

Report Seal

Report No.: EED32N81116901 Page 1 of 49

TEST REPORT

Product : Blue Ocean Dream Galaxy Projector

Trade mark : N/A

Model/Type reference : WH-E14

Serial Number : N/A

Report Number : EED32N81116901 **FCC ID** : 2A2Y2-WH-E14

Date of Issue : Dec. 28, 2021

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Guangzhou Tuoke Commerce Trade Co Ltd. Room 416, No.101, Wanggang Dexing Road, Jiahe Stress, Baiyun District, Guangzhou, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Martin Lee

Martin Lee

Aaron Ma

Dec. 28, 2021

David Wang

Check No.: 4524291021

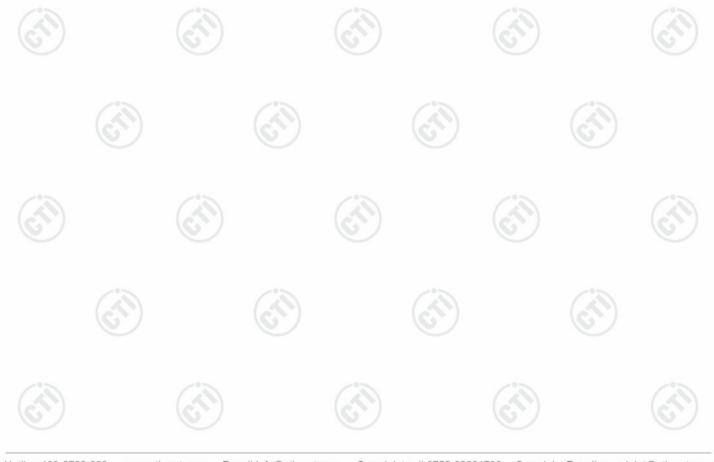
Page 2 of 49

Contents

							Page
1 CONTENTS	•••••		•••••	•••••	•••••	•••••	2
2 VERSION	•••••	•••••	•••••	•••••	•••••	•••••	3
3 TEST SUMMA							
4 GENERAL INF	ORMATION	•••••				•••••	5
4.7 MEASUREN 5 EQUIPMENT I		•					
6 TEST RESULT							
						•••••	
6.8 BAND EDG	E MEASUREME	NTS					21
7 APPENDIX A							
PHOTOGRAPH							
PHOTOGRAPH							
-0-				Z*>			

Version

Version No.	Date	6	Description	
00	Dec. 28, 2021		Original	
/		13	(1)	(3)



3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

General Information

4.1 **Client Information**

Applicant:	Guangzhou Tuoke Commerce Trade Co Ltd.
Address of Applicant:	Room 416, No.101, Wanggang Dexing Road, Jiahe Stress, Baiyun District, Guangzhou, China
Manufacturer:	Guangzhou Tuoke Commerce Trade Co Ltd.
Address of Manufacturer:	Room 416, No.101, Wanggang Dexing Road, Jiahe Stress, Baiyun District, Guangzhou, China

4.2 **General Description of EUT**

Product Name:	Blue Ocean Dream Galaxy Projector	
Mode No.:	WH-E14	
Trade mark:	N/A	
Bluetooth Version:	V5.0	
Operation Frequency:	2402MHz~2480MHz	(6,77)
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK	
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Product Type:	☐ Mobile ☑ Portable ☐ Fix Location	
Antenna Type:	PCB antenna	
Antenna Gain:	0.5dBi	122
Power Supply:	DC 5.0V	(41)
Test Voltage:	DC 5.0V	(0,)
Sample Received Date:	Nov. 01, 2021	
Sample tested Date:	Nov. 01, 2021 to Nov. 12, 2021	

Page 6 of 49	Page	6	of	49
--------------	------	---	----	----

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 **Test Configuration**

EUT Test Software Settings:					
Software:	FCC Assist 1.0.2.2 (manufacturer declare)				
EUT Power Grade:	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to set the lo	west frequency, the middle frequency and th	ne highest frequency keep			
Mode	Channel	Frequency(MHz)			
	CH0	2402			
DH1/DH3/DH5	CH39	2441			
(63.)	CH78	2480			
	CH0	2402			
2DH1/2DH3/2DH5	CH39	2441			
	CH78	2480			

Test Environment

Operating Environment	t:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C	(C.7)		(6.57)	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Temperature:	22~25.0 °C		(41)		(41)
Humidity:	50~55 % RH				6
Atmospheric Pressure:	1010mbar				
Conducted Emissions:					
Temperature:	22~25.0 °C	(3)		(2)	
Humidity:	50~55 % RH	(0,		(0,)	
Atmospheric Pressure:	1010mbar				

4.5 **Description of Support Units**

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	FCC ID and DOC	СТІ
Adapter	HUAWEI	HW-090200CH0	DOC	СТІ

Page 8 of 49

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
	10	3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3		4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 9 of 49

Equipment List 5

	RF test system					
Equipment Manufacturer		Mode No. Serial Number		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021	
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611 879	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(<u> </u>	

3M Semi/full-anechoic Chamber							
Equipment Manufacturer		urer Model No. Serial Number		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022		
TRILOG Broadband Schwarzbeck Antenna		VULB9163	9163-618	05-16-2021	05-15-2022		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024		
Receiver	R&S	ESCI7	100938-003	10-14-2021	10-13-2022		
Temperature/ Humidity Indicator			1804298	06-24-2021	06-23-2022		
Cable line	Fulai(7M)	SF106	5219/6A	(; -	(*)		
Cable line	Fulai(6M)	Fulai(6M) SF106		(67)	(6)		
Cable line	Fulai(3M)	SF106	5216/6A				
Cable line	Fulai(3M)	SF106	5217/6A				

Page 10 of 49

Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date
	Manuacturer	WIOGEI NO.	Number	(mm-dd-yyyy)	(mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	(4)	(
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	<u></u>	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	(<u>(1)</u>
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	le line Times SFT2		394813-0001		- (
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(C.)	(6
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	/	<u> </u>

Page	11	of 49	7
. ago		O	,

		Conducted distu	rbance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022
Temperature/ Humidity Indicator	Defu	TH128	1		- (
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022
Barometer	changchun	DYM3	1188		

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

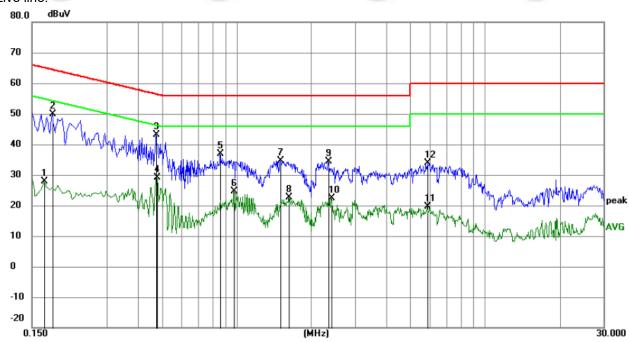
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 0.5dBi.

Report No.: EED32N81116901 Page 13 of 49

6.2 AC Power Line Conducted Emissions


Test Requirement:	47 CFR Part 15C Section 15.2	07	(6,5)				
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	[[[] [] [] [] [] [] [] [] []	BuV)					
	Frequency range (MHz)	Quasi-peak	Average				
1.5	0.15-0.5	66 to 56*	56 to 46*				
Limit:	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm						
Test Setup:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver				
Test Procedure:	room. 2) The EUT was connected to Impedance Stabilization Ne impedance. The power cab connected to a second LIST reference plane in the same measured. A multiple socked power cables to a single LIST.	etwork) which provides a des of all other units of t N 2, which was bonded e way as the LISN 1 for et outlet strip was used	a 50Ω/50μH + 5Ω linear the EUT were to the ground the unit being to connect multiple				
	exceeded. 3) The tabletop EUT was place ground reference plane. An placed on the horizontal grows of the EUT shall be 0.4 m from the EUT and bonded mounted on top of the grows between the closest points the EUT and associated equipment and all of the integral of the state	nd for floor-standing arraction reference plane, havertical ground reference the vertical ground lane was bonded to the 1 was placed 0.8 m from to a ground reference plane. This of the LISN 1 and the Equipment was at least 0. m emission, the relative	rence plane. The rear reference plane. The horizontal ground in the boundary of the plane for LISNs is distance was EUT. All other units of 8 m from the LISN 2.				
Exploratory Test Mode	3) The tabletop EUT was place ground reference plane. An placed on the horizontal ground of the EUT shall be 0.4 m from the EUT and bonded mounted on top of the ground between the closest points the EUT and associated equipment and all of the interpretation of the EUT and all of the interpretation of the IUT and all of the IUT and all of the IUT and IUT an	nd for floor-standing arraction reference plane, he a vertical ground reference the vertical ground lane was bonded to the 1 was placed 0.8 m from to a ground reference plane. This of the LISN 1 and the Equipment was at least 0. In emission, the relative erface cables must be aducted measurement.	rence plane. The rear reference plane. The horizontal ground in the boundary of the plane for LISNs is distance was EUT. All other units of 8 m from the LISN 2. positions of changed according to				
Exploratory Test Mode Final Test Mode:	3) The tabletop EUT was placed ground reference plane. An placed on the horizontal ground of the EUT shall be 0.4 m from the EUT and reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated equipment and all of the integration of the integration of the integration of the propring transmitting model.	nd for floor-standing arraction reference plane, he a vertical ground reference the vertical ground lane was bonded to the 1 was placed 0.8 m from to a ground reference plane. This of the LISN 1 and the Equipment was at least 0. m emission, the relative erface cables must be oducted measurement. The with all kind of modular, high channel.	rence plane. The rear reference plane. The horizontal ground methoday of the plane for LISNs is distance was EUT. All other units of 8 me from the LISN 2. positions of changed according to ation and all kind of				
<u> </u>	3) The tabletop EUT was place ground reference plane. An placed on the horizontal ground of the EUT shall be 0.4 m frought vertical ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated equipment and all of the interpretation of the property of the property of the property of the maximum of the interpretation of the interpretation of the property of the prope	and for floor-standing array bund reference plane, he a vertical ground reference the vertical ground lane was bonded to the 1 was placed 0.8 m from to a ground reference plane. This of the LISN 1 and the Equipment was at least 0.0 m emission, the relative erface cables must be explained by the control of the liking of modulary the with all kind of modulary, high channel.	rence plane. The rear reference plane. The horizontal ground methodary of the plane for LISNs is distance was EUT. All other units of 8 me from the LISN 2. positions of changed according to ation and all kind of				
<u> </u>	3) The tabletop EUT was placed ground reference plane. An placed on the horizontal ground the test was performed with of the EUT shall be 0.4 m from vertical ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated equipment and all of the into ANSI C63.10: 2013 on conditional control of the into the into the control of the into t	and for floor-standing array bund reference plane, he a vertical ground reference the vertical ground lane was bonded to the 1 was placed 0.8 m from to a ground reference plane. This of the LISN 1 and the Equipment was at least 0.0 m emission, the relative erface cables must be explained by the control of the liking of modulary the with all kind of modulary, high channel.	rence plane. The rear reference plane. The horizontal ground methoday of the plane for LISNs is distance was EUT. All other units of 8 me from the LISN 2. positions of changed according to ation and all kind of				

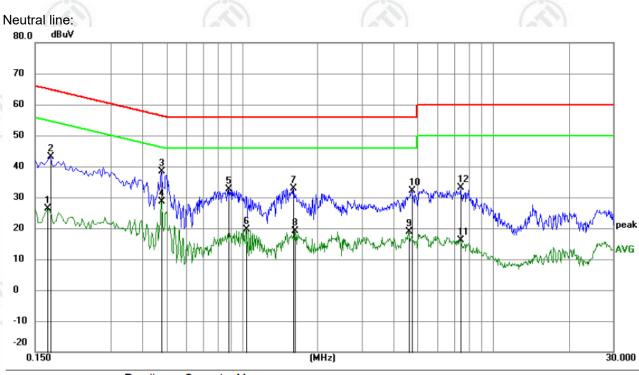
Page 14 of 49

Measurement Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1680	17.98	9.87	27.85	55.06	-27.21	AVG	
2		0.1815	40.04	9.87	49.91	64.42	-14.51	peak	
3	*	0.4740	33.19	9.96	43.15	56.44	-13.29	peak	
4		0.4785	19.14	9.95	29.09	46.37	-17.28	AVG	
5		0.8610	27.07	9.85	36.92	56.00	-19.08	peak	
6		0.9780	14.72	9.83	24.55	46.00	-21.45	AVG	
7		1.4955	24.87	9.81	34.68	56.00	-21.32	peak	
8		1.6215	12.86	9.81	22.67	46.00	-23.33	AVG	
9		2.3370	24.65	9.79	34.44	56.00	-21.56	peak	
10		2.4000	12.65	9.79	22.44	46.00	-23.56	AVG	
11		5.8649	9.92	9.78	19.70	50.00	-30.30	AVG	
12		5.8920	24.16	9.78	33.94	60.00	-26.06	peak	

Remark:

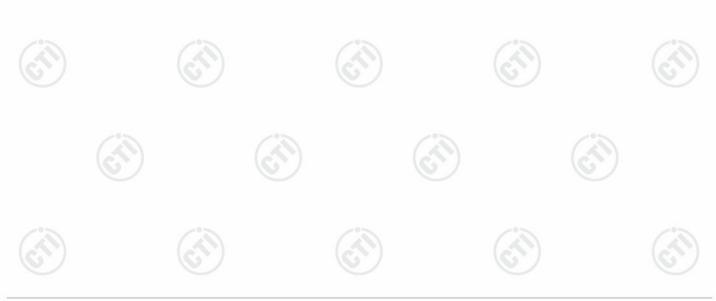
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

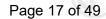


	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1680	16.61	9.87	26.48	55.06	-28.58	AVG	
	2		0.1725	33.15	9.87	43.02	64.84	-21.82	peak	
	3		0.4785	28.31	9.95	38.26	56.37	-18.11	peak	
	4	*	0.4785	18.68	9.95	28.63	46.37	-17.74	AVG	
	5		0.8835	22.67	9.85	32.52	56.00	-23.48	peak	
	6		1.0410	9.70	9.83	19.53	46.00	-26.47	AVG	
	7		1.5990	23.03	9.81	32.84	56.00	-23.16	peak	
	8		1.6215	9.20	9.81	19.01	46.00	-26.99	AVG	
	9		4.6050	8.98	9.78	18.76	46.00	-27.24	AVG	
	10		4.7399	22.46	9.78	32.24	56.00	-23.76	peak	
	11		7.3680	6.26	9.79	16.05	50.00	-33.95	AVG	
-	12		7.4130	23.36	9.79	33.15	60.00	-26.85	peak	

Remark:

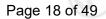
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.





6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Pool Attenuator Temperature cabnet
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Limit:	21dBm
Exploratory Test Mode	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type.
Test Results:	Refer to Appendix A
20%	



6.4 20dB Emission Bandwidth

1 - 22 - 2 1	1 10 71			
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013			
Test Setup:	Control Computer Power Supply Power Foot Table RF test System System Instrument			
	Remark: Offset=Cable loss+ attenuation factor.			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Limit:	NA			
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type			
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type.			
Test Results:	Refer to Appendix A			

6.5 Carrier Frequency Separation

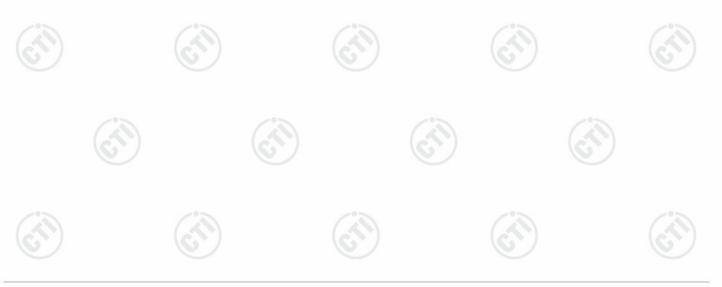
	I 49.79 l	1 (6, 7)				
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)				
	Test Method:	ANSI C63.10:2013				
	Test Setup:	Control Computer Power port Attenuator Instrument Table RF test System System Instrument				
		Remark: Offset=Cable loss+ attenuation factor.				
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 				
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.				
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type				
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type.				
	Test Results:	Refer to Appendix A				
10	1.6.7					

6.6 Number of Hopping Channel

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013			
Test Setup:	Control Control Control Power Power Power Poot Attenuator Temperature Cabnet Table			
	Remark: Offset=Cable loss+ attenuation factor.			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 			
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Mode:	Hopping transmitting with all kind of modulation			
Test Results:	Refer to Appendix A			

6.7 Time of Occupancy

/ 231							
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013						
Test Setup:	Control Computer Supply Power Supply Table RF test System System Instrument						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 						
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.						
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.						
Test Results:	Refer to Appendix A						



6.8 Band edge Measurements

Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Test Setup:	Control Control Control Power Supply Power Pot Table RF test System System Instrument						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type						
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type.						
Test Results:	Refer to Appendix A						

6.9 Conducted Spurious Emissions

/ 231							
Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Test Setup:	Control Control Control Power Power Poor Table RF test System Rystem Instrument Table						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type						
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type.						
Test Results:	Refer to Appendix A						
1 2 3 1							

6.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

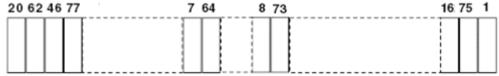
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

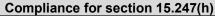

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

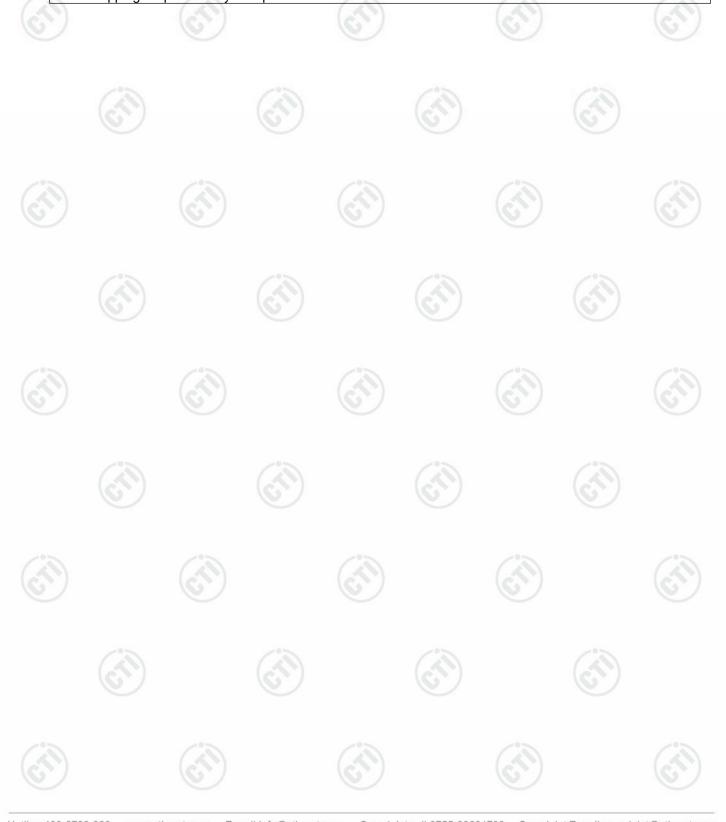
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.


According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.



According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

6.11 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
	Test Method:	ANSI C63.10: 2013								
	Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)							
		Frequency		Detector	RBW	VBW	Remark			
		0.009MHz-0.090MHz		Peak	10kHz	30kHz	Peak			
		0.009MHz-0.090MHz		Average	10kHz	30kHz	Average			
		0.090MHz-0.110MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	Desciver Setup	0.110MHz-0.490MHz		Peak	10kHz	z 30kHz	Peak			
	Receiver Setup:	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak			
		Above 1CUz		Peak	1MHz	3MHz	Peak			
		Above 1GHz		Peak	1MHz	10kHz	Average			
		Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)			
		0.009MHz-0.490MHz	24	100/F(kHz)	-	-	300			
		0.490MHz-1.705MHz	24000/F(kHz)		-	-/3	30			
		1.705MHz-30MHz		30	-	100	30			
		30MHz-88MHz		100	40.0	Quasi-peak	3			
	Limit:	88MHz-216MHz	150		43.5	Quasi-peak	3			
		216MHz-960MHz	200		46.0	Quasi-peak	3			
		960MHz-1GHz	500		54.0	Quasi-peak	3			
		Above 1GHz	500		54.0	Average	3			
		Note: 15.35(b), Unless of emissions is 20dB applicable to the expeak emission lev	3 abo	ove the maxinoment under t	num permi est. This p	itted average	emission limit			

