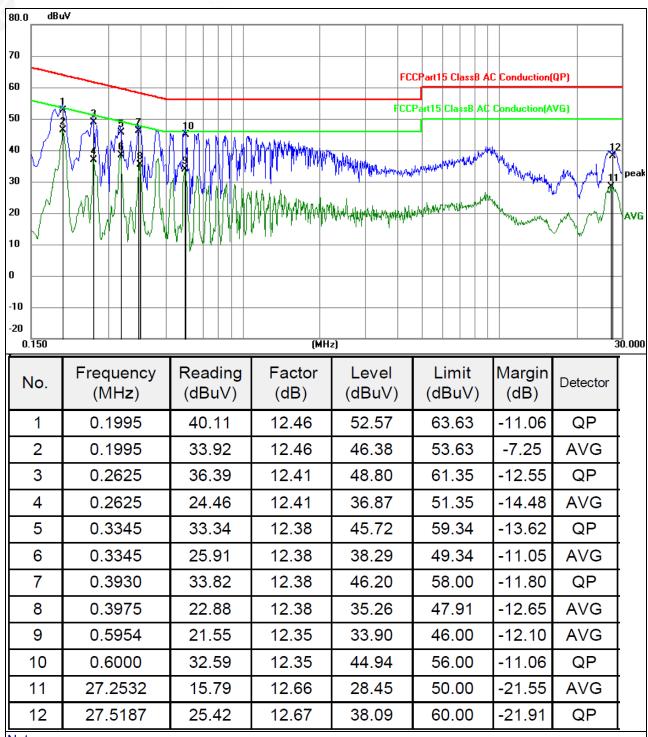
4.1.3 DEVIATION FROM TEST STANDARD No deviation

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.



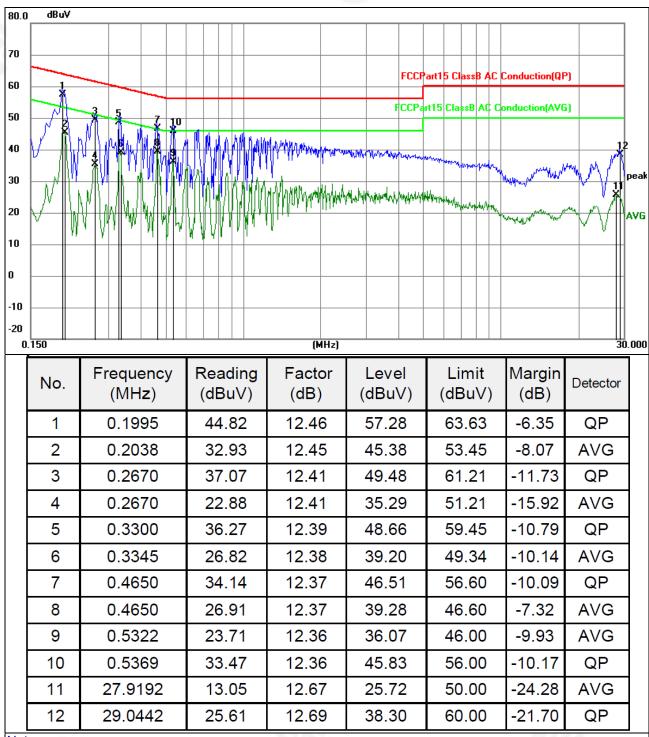
4.1.6 1TEST RESULTS

Temperature :	26℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz		

Notes:

She

1.An initial pre-scan was performed on the line and neutral lines with peak detector.


2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
 3.Mesurement Level = Reading level + Correct Factor

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 APPLICABLE STANDARD

According to FCC Part 15.407(d) and 15.209

4.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

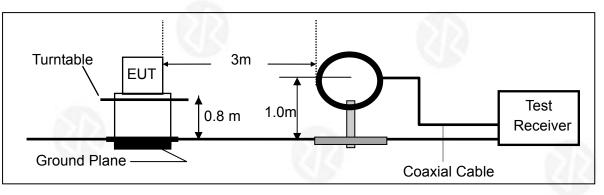
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

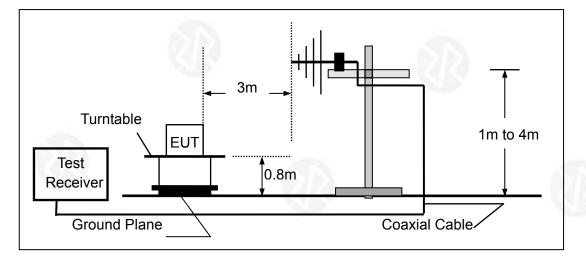
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);
- Limit line=Specific limits(dBuV) + distance extrapolation factor.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

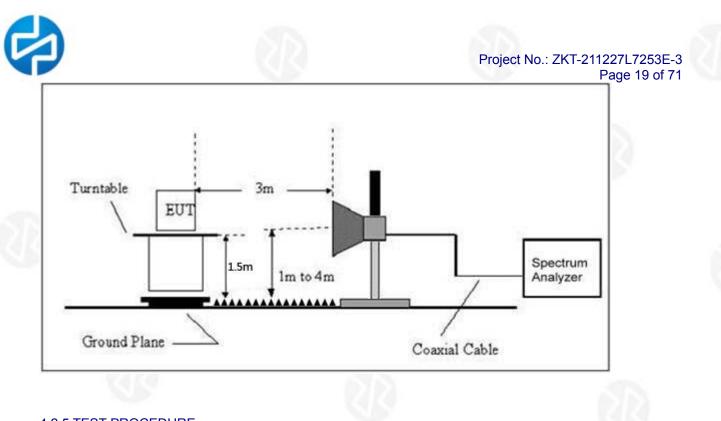
www.zkt-lab.com


www.zkt-lab.com

4.2.3 MEASURING INSTRUMENTS


The Measuring equipment is listed in the section 6.3 of this test report.

4.2.4 TEST CONFIGURATION


1.For radiated emissions below 30MHz

2.For radiated emissions from 30MHz to 1000MHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.


This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average	

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Project No.: ZKT-211227L7253E-3 Page 20 of 71

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

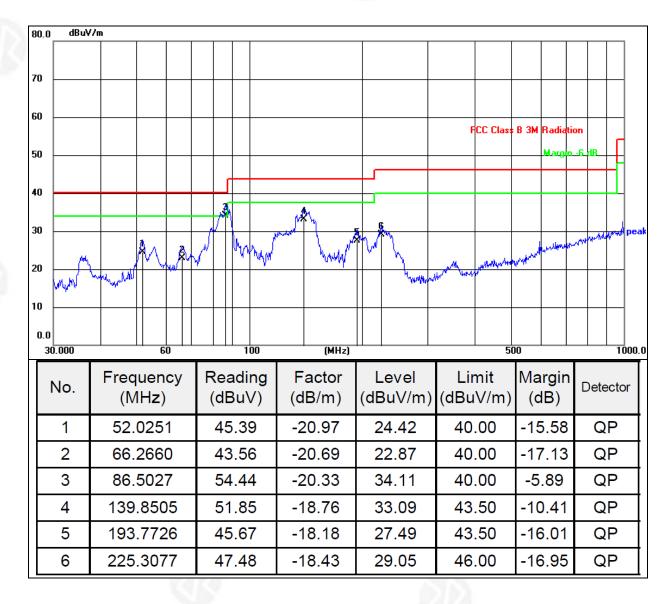
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

4.2.6 TEST RESULT

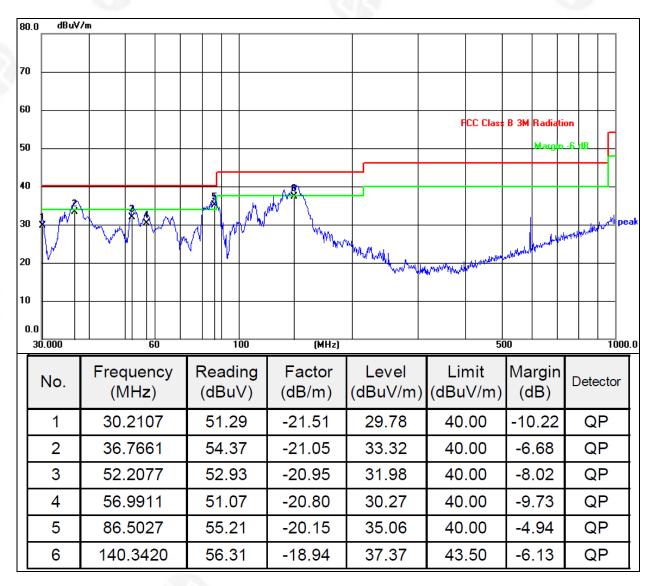
Between 9KHz – 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China


+86-755-2233 6688

Between 30MHz - 1GHz


Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz		

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz		

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case 802.11a mode

Between 1GHz – 40GHz

Temperature :	Temperature : 26℃		54%
Pressure :	1010 hPa	Test Voltage :	DC 3.8V
Test Mode :	5.2G TX- 802.11a		

				2.11a	80				
Detect	Margin	Limits	Emission Level	Antenna Factor	Cable Loss	Pre-ampl ifier	Meter Reading	Frequency	Polar
Туре	(dB)	(dBuV/ m)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV)	(MHz)	(H/V)
	_	—	Z	nel:5180MH	ow Chan	L			
PK	-15.76	74.00	58.24	38.66	8.77	30.45	41.26	10360.00	V
AV	-6.59	54.00	47.41	38.66	8.77	30.45	30.43	10360.00	V
PK	-15.52	74.00	58.48	38.55	9.31	30.44	41.06	15540.00	V
AV	-6.47	54.00	47.53	38.55	9.31	30.44	30.11	15540.00	V
PK	-15.89	74.00	58.11	38.69	9.45	30.72	40.69	20720.00	V
AV	-6.93	54.00	47.07	38.69	9.45	30.72	29.65	20720.00	V
PK	-16.54	74.00	57.46	38.57	9.99	30.65	39.55	25900.00	V
AV	-6.41	54.00	47.59	38.57	9.99	30.65	29.68	25900.00	V
PK	-16.23	74.00	57.77	38.66	8.77	30.45	40.79	10360.00	Н
AV	-7.64	54.00	46.36	38.66	8.77	30.45	29.38	10360.00	Н
PK	-15.95	74.00	58.05	38.55	9.31	30.44	40.63	15540.00	Н
AV	-7.30	54.00	46.70	38.55	9.31	30.44	29.28	15540.00	Н
PK	-16.24	74.00	57.76	38.69	9.45	30.72	40.34	20720.00	Н
AV	-5.83	54.00	48.17	38.69	9.45	30.72	30.75	20720.00	Н
PK	-15.97	74.00	58.03	38.57	9.99	30.65	40.12	25900.00	Н
AV	-6.20	54.00	47.80	38.57	9.99	30.65	29.89	25900.00	Н
_	-5.83 -15.97	54.00 74.00	48.17 58.03	38.69 38.57	9.45 9.99	30.72 30.65	30.75 40.12	20720.00 25900.00	H H

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect	
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре	
Middle Channel:5200MHz										
V	10400.00	39.98	30.45	8.77	38.66	56.96	74.00	-17.04	PK	
V	10400.00	30.15	30.45	8.77	38.66	47.13	54.00	-6.87	AV	
V	15600.00	39.26	30.44	9.31	38.55	56.68	74.00	-17.32	PK	
V	15600.00	28.78	30.44	9.31	38.55	46.20	54.00	-7.80	AV	
V	20800.00	40.27	30.72	9.45	38.69	57.69	74.00	-16.31	PK	
V	20800.00	30.55	30.72	9.45	38.69	47.97	54.00	-6.03	AV	
V	26000.00	40.17	30.65	9.99	38.57	58.08	74.00	-15.92	PK	
V	26000.00	30.69	30.65	9.99	38.57	48.60	54.00	-5.40	AV	
Н	10400.00	40.69	30.45	8.77	38.66	57.67	74.00	-16.33	PK	
Н	10400.00	30.44	30.45	8.77	38.66	47.42	54.00	-6.58	AV	
Н	15600.00	40.11	30.44	9.31	38.55	57.53	74.00	-16.47	PK	
Н	15600.00	29.75	30.44	9.31	38.55	47.17	54.00	-6.83	AV	
Н	20800.00	39.74	30.72	9.45	38.69	57.16	74.00	-16.84	PK	
Н	20800.00	29.16	30.72	9.45	38.69	46.58	54.00	-7.42	AV	
Н	26000.00	39.77	30.65	9.99	38.57	57.68	74.00	-16.32	PK	
Н	26000.00	30.54	30.65	9.99	38.57	48.45	54.00	-5.55	AV	

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect		
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре		
	High Channel:5240MHz										
V	10480.00	40.45	30.45	8.77	38.66	57.43	74.00	-16.57	PK		
V	10480.00	31.69	30.45	8.77	38.66	48.67	54.00	-5.33	AV		
V	15720.00	39.84	30.44	9.31	38.55	57.26	74.00	-16.74	PK		
V	15720.00	30.11	30.44	9.31	38.55	47.53	54.00	-6.47	AV		
V	20960.00	39.63	30.72	9.45	38.69	57.05	74.00	-16.95	PK		
V	20960.00	30.14	30.72	9.45	38.69	47.56	54.00	-6.44	AV		
V	26200.00	39.93	30.65	9.99	38.57	57.84	74.00	-16.16	PK		
V	26200.00	29.16	30.65	9.99	38.57	47.07	54.00	-6.93	AV		
Н	10480.00	40.43	30.45	8.77	38.66	57.41	74.00	-16.59	PK		
Н	10480.00	29.99	30.45	8.77	38.66	46.97	54.00	-7.03	AV		
Н	15720.00	40.04	30.44	9.31	38.55	57.46	74.00	-16.54	PK		
Н	15720.00	29.63	30.44	9.31	38.55	47.05	54.00	-6.95	AV		
Н	20960.00	40.05	30.72	9.45	38.69	57.47	74.00	-16.53	PK		
Н	20960.00	29.65	30.72	9.45	38.69	47.07	54.00	-6.93	AV		
Н	26200.00	40.12	30.65	9.99	38.57	58.03	74.00	-15.97	PK		
Н	26200.00	29.38	30.65	9.99	38.57	47.29	54.00	-6.71	AV		

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4. The worst mode is 802.11a, only the worst data is recorded.

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 3.8V
Test Mode :	5.8G TX- 802.11a	DD	
		0.110	

				80	2.11a						
Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect		
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре		
Low Channel:5745MHz											
V	11490.00	39.79	30.45	8.77	38.66	56.77	74.00	-17.23	PK		
V	11490.00	30.06	30.45	8.77	38.66	47.04	54.00	-6.96	AV		
V	17235.00	38.38	30.44	9.31	38.55	55.80	74.00	-18.20	PK		
V	17235.00	29.11	30.44	9.31	38.55	46.53	54.00	-7.47	AV		
V	22980.00	39.44	30.72	9.45	38.69	56.86	74.00	-17.14	PK		
V	22980.00	29.18	30.72	9.45	38.69	46.60	54.00	-7.40	AV		
V	28725.00	40.43	30.65	9.99	38.57	58.34	74.00	-15.66	PK		
V	28725.00	30.04	30.65	9.99	38.57	47.95	54.00	-6.05	AV		
Н	11490.00	39.16	30.45	8.77	38.66	56.14	74.00	-17.86	PK		
Н	11490.00	28.99	30.45	8.77	38.66	45.97	54.00	-8.03	AV		
Н	17235.00	40.17	30.44	9.31	38.55	57.59	74.00	-16.41	PK		
Н	17235.00	30.75	30.44	9.31	38.55	48.17	54.00	-5.83	AV		
Н	22980.00	39.42	30.72	9.45	38.69	56.84	74.00	-17.16	PK		
Н	22980.00	30.11	30.72	9.45	38.69	47.53	54.00	-6.47	AV		
Н	28725.00	39.49	30.65	9.99	38.57	57.40	74.00	-16.60	PK		
Н	28725.00	28.04	30.65	9.99	38.57	45.95	54.00	-8.05	AV		

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or		
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре		
	Middle Channel:5785MHz										
V	11570.00	40.48	30.45	8.77	38.66	57.46	74.00	-16.54	PK		
V	11570.00	29.42	30.45	8.77	38.66	46.40	54.00	-7.60	AV		
V	17355.00	39.26	30.44	9.31	38.55	56.68	74.00	-17.32	PK		
V	17355.00	29.59	30.44	9.31	38.55	47.01	54.00	-6.99	AV		
V	23140.00	40.49	30.72	9.45	38.69	57.91	74.00	-16.09	PK		
V	23140.00	30.08	30.72	9.45	38.69	47.50	54.00	-6.50	AV		
V	28925.00	39.52	30.65	9.99	38.57	57.43	74.00	-16.57	PK		
V	28925.00	30.08	30.65	9.99	38.57	47.99	54.00	-6.01	AV		
Н	11570.00	39.18	30.45	8.77	38.66	56.16	74.00	-17.84	PK		
Н	11570.00	29.85	30.45	8.77	38.66	46.83	54.00	-7.17	AV		
Н	17355.00	40.74	30.44	9.31	38.55	58.16	74.00	-15.84	PK		
Н	17355.00	30.22	30.44	9.31	38.55	47.64	54.00	-6.36	AV		
Н	23140.00	40.17	30.72	9.45	38.69	57.59	74.00	-16.41	PK		
Н	23140.00	30.73	30.72	9.45	38.69	48.15	54.00	-5.85	AV		
Н	28925.00	40.08	30.65	9.99	38.57	57.99	74.00	-16.01	PK		
Н	28925.00	29.28	30.65	9.99	38.57	47.19	54.00	-6.81	AV		

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect		
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре		
	High Channel:5825MHz										
V	11650.00	39.15	30.45	8.77	38.66	56.13	74.00	-17.87	PK		
V	11650.00	29.77	30.45	8.77	38.66	46.75	54.00	-7.25	AV		
V	17475.00	40.42	30.44	9.31	38.55	57.84	74.00	-16.16	PK		
V	17475.00	30.09	30.44	9.31	38.55	47.51	54.00	-6.49	AV		
V	23300.00	40.74	30.72	9.45	38.69	58.16	74.00	-15.84	PK		
V	23300.00	30.58	30.72	9.45	38.69	48.00	54.00	-6.00	AV		
V	29125.00	41.74	30.65	9.99	38.57	59.65	74.00	-14.35	PK		
V	29125.00	30.98	30.65	9.99	38.57	48.89	54.00	-5.11	AV		
Н	11650.00	40.32	30.45	8.77	38.66	57.30	74.00	-16.70	PK		
Н	11650.00	30.99	30.45	8.77	38.66	47.97	54.00	-6.03	AV		
Н	17475.00	40.91	30.44	9.31	38.55	58.33	74.00	-15.67	PK		
Н	17475.00	31.25	30.44	9.31	38.55	48.67	54.00	-5.33	AV		
Н	23300.00	40.51	30.72	9.45	38.69	57.93	74.00	-16.07	PK		
Н	23300.00	29.35	30.72	9.45	38.69	46.77	54.00	-7.23	AV		
Н	29125.00	40.41	30.65	9.99	38.57	58.32	74.00	-15.68	PK		
Н	29125.00	29.35	30.65	9.99	38.57	47.26	54.00	-6.74	AV		

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4. The worst mode is 802.11a, only the worst data is recorded.

5. POWER SPECTRAL DENSITY TEST

5.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(3) Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

5.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

b) Set VBW \geq 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT

Ð

SPECTRUM ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1015 hPa	Test Voltage :	DC 3.8V
Test Mode :	ТХ		

Mode	Frequency	Measured Power Density (dBm/MHz)	Limit (dBm/MHz)
S	5180 MHz	0.339	11
802.11 a	5200 MHz	-0.566	11
	5240 MHz	-1.269	11
	5180 MHz	-0.422	11
802.11 n20	5200 MHz	-0.525	11
	5240 MHz	-1.163	11
3	5180 MHz	-0.589	11
802.11 ac20	5200 MHz	-0.676	11
2	5240 MHz	-1.313	11
	5190 MHz	-4.459	11
802.11 n40	5230 MHz	-4.820	11
	5190 MHz	-4.542	11
802.11 ac40	5230 MHz	-4.850	11
802.11 ac80	5210 MHz	-7.476	11

(802.11n20) PSD plot on channel 36

(802.11n20) PSD plot on channel 40

Avg Type: Log-Pwr Avg(Hold: 100/100

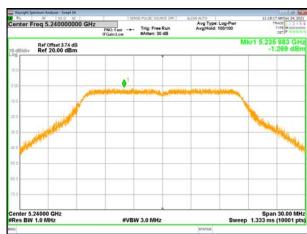
٥

Span 30.00 MHz Sweep 1.333 ms (10001 pts) 30.00 M

AL 80 350 4C enter Freq 5.200000000 GHz PRO Fast Freq Free Run BAtten: 30 dB

Ref Offset 3.79 dB Ref 20.00 dBm

enter 5.20000 GHz Res BW 1.0 MHz


(802.11a) PSD plot on channel 36

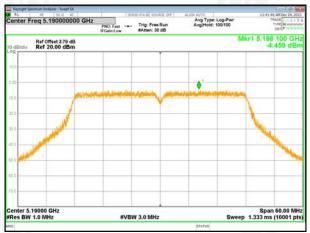
(802.11a) PSD plot on channel 40

(802.11a) PSD plot on channel 48

(802.11n20) PSD plot on channel 48

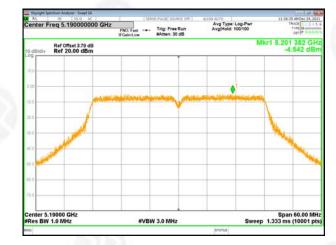
#VBW 3.0 MHz

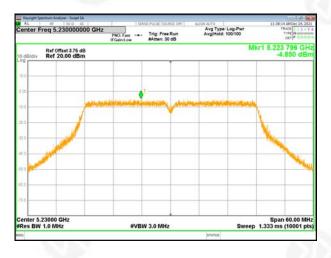
(802.11ac20) PSD plot on channel 36

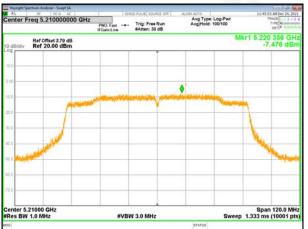

(802.11ac20) PSD plot on channel 40

(802.11ac20) PSD plot on channel 48

(802.11n40) PSD plot on channel 38


(802.11n40) PSD plot on channel 46


Shenzhen ZKT Technology Co., Ltd.



(802.11ac40) PSD plot on channel 38

(802.11ac40) PSD plot on channel 46

(802.11ac80) PSD plot on channel 42

Mode	Frequency	Measured Power Density (dBm/510kHz)	Measured Power Density (dBm/500kHz)	Limit (dBm/500kHz)
	5745 MHz	-3.759	-3.845	30
802.11 a	5785 MHz	-4.240	-4.326	30
	5825 MHz	-2.221	-2.307	30
	5745 MHz	-3.764	-3.850	30
802.11 n20	5785 MHz	-4.398	-4.484	30
	5825 MHz	-3.645	-3.731	30
515	5745 MHz	-3.562	-3.648	30
802.11 ac20	5785 MHz	-3.948	-4.034	30
	5825 MHz	-3.791	-3.877	30
	5755 MHz	-7.587	-7.673	30
802.11 n40	5795 MHz	-7.165	-7.251	30
	5755 MHz	-8.292	-8.378	30
802.11 ac40	5795 MHz	-7.904	-7.990	30
802.11 AC80	5775 MHz	-11.585	-11.671	30


Remark:

If the measurement is X dBm/510kHz, thus X dBm/510kHz = $(10^{\times/10})^*(500 / 510) dBm/500kHz$

(802.11n20) PSD plot on channel 149

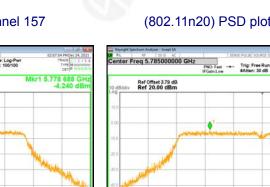
(802.11n20) PSD plot on channel 157



(802.11a) PSD plot on channel 149

(802.11a) PSD plot on channel 157

(802.11a) PSD plot on channel 165



(802.11n20) PSD plot on channel 165

<u>___</u>



(802.11ac20) PSD plot on channel 149

(802.11ac20) PSD plot on channel 157

(802.11ac20) PSD plot on channel 165

(802.11n40) PSD plot on channel 151

(802.11n40) PSD plot on channel 159

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

(802.11ac40) PSD plot on channel 151

(802.11ac40) PSD plot on channel 159

6. 26DB & 6DB & 99% EMISSION BANDWIDTH

6.1 APPLIED PROCEDURES / LIMIT

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band, the minimum bandwidth 6 dB bandwidth of U-NII devices shall be at least 500KHz. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

6.2 TEST PROCEDURE

- a) Set RBW = 100KHz.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

The following procedure shall be used for measuring (99 %) power bandwidth:

1. Set center frequency to the nominal EUT channel center frequency.

- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW
- 4. Set VBW ≥ 3 · RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. 6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

EUT	SPECTRUM ANALYZER	

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-211227L7253E-3

Page 37 of 71

www.zkt-lab.com

6.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.4 TEST RESULTS

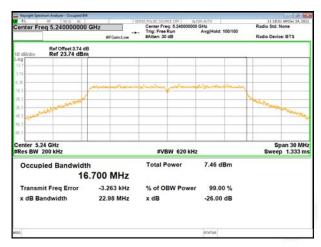
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 3.8V
Test Mode :	TX		

5180-5240MHz

	-26dB Channel Bandwidth (MHz)							
Test CH	802.11a	802.11n (HT20)	802.11ac (HT20)	802.11n (HT40)	802.11ac (HT40)	802.11ac (HT80)	(KHz)	Result
Lowest	22.67	23.42	23.07	44.07	44.52		2	
Middle	23.42	23.36	23.00	- N		81.93	>500	Pass
Highest	22.98	23.37	23.64	43.32	43.64			

	99% Occupy Bandwidth (MHz)						
Test CH	802.11a	802.11n (HT20)	802.11ac (HT20)	802.11n (HT40)	802.11ac (HT40)	802.11ac (HT80)	Result
Lowest	16.692	17.824	17.825	36.367	36.351		
Middle	16.668	17.821	17.845			75.045	Pass
Highest	16.700	17.853	17.829	36.418	36.342		

(802.11a) plot on channel 36


11:20:17 MIDer Radio Std: None er Freg 5,18000000 Radio Device: BTS Ref Offset 3.78 dB Ref 23.78 dBm Center 5.18 GHz Res BW 200 kHz Span 30 MH eep 1.333 m #VBW 620 kHz Occupied Bandwidth Total Power 8.03 dBm 17.824 MHz % of OBW P Transmit Freq Error 27.039 kHz 99.00 % x dB Bandwidth 23.42 MHz x dB -26.00 dB

(802.11 n20) plot on channel 36

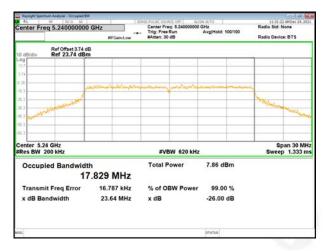
(802.11a) plot on channel 40

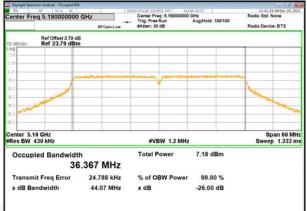
(802.11a) plot on channel 48

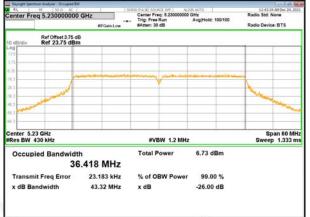
(802.11 n20) plot on channel 40

(802.11 n20) plot on channel 48

600


(802.11ac20) plot on channel 36

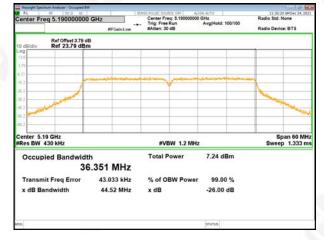

(802.11ac20) plot on channel 40

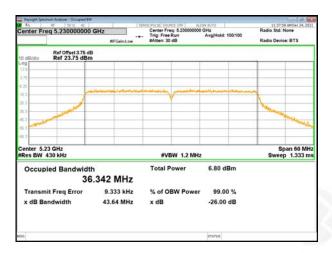

(802.11ac20) plot on channel 48

(802.11 n40) plot on channel 38

(802.11 n40) plot on channel 46

Shenzhen ZKT Technology Co., Ltd.


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



(802.11ac40) plot on channel 38

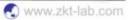
(802.11ac40) plot on channel 46

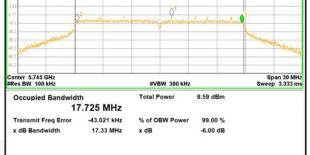
11:45:37 MIDec 24,3 Radio Std: None Center Freq 5.210000000 GHz Center Freq: 5.21 Trig: Free Run #Atten: 30 dB Radio Device: BTS Ref Offset 3.79 dB Ref 23.79 dBm enter 5.21 GHz tes BW 820 kHz Span 120 MH weep 1.333 m #VBW 2.4 MH 7.18 dBm **Occupied Bandwidth Total Power** 75.045 MHz 101.63 kHz Transmit Freq Error % of OBW Power 99.00 % 81.93 MHz -26.00 dB x dB Bandwidth x dB

(802.11ac80) plot on channel 42

5745-5825MHz

		-6dB Channel Bandwidth (MHz)						Limit			
Te	st CH	802.11a	802.11n (HT20)	802.11ac (HT20)	802.11n (HT40)	802.11ac (HT40)	802.11ac (HT80)	(KHz)	Result		
Lo	owest	16.34	17.33	17.18	36.31	36.30					
Μ	iddle	16.35	17.58	17.31			75.08	>500	Pass		
Hię	ghest	16.30	17.60	17.56	36.05	36.27					





(802.11a) plot on channel 149



April Section Acade State of Acade State of Acade Acade Section Acade Section Acade Section Acade Section Acade Section Acade Section Rando Section


(802.11 n20) plot on channel 149

(802.11a) plot on channel 157

(802.11a) plot on channel 165

(802.11 n20) plot on channel 157

(802.11 n20) plot on channel 165

Ð

600


(802.11ac20) plot on channel 149

(802.11ac20) plot on channel 157

(802.11ac20) plot on channel 165

(802.11 n40) plot on channel 151

82:38:09 PMDec 24.2 Radio Std: None nter Freq 5.795000000 GHz Center Freq: 5.3 Trig: Free Run #Atten: 30 dB Radio Device: BTS r3 5.813015 G -19.130 d Ref Offset 3.79 dB Ref 23.79 dBm enter 5.795 GHz Res BW 100 kHz Span 60 Mi Sweep 6 r #VBW 300 kHz 8.16 dBm **Occupied Bandwidth Total Power** 36.209 MHz -9.060 kHz 99.00 % **Transmit Freg Error** % of OBW Po x dB Bandwidth 36.05 MHz -6.00 dB x dB

(802.11 n40) plot on channel 159

Ð


(802.11 ac40) plot on channel 151

(802.11 ac80) plot on channel 155

(802.11 ac40) plot on channel 159

	GHz	Center Freq: 5.795000000 Trig: Free Run		82-29-36 PHOec 24, 2023 Radio Std: None
	#FGain:Low	#Atten: 30 dB	and the second second second	Radio Device: BTS
	×			Mkr3 5.813118 GHz -16.997 dBm
			~	
Q ²	trans trades	A deserver and the day	M. Ynen	3
	and the second sec	The second secon		7
when				No. Confederation
				and the second se
		#VBW 300 kHz	52 52	Span 60 MH Sweep 6 m
		Total Power	8.11 dBm	
36.	228 MHz			
Error	-18.291 kHz	% of OBW Power	99.00 %	
h	36.27 MHz	x dB	-6.00 dB	
	ndwidth	5000000 GHz #FGainLow firet 379 dBm 3.79 dBm a	5000000 GHz Center Freq 3.7960000 BifGet.cov Trig Freq Run 3.79 dBm #U and the second	5000000 GHz Cemer Fres. 5.7500000 OHz ##Gelocity Trig Fres. 8.7500000 OHz 770 GP Fres. 3.76 0BM 3.79 dBm Status #VBW 300 kHz #VBW 300 kHz Indwidth Total Power 8.11 dBm 36.228 MHz % of OBW Power 99.00 %

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

르

7.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5150~5250	250mW
5725~5850	1W

7.2 TEST PROCEDURE

The EUT was directly connected to the Power meter

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

The EUT transmits continuously (or with a duty cycle ≥ 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW \geq 3 MHz.

(iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. (vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-211227L7253E-3 Page 47 of 71

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP



7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	ТХ	9	

Test Channel	Frequency	Maximum output power	LIMIT	Desult
Test Channel	(MHz)	(dBm)	dBm	Result
		TX 802.11a Mode		
CH36	5180	6.98	23.98	Pass
CH40	5200	6.92	23.98	Pass
CH48	5240	6.26	23.98	Pass
		TX 802.11 n20 Mode		
CH36	5180	6.97	23.98	Pass
CH40	5200	7.19	23.98	Pass
CH48	5240	6.71	23.98	Pass
		TX 802.11 ac20 Mode		100
CH36	5180	7.38	23.98	Pass
CH40	5200	7.19	23.98	Pass
CH48	5240	6.69	23.98	Pass
		TX 802.11 n40 Mode		
CH38	5190	6.03	23.98	Pass
CH46	5230	5.74	23.98	Pass
<u>.</u>		TX 802.11 ac40 Mode		
CH38	5190	6.04	23.98	Pass
CH46	5230	5.70	23.98	Pass
		TX 802.11 ac80 Mode		
CH42	5210	5.39	23.98	Pass

Test Channel	Frequency	Maximum output power.	LIMIT	Result	
rest ondriner	(MHz)	(dBm)	dBm	Result	
		TX 802.11a Mode			
CH149	5745	7.25	30	Pass	
CH157	5785	7.21	30	Pass	
CH165	5825	7.65	30	Pass	
		TX 802.11 n20M Mode			
CH149	5745	7.061	30	Pass	
CH157	5785	7.16	30	Pass	
CH165	5825	7.49	30	Pass	
		TX 802.11 ac20 Mode			
CH149	5745	7.06	30	Pass	
CH157	5785	7.12	30	Pass	
CH165	5825	7.54	30	Pass	
		TX 802.11 n40 Mode			
CH151	5755	6.43	30	Pass	
CH159	5795	6.69	30	Pass	
		TX 802.11 ac40 Mode	24	2.1	
CH151	5755	6.31	30	Pass	
CH159	5795	6.57	30	Pass	
		TX 802.11 ac80 Mode	•		
CH155	5775	5.82	30	Pass	

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

8.OUT OF BAND EMISSIONS

8.1 APPLICABLE STANDARD

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

8.2 TEST PROCEDURE

8.3 DEVIATION FROM STANDARD

+86-400-000-9970

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

4

+86-755-2233 6688

No deviation.	
8.4 TEST SETUP	
EUT	POWER METER
	-
nzhen ZKT Technology Co., Ltd. No. 101, Building B, No. 6, Tangwei Community	

X zkt@zkt-lab.com

8.5 EUT OPERATION CONDITIONS

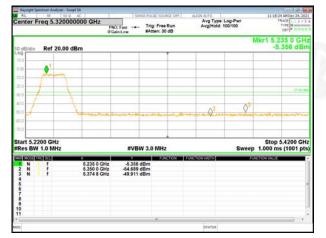
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 3.8V

5.180~5.240 GHz

nter Freq 5.10000000 GHz


(802.11a) Band Edge, Left Side

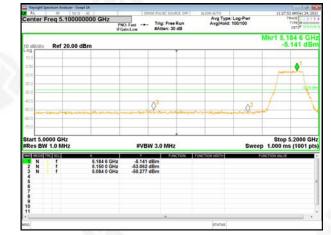
(802.11n20) Band Edge, Left Side

Avg Type: Log-Pwr Avg(Hold: 100/100 Ref 20.00 dB 0 tart 5.0000 GHz Res BW 1.0 MHz Stop 5.2000 GH Sweep 1.000 ms (1001 pt #VBW 3.0 MHz -4.727 dBm -52.584 dBm -49.552 dBm NN 5.150 0 GH

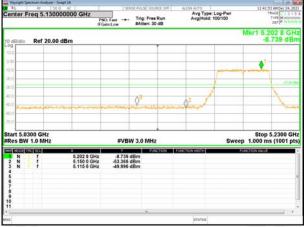
(802.11a) Band Edge, Right Side

(802.11n20) Band Edge, Right Side

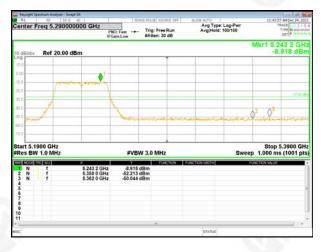
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



5.180~5.240 GHz


(802.11ac20) Band Edge, Left Side

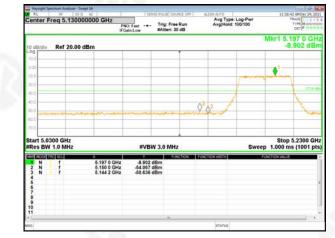
(802.11n40) Band Edge, Left Side



(802.11ac20) Band Edge, Right Side

enter Freq 5.32000	0000 GHz	Strict Pucse s		Avg Type: Log-Pv Avg/Hold: 100/100	vr	TRACE 1 3 4 5
		in:Low #Atten:	30 dB			DET P N N N N
dB/div Ref 20.00 d	IBm					237 4 GH: 4.848 dBn
00			1	1		
100						
an period						
0.0			-			
00			-			-2100
00			-		03	
no	La manther po	an new participation	an and the	Q2	N. N.	A MANAGER
0.0						
υ σ			-			
tart 5.2200 GHz Res BW 1.0 MHz		#VBW 3.0 M	+lz		Stop Sweep 1.000 r	5.4200 GHz ns (1001 pts
1000 HER 100	x		UNSTION FU	NOTICE RECORD	FUNCTION VALU	-
N 1 2 N 1 3 N 1	5.237 4 GHz 5.350 0 GHz 5.384 8 GHz	-4.848 dBm -53.316 dBm -50.866 dBm				
4						
6						
8						
0						
1		10				^`
0				STATUS		

(802.11n40) Band Edge, Right Side



5.180~5.240 GHz

(802.11ac40) Band Edge, Left Side

(802.11ac80) Band Edge

(802.11ac40) Band Edge, Right Side

Cen		Fre	q 5.2900	000000 GHz	PNO: Fas IFGain:Lo		Frig: Free Atten: 30	Run	Aug T Avg T Avg H	ype: Log-Pwr old: 100/100	1	TRACE TYPE NW DET P 1	3456
t0 d	B/di	v	Ref 20.00	dBm							Mkr1	5.242 0 (-8.824 c	
10.0				-	-			-	-	-			
0.00	F		1.1	1									-
10.0			5	and have been added						-			
0.00	F		1	_		-		-	_			-	0.000
40.0	F		1		1						12	03	-
50.0 60.0	~	ers'			1	a shake a	milipati	and you	ywound	Con Spinor	· ferre		
70.0			_		_				_	_			
			0 GHz .0 MHz			#VBW :	3.0 MHz	• 		Sw	Steep 1.00	op 5.3900 0 ms (1001	GHz pts)
-		100	20	X		Y		CITION	TONOTION WROTE		FUNCTION	306	
234	NNN		1	5.242 0 GH 5.350 0 GH 5.371 2 GH	4z -8	-8.824 dB 3.182 dB 50.711 dB	m						
0 67													-1
8 9 10 11													
6	_						14	_					16
90									STATU	6			

5.745~5.825 GHz

(802.11a) Band Edge, Left Side

(802.11n20) Band Edge, Left Side

Page 53 of 71

(802.11a) Band Edge, Right Side

Keycight Spectrum Ana	lyzer - Swept SA	I SENSE PULSE! SOUR		0 3 4
	905000000 GHz	D: Fest Trig: Free R	Avg Type: Log-Pwr Avg(Hold: 100/100	E2:09:00 PH Dec 24, 2021 TRACE (2.3.4.5 C TVPE M WWWWW DET P 10 V 10 10
Ref O	Tset 3.82 dB	iain:Low #Atten: 30 d		Mkr1 5.832 4 GHz 0.164 dBm
Trace 1 Par		~		
0.00	-			
0.0	1			
00	02		03	
0.0	- Handberry	undraw wint the	and and be a builder to the start of the start	en en la mantena en la constana por de la constana por en la constana por en la constana por en la constana por
70.0				
tart 5.8050 GH Res BW 1.0 M		#VBW 3.0 MHz	Swe	Stop 6.0050 GHz ep 1.000 ms (1001 pts)
N f 2 N f 3 N f	5.832 4 GHz 5.850 0 GHz 5.931 6 GHz	0.164 dBm -47.899 dBm -45.698 dBm	TION FUNCTION WOTH	FUNCTION VALUE
5				
7 8 9				
10				
101			STATUS	

Keysight Spe	ctrum Analyzer - Sw		10000000000				-	0 0
	NU 50 C	00000 GHz	SENSE-PULSE	SOURCE DFF	AUSIN AUTO	on Pwr	82-11-04 TRJ	PHDec 24, 202
ASS	eq 5.00500	PN	Fast Trig: F in:Low SAtten	ree Run 30 dB	Avg(Hold: 1		7	PE MINIMUM
0 dB/div	Ref Offset 3						Mkr1 5.73	9 8 GH
00	1 Pass	upin		1		-		
0.00							1	
0.0				/			(and the second	m
0.0	_			1				
0.0	_						1	
00	_					O^3	02/	
0.0	that Any share	neneral adaption to	and an an an an an an an	and and a start of	and the second s	Jales Ween	*	1
0.0				-				
00				-				
tart 5.56 Res BW								7650 GH
Res BW		× 1	#VBW 3.0 M	HIZ HUNGING			p 1.000 ms	(1001 pt
1 N 2 N 3 N	1	6.739 8 GHz 6.726 0 GHz 5.707 8 GHz	-0.769 dBm -47.739 dBm -44.950 dBm	PONCTION			PORCHOIL WEDE	
4								
7								
9								
0								
-			10		10000011			•
6					STATUS			

(802.11n20) Band Edge, Right Side

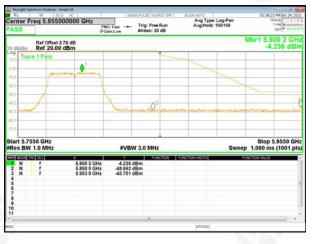


5.745~5.825 GHz

(802.11ac20) Band Edge, Left Side

(802.11n40) Band Edge, Left Side

Page 54 of 71



(802.11ac20) Band Edge, Right Side

(802.11n40) Band Edge, Right Side



5.745~5.825 GHz

(802.11ac40) Band Edge, Left Side

(802.11ac80) Band Edge

(802.11ac40) Band Edge, Right Side

9.SPURIOUS RF CONDUCTED EMISSIONS

9.1 CONFORMANCE LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

9.2 MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 6.3 of this test report.

9.3 TEST SETUP

9.4 TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 30MHz to 26.5GHz.


9.5 TEST RESULTS

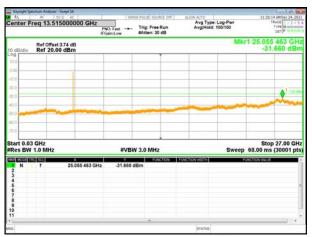
Remark: The measurement frequency range is from 30MHz to the 5th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and band edge measurement data.

802.11a on channel 36

802.11a on channel 48

RL RF 58.0 AC		SOURCE OFF ALL	Avg Type: Log-Pwr	11:18:52 AMDec 24, 2021 TRACE
Center Freq 13.5150000	PNO: East - Trig	: Free Run ten: 30 dB	Avg/Hold: 100/100	DET P NINNN
Ref Offset 3.74 dB			Mkr	1 25.002 422 GHz -30.673 dBm
10.0				
0.00				
10.0				
0.0				Alana
0.0				
0.0			Summer and a survey of the sur	
0.0	and the state of the			
60 O				
70.0				
tart 0.03 GHz Res BW 1.0 MHz	#VBW 3.0	MHz	Sweep	Stop 27.00 GHz 68.00 ms (30001 pts
		FUNCTION FUNCT		INCIDENTIAL INCIDENTI INCIDENTIAL INCIDENTIAL INCIDENTIAL INCIDENTIAL INCIDENTIAL INCIDENTIAL INCIDENTIAL INCIDENTIAL INCIDENTIALI INCIDENTI INCIDENTIALI INCIDIENTI INCIDIENTI INCIDIENTI INCIDIENTI INCIDIENTI INCIDIENTI INCIDIENTI INCIDIE INCIDIENTI
N f 25.00	02 422 GHz -30.673 dBm			
4				
6				
7 8				
9				
11				

802.11n20 on channel 40

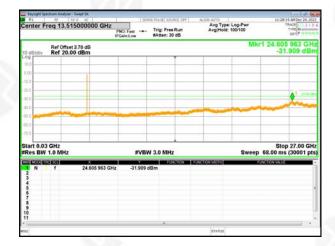

802.11a on channel 40 Rise Nr See AC SetMar Financia Center Freq 13.515000000 GHz PNO: Fast Trig: Free Run Fride Fun PNO: Fast SetMar 50 dB Avg Type: Log-Pwr Avg[Hold: 100/100

802.11n20 on channel 36

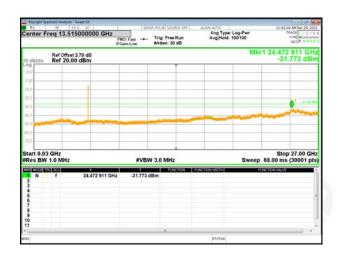
802.11n20 on channel 48

Zkt@zkt-lab.com

Shenzhen ZKT Technology Co., Ltd.


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

+86-400-000-9970


802.11ac20 on channel 36

802.11ac20 on channel 48

enter Freq 13.51	p	NO: Fest Trig: Fr Gein:Low RAtten:	ee Run 30 dB	Avg Type: Log-Pwr Avg Hold: 1001100	TRACE 1 2 3 4 5 TYPE M WWWWW DET P faiture
Ref Offset				Mk	r1 24.566 407 GH: -31.679 dBn
00			1		
0.00			_		
0.0	1		_		
0.0					
0.0			-		
0.0					
0.0	and the second second	States of the local division in the local di			
0.0			-		
0.0			_		
tart 0.03 GHz			*		Stop 27.00 GHz
Res BW 1.0 MHz		#VBW 3.0 M	Hz	Sweep	68.00 ms (30001 pts
20 EXCE 102 EXC	×		STATISTICS P	SOLOS HOLE	UNITO/IVAUE
1 N f	24.566 407 GHz	-31.679 dBm		1	
3					
5					
6					
8					
10					
0				STATUS	

802.11n40 on channel 38

802.11ac20 on channel 40

802.11n40 on channel 46


 Torget (sec)
 ALL
 State
 State
 Automatic
 State
 State

802.11ac40 on channel 38

802.11ac80 on channel 42

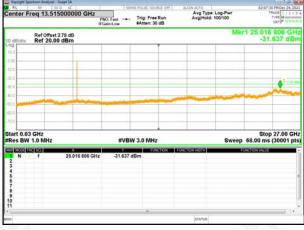
enter Freq 13.5150000	PNO: Fast IFGain1.ow	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE (12345 TYPE M WWWWW DET P 14 W P11
Ref Offset 3.79 dB			M	kr1 25.043 776 GHz -31.536 dBn
10.0				
0.00				
0.0				
0.0				A17000
0.0				
00			and the same state of the same	
0.0				
0.0				
00				
tart 0.03 GHz Res BW 1.0 MHz	#VE	W 3.0 MHz	Swee	Stop 27.00 GHz p 68.00 ms (30001 pts
	43 776 GHz -31.536	AMADON 1	UNCTONINGTH	FUNCTION VALUE
2	45 // 6 GHz -51.556	obm		
4				
6				1
8				
9				
1				
			STATUS	

Propert (senters fordyser: Senter XA Senter XALIS Senter XALIS

802.11ac40 on channel 46

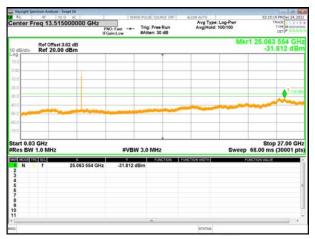



802.11a on channel 149


802.11a on channel 157

Keycight Sper	ctrum Analyzer - Swept			st PULSE SOURCE OF 1	ALLEN AUTO		12.00.2	FHDec 24, 202
	eq 13.51500	0000 GHz	NO: Fast	Trig: Free Run #Atten: 30 dB	Avg Type: Lo Avg(Hold: 10	g-Pwr r100	7	DET P N N N
0 dB/div	Ref Offset 3.82 Ref 20.00 dB	dB Sm				Mkr	1 24.551 -31.	124 GH 856 dBn
10.0				T.				
0.00								
10.01					_			
0.0					_			
0.0	_							•
0.0	-				-			~~~~
0.0	and the second second	and the second second	Statute and the state of the st			-		-
0.0								
70.0								
tart 0.03 Res BW			#VBV	V 3.0 MHz		Sweep	Stop 68.00 ms	27.00 GH
		24.551 124 GHz	-31,856 d		FUNCTION WOTH		INCIDE VALUE	<u> </u>
2		24.561 124 GHZ	-31.856 0	ISW				
4								
67								
8								
9								
11								^
					STATUS			

802.11n20 on channel 165

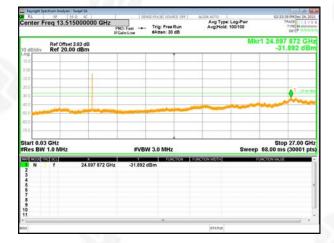

802.11a on channel 165

802.11n20 on channel 149

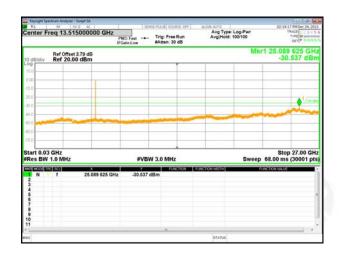
802.11n20 on channel 165

Zkt@zkt-lab.com

Shenzhen ZKT Technology Co., Ltd.


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

+86-400-000-9970


802.11ac20 on channel 149

802.11ac20 on channel 157

Center Freq 13.515	PN	: Fest Trig: Fre in:Low #Atten:		Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE M WWWWWW DET P 16 N 10 N
Ref Offset 3				M	r1 24.636 529 GHz -31.545 dBm
10.0			-		
0.00	1				
10.0					
0.0			-		A1
0.00					-
40.0	-	1211111	-	and the second division of the second divisio	
50.0					
60.0			-		
70.0					
Start 0.03 GHz Res BW 1.0 MHz		#VBW 3.0 MH	iz	Sweep	Stop 27.00 GHz 68.00 ms (30001 pts)
100 100 100 100 100	×		UNCTION FI	INGION TRUE	AND REAL PROPERTY AND REAL PROPERTY.
1 N f 2 3 4 5 6 7	24.636 629 GHz	-31.545 dBm			
8 9 10					
10					
		10		STATUS	

802.11n40 on channel 151

802.11ac20 on channel 165

802.11n40 on channel 159

 Regr Offset 382 dB
 Model Acad Social Coll
 Aug Table A

58

802.11ac40 on channel 151

802.11ac80 on channel 155

enter F	req 13.515	5000000 GHz	PNO: Fast Trig: IFGain:Low #Atte	Free Run n: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE U.2.3.4.5 TYPE M WWWWW DET P IN WINK
0 dB/div	Ref Offset				M	r1 25.082 433 GHz -32.248 dBm
10.0		_				1
1.00						
10		1				
0.0	-			-		A1:00
0.0						
00			0.00	-	and the second division of the second divisio	
a 0 - 0 a						
00				_		
00						
tart 0.0 Res BW	3 GHz 1.0 MHz		#VBW 3.0 /	WHZ	Sweet	Stop 27.00 GHz 68.00 ms (30001 pts
N STORE		25.082 433 GH		FUNCTION	UNCTION WOTH	FUNCTION WALVE
2		20.002 400 00.	-32.240 00m			
4						
6						
7						
9						
1						
0					STATUS	

802.11ac40 on channel 159

Center Fre		000000 GHz		A SOURCE OFF	Auton Auto Avg Type: Log-	-Pwr	2:30:19 PHDec 24, 20 TRACE 1 2 3 4 5
		PN	:Fast Trig in:Low #Att	Free Run en: 30 dB	Avg(Hold: 100/1	100	DET P N N N
to dB/div	Ref Offset 3	79 dB dBm					083 332 GH -31.800 dBr
10.0				1			
0.00							
10.00		1					
30.0							
30.0				_			Al rms
40.0							- and the second
50.0	-	and the second s	Statement in the second	al statements			
60.0							
70.0							
Start 0.03 G Res BW 1.			#VBW 3.0	MHz		Sweep 68.00	Stop 27.00 GH ms (30001 pt
IN LOOP HERE	50	×	Y I	FUNCTION P	UNCTION WOTH	HORSE OF W	10.1
N 2345	1	25.083 332 GHz	-31.800 dBm				
7 8 9 10							
				30			•
16					STATUS		

10.Frequency Stability Measurement

10.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

10.2 TEST PROCEDURES

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. Record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized.
- fc is declaring of channel frequency. Then the frequency error formula is (f- fc)/fc × 106 ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -20°C~70°C.

10.3 TEST SETUP LAYOUT

EUT	

SPECTRUM ANALYZER

10.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

10.5 TEST RESULTS

Remark: only the result for 10minutes was shown in this report.

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 3.8V
Test Mode :	ТХ		

5.2G

802.11a

Reference Frequency(Middle Channel): 5200 MHz						
Environment	Power Supplied	Frequency Measure with 10minutes				
Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)			
50	3.8	63	12.12			
40	3.8	51	9.81			
30	3.8	43	8.27			
20	3.8	32	6.15			
10	3.8	23	4.42			
0	3.8	26	5.00			
-10	3.8	22	4.23			
-20	3.8	36	6.92			
-30	3.8	43	8.27			

80<u>2.11n_HT20</u>

Reference Frequency(Middle Channel): 5200MHz				
Environment	Power Supplied	Frequency Measure with 10minutes		
Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)	
50	3.8	55	10.58	
40	3.8	42	8.08	
30	3.8	32	6.15	
20	3.8	24	4.62	
10	3.8	22	4.23	
0	3.8	12	2.31	
-10	3.8	13	2.50	
-20	3.8	21	4.04	
-30	3.8	32	6.15	

Reference Frequency(Middle Channel): 5190MHz Environment Frequency Measure with 10minutes **Power Supplied** Temperature (VDC) Frequency Error(KHz) Error (ppm) (°C) 50 11.73 3.8 61 40 3.8 54 10.38 30 3.8 42 8.08 20 3.8 44 8.46 10 3.8 34 6.54 0 3.8 32 6.15 -10 3.8 34 6.54 -20 3.8 42 8.08 -30 3.8 51 9.81

802.11ac80

Reference Frequency(Middle Channel): 5210MHz				
Environment	Power Supplied	Frequency Measure with 10minutes		
Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)	
50	3.8	63	12.12	
40	3.8	52	10.00	
30	3.8	43	8.27	
20	3.8	41	7.88	
10	3.8	36	6.92	
0	3.8	32	6.15	
-10	3.8	34	6.54	
-20	3.8	43	8.27	
-30	3.8	52	10.00	

So, Frequency Stability Versus Input Voltage is:

802.11a

	Reference Frequency(Middle Channel): 5200 MHz					
	Environment	Power Supplied	Frequency Measure with 10minutes			
	Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)		
	20	3.8	34	6.54		
		3.4	32	6.15		
-		4.1	33	6.35		

80<u>2.11n_HT20</u>

Reference Frequency(Middle Channel): 5200 MHz				
Environment	Power Supplied	Frequency Measure with 10minutes		
Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)	
	3.8	55	10.58	
20	3.4	21	4.04	
	4.1	43	8.27	

80<u>2.11n_HT40</u>

Reference Frequency(Middle Channel): 5190 MHz					
Environment	Power Supplied	Frequency Measure with 10minutes			
Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)		
	3.8	42	8.08		
20	3.4	44	8.46		
	4.1	42	8.08		

80<u>2.11ac80</u>

Reference Frequency(Middle Channel): 5210 MHz				
Environment	Power Supplied	Frequency Measure with 10minutes		
Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)	
20	3.8	46	8.85	
	3.4	42	8.08	
	4.1	54	10.38	

5.8G

80<u>2.11a</u>

	Reference Frequency(Middle Channel): 5785 MHz				
	Environment	Power Supplied	Power Supplied Frequency Measure with 10minutes	e with 10minutes	
	Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)	
	50	3.8	43	8.27	
1	40	3.8	51	9.81	
	30	3.8	23	4.42	
	20	3.8	26	5.00	
	10	3.8	23	4.42	
	0	3.8	26	5.00	
	-10	3.8	22	4.23	
	-20	3.8	36	6.92	
	-30	3.8	26	5.00	

802.11n_HT20

Reference Frequency(Middle Channel): 5785MHz				
Environment	Power Supplied	Frequency Measure with 10minutes		
Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)	
50	3.8	42	8.08	
40	3.8	24	4.62	
30	3.8	32	6.15	
20	3.8	24	4.62	
10	3.8	13	2.50	
0	3.8	12	2.31	
-10	3.8	13	2.50	
-20	3.8	21	4.04	
-30	3.8	32	6.15	

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Reference Frequency(Middle Channel): 5795MHz Environment Frequency Measure with 10minutes **Power Supplied** Temperature (VDC) Frequency Error(KHz) Error (ppm) (°C) 50 11.73 3.8 61 40 3.8 54 10.38 30 3.8 42 8.08 20 3.8 44 8.46 10 3.8 34 6.54 0 3.8 32 6.15 -10 3.8 34 6.54 -20 3.8 42 8.08 -30 3.8 51 9.81

802.11ac80

Reference Frequency(Middle Channel): 5775MHz				
Environment	Power Supplied	Frequency Measure with 10minutes		
Temperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)	
50	3.8	52	10.00	
40	3.8	41	7.88	
30	3.8	43	8.27	
20	3.8	41	7.88	
10	3.8	36	6.92	
0	3.8	32	6.15	
-10	3.8	34	6.54	
-20	3.8	32	6.15	
-30	3.8	52	10.00	

So, Frequency Stability Versus Input Voltage is:

802.11a

Reference Frequency(Middle Channel): 5785 MHz					
Environment	Dower Supplied	Frequency Measure with 10minutes			
lemperature (°C)	(VDC)	Frequency Error(KHz)	Error (ppm)		
20	3.8	55	10.58		
	3.4	32	6.15		
	4.1	33	6.35		
	Temperature (°C)	Environment Temperature (°C) 20 Power Supplied (VDC) 3.8 3.4	Environment Temperature (°C)Power Supplied (VDC)Frequency Measur Frequency Error(KHz)203.855203.432		

80<u>2.11n_HT20</u>

Reference Frequency(Middle Channel): 5785 MHz					
Environment Temperature (°C)	Power Supplied (VDC)	Frequency Measure with 10minutes			
		Frequency Error(KHz)	Error (ppm)		
20	3.8	33	6.35		
	3.4	21	4.04		
	4.1	43	8.27		

80<u>2.11n_HT40</u>

Reference Frequency(Middle Channel): 5795 MHz					
Environment Temperature (°C)	Power Supplied (VDC)	Frequency Measure with 10minutes			
		Frequency Error(KHz)	Error (ppm)		
20	3.8	42	8.08		
	3.4	44	8.46		
	4.1	43	8.27		

80<u>2.11ac80</u>

Reference Frequency(Middle Channel): 5775 MHz					
Environment Temperature (°C)	Power Supplied (VDC)	Frequency Measure with 10minutes			
		Frequency Error(KHz)	Error (ppm)		
20	3.8	43	8.27		
	3.4	44	8.46		
	4.1	42	8.08		

11.ANTENNA REQUIREMENT

Standard requirement:

FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated Antenna, the best case gain of the antenna is 3.0dBi Max, reference to the appendix II for details

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

昌

Project No.: ZKT-211227L7253E-3 Page 71 of 71

12. TEST SETUP PHOTO

Reference to the appendix I for details.

13. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

******** END OF REPORT *******

