Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 #### Appendix(Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0Ω- 6.30jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.0dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.059 ns | |------------------------------------|-----------| | Licotriodi Bolay (orio direotiori) | 1.000 110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | 2 | |-----------------|-------|---| Certificate No: Z21-60172 Page 4 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Fax: +86-10-62304633-2504 DASY5 Validation Report for Head TSL Date: 05.19.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1095 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.953 S/m; ϵ_r = 38.72; ρ = 1000 kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(7.3, 7.3, 7.3) @ 2600 MHz; Calibrated: 2021-04-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.6 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.2 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44.2% Maximum value of SAR (measured) = 25.0 W/kg 0 dB = 25.0 W/kg = 13.98 dBW/kg Certificate No: Z21-60172 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: Z21-60172 Page 6 of 6 # F.9 3.5GHz Dipole Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Balun-SZ (Auden) Certificate No: D3500V2-1115_Nov20 | CALIBRATION CERTIFICATE | |-------------------------| |-------------------------| Object D3500V2 - SN:1115 Calibration procedure(s) QA CAL-22.v5 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: November 11, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|--|------------------------| | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | SN: 3503 | 31-Dec-19 (No. EX3-3503_Dec19) | Dec-20 | | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | ID# | Check Date (in house) | Scheduled Check | | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | Name | Function | Signature | | Jeffrey Katzman | Laboratory Technician | 14 | | | | J. Kapins | | Katja Pokovic | Technical Manager | Mich | | | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeffrey Katzman | SN: 104778 | Issued: November 13, 2020 Certificate No: D3500V2-1115_Nov20 Page 1 of 7 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3500V2-1115_Nov20 Pa #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3400 MHz ± 1 MHz
3500 MHz ± 1 MHz | | ## Head TSL parameters at 3400 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 38.0 | 2.81 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.9 ± 6 % | 2.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 3400 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.66 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.51 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 3500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.8 ± 6 % | 2.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 3500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.74 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.53 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.2 W/kg ± 19.5 % (k=2) | Certificate No: D3500V2-1115_Nov20 Page 3 of 7 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 3400 MHz | Impedance, transformed to feed point | $41.5 \Omega + 0.4 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 20.7 dB | | ### Antenna Parameters with Head TSL at 3500 MHz | Impedance, transformed to feed point | $46.2 \Omega + 5.0 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 23.7 dB | | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.137 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | Manufactured by | SPEAG | |-----------------------|-----------------|-------| |-----------------------|-----------------|-------| Certificate No: D3500V2-1115_Nov20 Page 4 of 7 #### **DASY5 Validation Report for Head TSL** Date: 11.11.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1115 Communication System: UID 0 - CW; Frequency: 3500 MHz, Frequency: 3400 MHz Medium parameters used: f=3500 MHz; $\sigma=2.94$ S/m; $\epsilon_r=36.8;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=3400 MHz; $\sigma=2.86$ S/m; $\epsilon_r=36.9;$ $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz, ConvF(7.91, 7.91, 7.91) @ 3400 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) #### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.85 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 6.74 W/kg; SAR(10 g) = 2.53 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.9% Maximum value of SAR (measured) = 12.6 W/kg # Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3400MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.46 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 6.66 W/kg; SAR(10 g) = 2.51 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.3% Maximum value of SAR (measured) = 12.4 W/kg Certificate No: D3500V2-1115_Nov20 Page 5 of 7 0 dB = 12.6 W/kg = 10.99 dBW/kg Certificate No: D3500V2-1115_Nov20 Page 6 of 7 ## Impedance Measurement Plot for Head TSL Certificate No: D3500V2-1115_Nov20 Page 7 of 7 # F.103.7GHz Dipole Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | CALIBRATION CE | RTIFICATE | | | |----------------------------------|--|--|---------------------------| | Object | D3700V2 - SN:10 | 986 | | | | QA CAL-22.v5 | | | | | Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | | | | | | | Calibration date: | November 12, 20 | 20 | | | | | y facility: environment temperature (22 \pm 3)°(| C and humidity < 70%. | | Calibration Equipment used (M&TE | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k)
SN: 310982 / 06327 | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 0632/
SN: 3503 | 31-Mar-20 (No. 217-03104) | Apr-21
Dec-20 | | Reference Probe EX3DV4
DAE4 | SN: 601 | 31-Dec-19 (No. EX3-3503_Dec19)
02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M.Weber | | Approved by: | Katja Pokovic | Technical Manager | M.Weber | | | | | Issued: November 13, 2020 | Certificate No: D3700V2-1086_Nov20 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3700V2-1086_Nov20 Page 2 of 6 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.5 ± 6 % | 3.09 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.63 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1086_Nov20 Page 3 of 6 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 46.1 Ω + 0.1 j Ω | |--------------------------------------|--------------------------------| | Return Loss | - 27.8 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.105 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D3700V2-1086_Nov20 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 12.11.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1086 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.09 \text{ S/m}$; $\varepsilon_r = 36.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.99 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 6.63 W/kg; SAR(10 g) = 2.4 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.8% Maximum value of SAR (measured) = 12.8 W/kg $\hat{0} dB = 12.8 \text{ W/kg} = 11.07 dBW/kg$ Certificate No: D3700V2-1086_Nov20 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: D3700V2-1086_Nov20 Page 6 of 6 # F.113.9GHz Dipole Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | Object | D3900V2 - SN:1059 | | | |---|---|--|--| | Calibration procedure(s) | QA CAL-22.v5
Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | | | | | | | Calibration date: | November 13, 20 | 20 | | | | | onal standards, which realize the physical uni
robability are given on the following pages an | | | All calibrations have been conducte | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | C and humidity < 70%. | | Calibration Equipment used (M&TE | E critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | D LIDD TOL | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | | | | | | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245
SN: BH9394 (20k) | 01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106) | Apr-21
Apr-21 | | Power sensor NRP-Z91
Reference 20 dB Attenuator | | | | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: BH9394 (20k)
SN: 310982 / 06327 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104) | Apr-21
Apr-21 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-3503_Dec19) | Apr-21
Apr-21
Dec-20 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-3503_Dec19)
02-Nov-20 (No. DAE4-601_Nov20) | Apr-21
Apr-21
Dec-20
Nov-21 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EX3-3503_Dec19)
02-Nov-20 (No. DAE4-601_Nov20)
Check Date (in house) | Apr-21
Apr-21
Dec-20
Nov-21
Scheduled Check | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-3503_Dec19) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-21 Apr-21 Dec-20 Nov-21 Scheduled Check In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-3503_Dec19) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-21 Apr-21 Dec-20 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-3503_Dec19) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-21 Apr-21 Dec-20 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-3503_Dec19) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-21 Apr-21 Dec-20 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EX3-3503_Dec19) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-21 Apr-21 Dec-20 Nov-21 Scheduled Check In house check: Oct-22 | Certificate No: D3900V2-1059_Nov20 Page 1 of 7 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1059_Nov20 Page 2 of 7 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.10.4 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz
4100 MHz ± 1 MHz | | ## Head TSL parameters at 3900 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.3 ± 6 % | 3.25 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 69.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | Head TSL parameters at 4100 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.2 | 3.53 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.0 ± 6 % | 3.42 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 4100 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.74 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1059_Nov20 Page 3 of 7 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 48.8 Ω - 6.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.6 dB | #### Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | $58.7~\Omega + 0.0~j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 21.9 dB | # **General Antenna Parameters and Design** | FL. C. I.B. L. C. L. L. L. V. | 1110 | |----------------------------------|----------| | Electrical Delay (one direction) | 1.113 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D3900V2-1059_Nov20 Page 4 of 7 #### **DASY5 Validation Report for Head TSL** Date: 13.11.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1059 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.25 S/m; ϵ_r = 36.3; ρ = 1000 kg/m³ , Medium parameters used: f = 4100 MHz; σ = 3.42 S/m; ϵ_r = 36; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.75 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.7 W/kg SAR(1 g) = 6.95 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 74% Maximum value of SAR (measured) = 13.6 W/kg # $Dipole\ Calibration\ for\ Head\ Tissue/Pin=100\ mW,\ d=10mm,\ f=4100MHz/Zoom\ Scan,$ dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.43 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 6.74 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 13.5 W/kg Certificate No: D3900V2-1059_Nov20 Page 5 of 7 Certificate No: D3900V2-1059_Nov20 Page 6 of 7 ## Impedance Measurement Plot for Head TSL Certificate No: D3900V2-1059_Nov20 Page 7 of 7 # F.125GHz Dipole Client baluntek Certificate No: Z21-60173 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1200 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 18, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |---------------------------------|-------------------|---|-----------------------| | Power Meter NRP2 | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | Power sensor NRP8S | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | ReferenceProbe EX3DV4 | SN 3846 | 26-Apr-21(CTTL-SPEAG,No.Z21-60084) | Apr-22 | | DAE4 | SN 777 | 08-Jan-21(CTTL-SPEAG,No.Z21-60003) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzerE5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | Name | Function | Signature | | Calibrated by: | Zhao Jing | SAR Test Engineer | 32 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 26 | | | | Issued: May 24, 2021 | | | This calibration certificate sl | hall not be repro | duced except in full without written approval | of the laboratory. | Certificate No: Z21-60173 Page 1 of 14