FCC §1.1310, §2.1091 – Maximum Permissible Exposure (MPE)

Applicable Standard

According to subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

No.: RXZ210923002RF01

Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)					
0.3-1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f²)	30					
30–300	27.5	0.073	0.2	30					
300–1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

f = frequency in MHz; * = Plane-wave equivalent power density;

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Mode	Frequency Range (MHz)	Antenna Gain		Tune-up Output Power		Evaluation Distance	Power Density	MPE Limit
		(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm2)	(mW/cm2)
LTE Band 2	1850-1910	-0.1	0.977	25	316.228	20	0.061	1
LTE Band 4	1710-1755	1.4	1.380	25	316.228	20	0.086	1
LTE Band 5	824-849	-2.5	0.562	25	316.228	20	0.035	0.55
LTE Band 12	699-716	-3.5	0.447	25	316.228	20	0.028	0.47

Result: The device meets MPE at distance 20cm.