Safety Human Exposure

1.1 Radio Frequency Exposure Compliance

1.1.1 Electromagnetic Fields

RESULT:

Pass

Test Specification		
Test item	:	Roller Blind
Identification / Type No.	:	C2002
FCC ID	:	2A2WY-C2002
IC	:	27625-C2002
HVIN	:	C2002
Test standard	:	CFR47 FCC Part 2: Section 2.1091
		CFR47 FCC Part 1: Section 1.1310
		FCC KDB Publication 447498 v06
		FCC KDB Publication 865664 D01 v01r04
		FCC KDB Publication 865664 D02 v01r02
		RSS-102 Issue 5 March 2015

> FCC requirements

FCC requirement: Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 20cm normally can be maintained between the user and the device.

MPE Calculation Method according to KDB 447498 v06

Power Density: $S_{(mW/cm^2)} = PG/4\pi R^2$ or $EIRP/4\pi R^2$

Where:

- $S = power density (mW/cm^2)$
- P = power input to the antenna (mW)
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator
- R = distance to the center of radiation of the antenna (cm)

The nominal maximum conducted output power specified:

Zigbee: 11.30 dBm

From the peak RF output power, the minimum mobile separation distance, d=20 cm, as well as the antenna gain (1.00 dBi Zigbee), the RF power density can be calculated as below:

For Zigbee: $S_{(mW/cm^2)} = PG/4\pi R^2 = 0.003 \text{ mW/cm}^2$

Limits for Maximum Permissible Exposure (MPE) according to FCC Part 1.1310:

 $1.0\,\text{mW/cm}^2$

> **IC requirements:** The EUT shall comply with the requirement of RSS-102 section 2.5.2.

Exemption from Routine Evaluation Limits – RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where *f* is in MHz;

• RF exposure evaluation exempted power for Zigbee: 2.684 W

The nominal maximum conducted output power specified:

Zigbee: 11.30 dBm

Antenna Gain: 1.00 dBi for Zigbee

The Max. e.i.r.p. for Zigbee: 12.30 dBm = 0.017 W

Both e.i.r.p. for Zigbee are less than the RF exposure evaluation exempted power. So RF exposure evaluation is not required.

"RF Radiation Exposure Statement Caution: This Transmitter must be installed to provide a separation distance of at least 20 cm from all persons."