

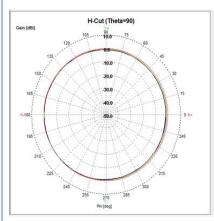

| Date       | Rev | Model Name  | Page  |
|------------|-----|-------------|-------|
| 2021-12-20 | 1.0 | SME-A089-RS | 1 / 7 |

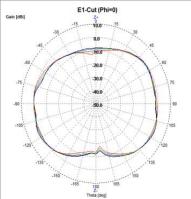
| Mechanical Specifications |                                  |                |
|---------------------------|----------------------------------|----------------|
|                           | Antenna Size<br>(Length x Width) | 195mm × 13ø    |
|                           | Weight                           | 26g            |
|                           | <b>Connector Type</b>            | RPSMA(M) RG174 |
|                           | Operation<br>Temperature         | -40 ~ 70 (°C)  |
|                           | Operation Humidity               | 0 ~ 95 (%)     |

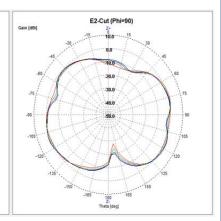
| <b>Electrical Specifications</b> |                  |
|----------------------------------|------------------|
| Frequency Range ( MHz )          | 900~931MHz       |
| V.S.W.R ( Min )                  | 2:1              |
| Gain (Max)                       | 0.93(dBi)@915MHz |
| Input Impedance                  | 50 (Ω)           |
| Polarization                     | Linear           |



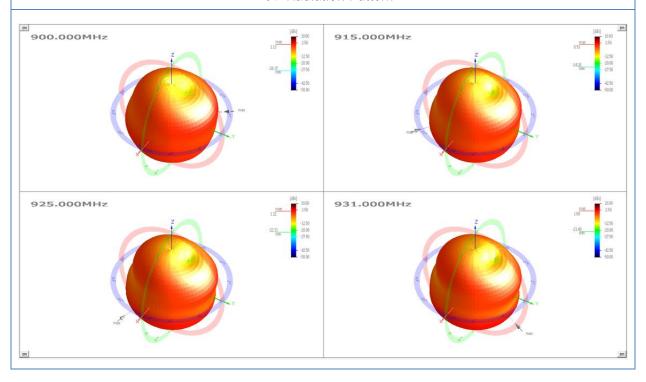



| Date       | Rev | Model Name  | Page  |  |
|------------|-----|-------------|-------|--|
| 2021-12-20 | 1.0 | SME-A089-RS | 2 / 7 |  |


# GAIN Pattern (MTG Chamber)


# Gain Data

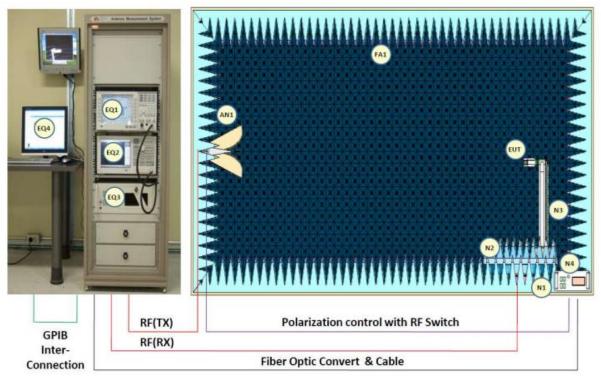
|         | Theta-Pol(H) |          |           | Phi-Pol(V) |          |         |           | PwrSum    |           |          |         |           |           |           |          |
|---------|--------------|----------|-----------|------------|----------|---------|-----------|-----------|-----------|----------|---------|-----------|-----------|-----------|----------|
| Freq.[M | Hz Eff.[%]   | Avg.[dBi | Peak[dBi] | Theta[deg  | Phi[deg] | Eff.[%] | Avg.[dBi] | Peak[dBi] | Theta[deg | Phi[deg] | Eff.[%] | Avg.[dBi] | Peak[dBi] | Theta[deg | Phi[deg] |
| 9       | 00 67.9      | 3 -1.6   | 8 1.1     | 75         | 100      | 3.39    | -14.7     | -8.34     | 50        | 5        | 71.32   | -1.47     | 1.13      | 75        | 105      |
| 9       | 15 64.5      | 1 -1.    | 9 0.88    | 105        | 285      | 5.08    | -12.94    | -6.42     | 55        | 10       | 69.59   | -1.57     | 0.93      | 105       | 305      |
| 9       | 25 63.8      | 4 -1.9   | 5 1.22    | 110        | 285      | 6.31    | -12       | -5.39     | 55        | 10       | 70.15   | -1.54     | 1.32      | 110       | 330      |
| 9       | 31 64.9      | 5 -1.8   | 7 1.55    | 120        | 120      | 7       | -11.55    | -4.91     | 60        | 10       | 71.95   | -1.43     | 1.68      | 120       | 85       |


#### 2D Radiation Pattern





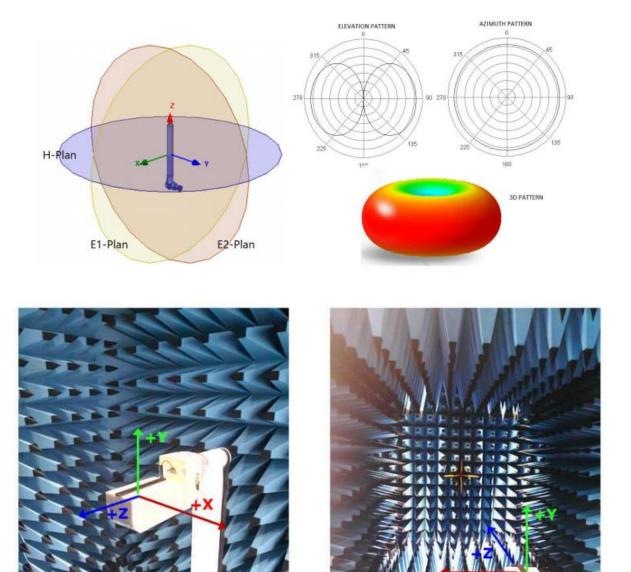



# 3D Radiation Pattern





# 1. Test Conditions


# 1.1. System Configuration for Performance Test



| No  | Description                      |
|-----|----------------------------------|
| FA1 | Anechoic Chamber                 |
| EQ1 | Network Analyzer                 |
| EQ2 | Wireless Communications Test Set |
| EQ3 | System Controller                |
| EQ4 | System Monitor                   |
| N1  | Azimuth Positioner               |
| N2  | Turn-Table & Linear Slide        |
| N3  | 3D Transparent Positioner        |
| N4  | Positioner Controller            |
| AN1 | Dual Polarized Transmit Antenna  |
| EUT | AUT                              |

| Saeman | Date       | Rev | Model Name  | Page  |
|--------|------------|-----|-------------|-------|
| Saemon | 2021-12-20 | 1.0 | SME-A089-RS | 4 / 7 |

# 1.2. Performance Test Conditions



Gain Measurement Position
(Saemon Technology anechoic chamber - 6x3x3)

|        | Date       | Rev | Model Name  | Page  |
|--------|------------|-----|-------------|-------|
| Saemen | 2021-12-20 | 1.0 | SME-A089-RS | 5 / 7 |

#### 1.3. Environmental Test Conditions

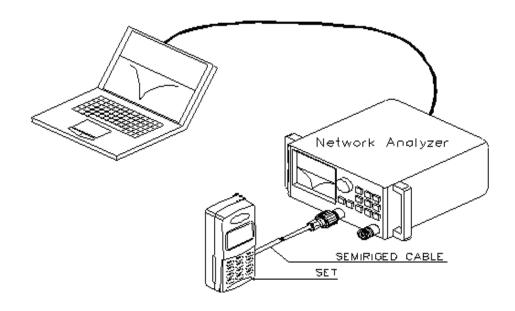
Electrical, mechanical, and environmental tests are conducted after preprocessing of test pieces according to the standard conditions. The standard conditions refer to the environmental conditions with 15°C ~ 25°C in temperature, 25% ~ 80% in relative humidity, and 86 ~ 106kPa in atmospheric pressure. The purpose of the preprocessing is to remove the influences made on the test pieces before the test or neutralize them in part. It is the initial step of the test process to stabilize the characteristics of the test pieces before starting measurement and testing. (Reference standard condition: 20°C in atmospheric pressure)

- The preprocessing time for mechanical test shall be one (1) hour.
- The preprocessing time for mechanical test after having conducted environmental test shall be two (2) hours.
- In case any past influence made in previous tests after taking the preprocessing remains, the preprocessing time shall be extended.

#### 1.4. Test Equipment.

The following equipment and tools are necessary for testing the antenna.

- A network analyzer to measure VSWR and impedance of the antenna
- A conveying unit to move transmitting antenna upward and downward, a positioner to rotate the receiving antenna, and a controller to activate them.
- A standard horn antenna for WLAN bandwidth
- An anechoic chamber equipped with cables, connectors, and measuring equipment
- Digital Vernier Calipers to measure dimension
- Temperature chamber for environment tests
- Salt spray testing instrument.


# 2. Electric Requirements

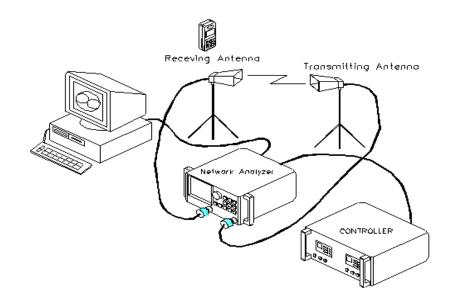
#### 2.1. **VSWR**

안 The antenna shall meet the requirement on VSWR specified in the electrical specifications.

| Item      | Description     | Remarks |
|-----------|-----------------|---------|
| Frequency | 900~931MHz      |         |
| VSWR      | Less than 2.0:1 |         |

|        | Date       | Rev | Model Name  | Page  |
|--------|------------|-----|-------------|-------|
| SaemON | 2021-12-20 | 1.0 | SME-A089-RS | 6 / 7 |




# 2.2. Radiation Patter

The radiation pattern of the antenna is Omni-directional on the H-Plane.

#### 2.3. Antenna Gain

The antenna gain measured on the H-Plane using the standard horn antenna for WLAN bandwidth after calibration shall meet the specifications below. The unit of the antenna gain is 'dBi'.

| Item       | Description      | Remarks |
|------------|------------------|---------|
| Frequency  | 900~931MHz       |         |
| Gain (dBi) | 0.93(dBi)@915MHz |         |



|        | Date       | Rev | Model Name  | Page  |
|--------|------------|-----|-------------|-------|
| Saemen | 2021-12-20 | 1.0 | SME-A089-RS | 7 / 7 |

# 3. Environmental Requirements

# 3.1. Operating Temperature Test

Put the antenna in the chamber set to0°C in temperature. Take out the antenna one hour later to measure VSWR immediately. Put the antenna in the chamber set to +50°C in temperature. Take out the antenna one hour later to measure VSWR immediately. No apparent external defect shall be found. The antenna shall meet the electrical requirements after the test.

# 3.2. High Humidity Storage Test.

Put the antenna in the chamber set with a cycle of temperature changes; maintaining  $0^{\circ}$ C for 2 hours, raising temperature from  $0^{\circ}$ C to  $+50^{\circ}$ C for 2 hours, maintaining  $+50^{\circ}$ C for 2 hours, and then lowering temperature from  $+50^{\circ}$ C to  $0^{\circ}$ C for 2 hours. Repeat the cycle 10 times and finish it at room temperature  $20^{\circ}$ C. No apparent external defect shall be found. The antenna shall meet the electrical requirements after the test.

#### 3.3. Humidity Test

Put the antenna in the chamber set to 80% of humidity and +50°C of temperature for 24 hours. Take out the antenna from the chamber and measure it 24 hours later at room temperature. No apparent external defect shall be found. The antenna shall meet the electrical requirements after the test.

#### 3.4. How to Deal with Defective Parts.

In case any defective part is found, sorting process, reworking, or one-to-one exchange shall be conducted according to customer requirements.

#### 3.5. Reliability Assurance Level

Parts Warranty Period: Min. 3 years