

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	AC 120V/60Hz
Test Mode :	TX b Mode		

Test CH	Limit(KHz)	Result						
	802.11b	a 802.11g 802.11n(HT20)		802.11n(HT 40) Limit(KHz)		Result		
Lowest	9006	15040	15950	35070				
Middle	9011	15100	15360	35070	>500	Pass		
Highest	9058	15030	15010	35080				

Test CH		Deput			
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Result
Lowest	13.987	16.254	17.501	35.734	
Middle	14.024	16.273	17.461	35.648	Pass
Highest	14.025	16.263	17.486	35.777	

1

Test plot as follows:

802.11b

802.11g

Middle channel

R

22

05:28:10 PM Aug 04, 202: Radio Std: None

-13.172 c

Radio Device: BTS

802.11n20

802.11n40

Highest channel

(

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

8.1 APPLIED PROCEDURES/LIMIT

	FCC Part15 (15.247) , Subpart C							
Section	Section Test Item		Frequency Range (MHz)	Result				
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS				

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

+86-400-000-9970

1

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	AC 120V/60Hz

	Test CU		Linsit/dDns)	Decult				
$\langle $		802.11b	1b 802.11g 802.11n(HT20) 802.11n(HT40)				Result	
	Lowest	12.111	11.568	10.904	8.904			
	Middle	12.102	11.435	10.521	8.883	30.00	Pass	
	Highest	12.121	11.417	10.341	8.874			

Project No.: ZKT-2108094049E Page 46 of 54

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

9.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Test plot as follows:

802.11b

Project No.: ZKT-2108094049E Page 48 of 54

Test mode:

Test mode:

802.11n(HT20)

Highest channel

802.11n(HT40)

802.11b

Lowest channel

Keysight Spec	ctrum Analyzer - Swe	pt SA						
R enter Fr	eq 13.2650	AC 00000 GHz PNC IFGa): Fast ++-	Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Typ Avg Hold	e: Log-Pwr d: 10/10	05:04:3 T	6 PM Aug 04, 2 RACE 1 2 3 4 TYPE M
dB/div	Ref Offset 2.0 Ref 20.00 d	1 dB Bm					Mkr1 2 -0.	.412 GI 835 dB
	_1							
10								
								-28.99
		2						-
a monto	and anna lossed	Lammaline	marian	and shares and a start of the s	مىرى مەمەر بەرمەر مىلار مىلار مەمەر مىلار مەمەر مە	w.sundur.sudad		
art 0.03 es BW	GHz 100 kHz		#VBW	300 kHz		Swe	Stop ep 2.530	26.50 G 6 (1001 p
MODE TRI	C SCL	х	Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
N 1		25.785 GHz	-42.445 di	3m 3m				
N 1 N 1	1 T	4.848 GHz 7.124 GHz	-57.288 di -56.232 di	3m 3m				
N 1	f	9.692 GHz	-57.547 di	3m	++			
			_	,m	(_	_	
					L STATUS			

Middle channel

Keysight Spe R	ctrum Ar RF	salyzer - Swept SA 50 Ω AC		SE	NSE:PULSE		ALIGN AUTO	wpe: Log-Pwr	05:06:0 T	7 PM Aug 04, 20
enter Fr	eq 1	5.2650000	JU GHZ F	NO: Fast Gain:Low	Trig: Free F #Atten: 30	tun dB	AvgiH	old: 10/10		
) dB/div	Ref (Ref	Dffset 2.02 dB 20.00 dBm							Mkr1 2 -0	.439 GH 195 dBr
0.0	_	1								
00	-									
.0										-29.03 df
										4
		3	A	5					manne	unowand
	here	manne	alonador along	martera	and a superior	يەلىيەلە	and the second states	and a second second		
art 0.03	GHz								Stop	26.50 GH
kes BW	100 k	Hz		#VB	W 300 KHZ			SI	weep 2.530	s (1001 pt
R MODE TR	C SCL	X	2.439 GHz	-0.195	dBm	TION	FUNCTION WIDTH		FUNCTION VALUE	
2 N 1 3 N 1	+		26.103 GHz 4.900 GHz	-42.150 -57.590	dBm dBm					
4 N 1 5 N 1	1		7.283 GHz 9.824 GHz	-56.225	dBm dBm					
1										
3	_	_		_	m	_	STAT	5		,
	-					_	Nonite			

Highest channel

	trum Analyzer - Swept S	A.					
R	RF 50 Ω A		SENSE:P	JLSE	ALIGN AUTO	u Lea Dua	05:07:53 PM Aug 04,
enter Fr	eq 13.265000	PN IFG	0: Fast 🛶 T ain:Low #	rig: Free Run Atten: 30 dB	Avg Hold	: 10/10	TYPE MWW
I0 dB/div	Ref Offset 2.03 d Ref 20.00 dBr	iB m					Mkr1 2.465 G 0.769 dE
og							
10.0	• ¹						
0.00							
10.0							
20.0							
30.0							-29.10
40.0							
50.0		∧ <mark>3 ∧4</mark>					and the second
						and the second	
80.0	and week man and	Seventermone	marmas	Marah	and a second		
60.0 	and the stranger and	Seventer monther of	maline	نامهره والمراجعين	and a stand of the second s		
60.0 	and a state of the	Seventinen June	amala mas	and a stand of the	س ^{وور} بالمراجعة من المراجع من الم		
60.0 70.0 Start 0.03	GHz	Seventorion Inco	under for	and a second second			Stop 26.50 G
60.0	GHz 100 kHz	Setter konson Jan ja	#VBW 3	00 kHz		Swe	Stop 26.50 G ep 2.530 s (1001 p
60.0 70.0 Start 0.03 Res BW 1	GHz 100 kHz	X	#VBW 3	00 kHz	FUNCTION WIDTH	Swe	Stop 26.50 G ep 2.530 s (1001 p
60.0	GHz 100 kHz	× 2465 GHz 26 400 CH	#VBW 3	00 kHz	FUNCTION WIDTH	Swe	Stop 26.50 G eep 2.530 s (1001 p unction value
600	GHz 100 kHz	× 2.465 GHz 26.129 GHz 5.086 GHz	#VBW 3 7 0.769 dBn -42.596 dBn -56.575 dBn	00 kHz	FUNCTION WIDTH	Swe	Stop 26.50 G eep 2.530 s (1001 p unction value
600 700 Fres BW 1 1 N 1 2 N 1 3 N 1 4 N 1	GHz 100 kHz SCL f f f	× 2.465 GHz 26.129 GHz 5.086 GHz 7.442 GHz	#VBW 3 0.769 dBn 42.596 dBn -56.756 dBn -56.756 dBn	00 kHz	FUNCTION WIDTH	Swe	Stop 26.50 G eep 2.530 s (1001 p unction value
600 500 500 500 500 500 500 500	GHz 100 kHz SCL f f f f	× 2.465 GHz 26.129 GHz 5.086 GHz 7.442 GHz 9.692 GHz	#VBW 3 • • • • • • • • • • • • •	00 kHz	FUNCTION (MDTH)	Swe	Stop 26.50 G eep 2.530 s (1001 p unction value
600 Start 0.03 0 (Res BW 1 MKR MODE TRO 1 N 1 2 N 1 3 N 1 5 N 1 6 N 1 7	GHz 100 kHz	X 2.465 GHz 26.129 GHz 5.086 GHz 7.442 GHz 9.692 GHz	#VBW 3 • • • • • • • • • • • • •	00 kHz	FUNCTION (MDTH)	Swe	Stop 26.50 G sep 2.530 s (1001 p unction value
600 700 Start 0.03 (Res BW 1 1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6 7 8	GHz GHz 100 kHz Cl SCL f f f f	× 2.465 GHz 26.129 GHz 5.086 GHz 7.442 GHz 9.692 GHz	#VBW 3 0.769 dBn -42.596 dBn -56.575 dBn -56.756 dBn -57.392 dBn	00 kHz	FUNCTION WIDTH	Swe	Stop 26.50 G rep 2.530 s (1001 p unction value
600 700 6tart 0.03 (4Res BW 1 4Res BW 1 1 N 1 2 N 1 2 N 1 4 N 1 5 N 1 6 7 8 9	GHZ 100 KHZ C SCL f f f f	× 2.465 GHz 26.129 GHz 5.086 GHz 7.442 GHz 9.692 GHz	#VBW 3 7 0.769 dBn 42.596 dBn -56.756 dBn -56.756 dBn -57.392 dBn	00 kHz FUNCTION		Swe	Stop 26.50 G rep 2.530 s (1001 p unction value
500	GHZ 100 kHZ	X 2.465 GHz 26.129 GHz 5.086 GHz 7.442 GHz 9.692 GHz	#VBW 3 • 769 dBn -42.596 dBn -56.756 dBn -57.392 dBn	00 KHz	Function width	Swe	Stop 26.50 G rep 2.500 s (1001 p unction value
600 600 700 600 Glart 0.03 (creation of the second of t	GHz 100 kHz 21 SCL f f f f	× 2.465 GHz 26.129 GHz 5.086 GHz 7.442 GHz 9.692 GHz	#VBW 3 0,769 dBn 42.596 dBn -42.596 dBn -56.576 dBn -57.392 dBn	OO KHZ		Swe	Stop 26.50 C eep 2.530 s (1001 p UNCTION VALUE

Shenzhen ZKT Technolgy Co., Ltd.

nter Freq 13.265000000 GHz

Ref Offset 2.01 dB Ref 20.00 dBm

PNO: Fast ---- Trig: Free Run Gain:Low #Atten: 30 dB

#VBW 300 kH;

42.966 dBn -57.521 dBn -55.786 dBn

2.412 GHz 6.500 GHz 4.795 GHz 7.362 GHz 9.692 GHz

Highest channel

R																		
enter	Fr	eq 1	3.26500	AC	GHz	PNO: Fa	ist ⊶ ow	- Tri #A	g: Free tten: 30	Run dB	AL	Avg Avg H	Type: L told: 1	.og-Pwr 0/10		05:	19:34 PM TRACE TYPE DE	1 Aug 04, 2 E 1 2 3 4 E M
0 dB/di	v	Ref C Ref	offset 2.03 20.00 dl	3 dB Bm												Mkr	1 2.40 -5.36	65 G 3 dE
			1															
		Ì																
50.0		, la	Anna	23	04	-	25	man	manut	mun	رومیار (ایسرو	, again a share	مودرور		m	المراسلين حال	as ma	and and a second
	100		-															
70.0																		
tart 0. Res B	.03 W 1	GHz 100 k	Hz				#VE	3W 30	0 kHz						Swee	S p 2.53	top 26 30 s (1	5.50 G 1001 p
tart 0. Res B	.03 W 1	GHz IOO k	Hz	X			#VE Y	3W 30	0 kHz Fun	CTION	FUNCT	'ION WDT	н		Swee	S p 2.53	top 26 30 s (1	5.50 G 1001 p
tart 0. Res B	.03 W 1 E TRO	GHz IOO k SCL f	Hz	× 2.	465 GH	2	#VE -5.363	3W 30 3 dBm	O KHZ	CTION	FUNCT	TIDN WIDT	H		Swee	S p 2.53	top 26 30 s (1	5.50 G 1001 p
tart 0. Res B RR MODE 1 N 2 N 3 N	.03 W 1 = TRC = 1 1	GHz IOO k SCL f f	Hz	× 2. 24. 4.	465 GH 806 GH 900 GH	z z	#VE -5.363 42.660 -56.800	3W 30 3 dBm 5 dBm 5 dBm	0 kHz FUN	CTION	FUNC1	'ION WIDT	H		Swee	S p 2.53	top 26 80 s (1	5.50 G 1001 p
100 Res B 1 N 2 N 3 N 4 N 5 N 6	.03 W 1 E TRC 1 1 1	GHz 100 k f f f f f	Hz	× 24. 24. 7. 9.	465 GH 806 GH 900 GH 256 GH 665 GH	z z z z z z	#VE -5.363 42.666 -56.806 -56.869 -57.017	3 dBm 5 dBm 5 dBm 9 dBm 7 dBm	0 kHz Fun	CTION	FUNCT	'ION WIDT			Swee	S p 2.53	top 26 80 s (1	5.50 G 1001 p
Itart 0. Res B IN 1 N 2 3 4 5 6 7 8 9	.03 W 1 E TRC 1 1 1	GHz IOO k f f f f	Hz	× 24. 4. 7. 9.	465 GH 806 GH 900 GH 256 GH 665 GH		#VE -5.363 42.666 -56.806 -56.869 -57.017	3 dBm 5 dBm 5 dBm 7 dBm 7 dBm	0 kHz FUN	CTION	FUNCT	'ION WIDT	H		Swee	S p 2.53	top 26 30 s (1 .ue	6.50 G
Toto Res B Start 0. Res B N N 1 N 2 N 3 N 4 N 5 N 6 7 8 9 10 1		GHz IOO k F F F F	Hz	× 2. 4. 7. 9.	465 GH 806 GH 900 GH 256 GH 665 GH		#VE -5.363 42.666 56.806 -56.869 -57.017	3 dBm 3 dBm 3 dBm 3 dBm 7 dBm 7 dBm	0 kHz FUN	CTION	FUNCT	'ION WIDT			Swee	S p 2.53	top 20 30 s (1 .UE	3.50 G

Lowest channel

Middle channel

i K	eysight	Spec	trum A	Analyzer - Swept SA										
UU I	R		RF	50 Q AC			SEN	SE:PULSE		ALIC	IN AUTO		05:20:	39 PM Aug 04, 2021
Ce	nter	Fre	ed ,	13.2650000	00 GHz	PNO: Fast FGain:Low		Trig: Fi #Atten:	ee Run 30 dB		Avg Type Avg Hold	: Log-Pwr : 10/10		TYPE NNNNN
10 (B/di	v	Ref Ref	Offset 2.02 dE 20.00 dBm	5								Mkr1	2.439 GHz I.299 dBm
10									Ť					
0.0	Ľ			1										
	1													
-10														
-200														1000
-200														<mark>2</mark>
-400					2 4		. 6							moment
-50	-			Ŷ.	9		2	a sabara	un	manner	stream also	and a second	No Magandrove	
-60.1	Notes	Sec. 1				Constant of the second								
-70.														
Sta #R	art 0. es B	03 W 1	GHz 00	: kHz		;	#VBW	/ 300 k	Hz			SI	Sto veep 2.530	p 26.50 GHz s (1001 pts)
MKR	MODE	TRC	SCL)	(Y		UNCTION	FUNCTION	ON WIDTH		FUNCTION VALUE	·
1 2	N	1	+		2.439 GH	-42	.299 d	Bm Bm						
3	Ň	1	1		5.006 GH	-56	.722 d	Bm						
5	Ň	1	ł		9.665 GH	-56	.979 d	Bm						=
6		-	-											
8														
10														
11														-
MSG	_	-	-				_		_	0	STATUS			
	_	_	_				_				•			

Avg Type: Log-Pwr Avg|Hold: 10/10

> Stop 26.50 c 2.530 s (1001

NO: Fast --- Trig: Free Run Gain:Low #Atten: 30 dB

#VBW 300 kH;

2.412 GHz 6.394 GHz 5.006 GHz 7.415 GHz 9.718 GHz

nter Freq 13.265000000 GHz

Ref Offset 2.01 dB Ref 20.00 dBm

Highest channel

K											(CC) (CC)
enter	Free	q 13.26	5000000	GHz PI	NO: Fast -+ Sain:Low	Trig:	Free Run n: 30 dB	ALIGN AUTO Avg Typ Avg Hold	e: Log-Pwr d: 10/10	05:23:2 T	H PM Aug 04, RACE 2 3 TYPE M
0 dB/di	F V	Ref Offset Ref 20.0	2.03 dB 0 dBm							Mkr1 2 -4	.465 G .467 dE
		▲ 1									
											-32.94
		Moran	and any	menter		grande	and produce	from and and a second	- and and and and	السليم والماسية	amuch
w											
tart 0	02.0	Hz			10.0	31AC 300	147		0.0	Stop	26.50 G
Res B	W 10	0 kHz			#VI	500 000	NT12		51	eep 2.530	5 (1001)
Res B	W 10	O KHZ	X		# V I	500	FUNCTION	FUNCTION WIDTH	51	FUNCTION VALUE	5 (1001)
Res B	W 10		× 2.4 25.4	165 GHz	4.46 -42.39	7 dBm	FUNCTION	FUNCTION WIDTH	51	FUNCTION VALUE	5 (1001)
Res B 1 N 2 N 3 N	E TRC 1	IO KHZ	× 25.4 5.1	165 GHz 168 GHz 112 GHz	#VE -4.46 -42.39 -57.09	7 dBm 6 dBm 3 dBm	FUNCTION	FUNCTION WIDTH	51	FUNCTION VALUE	5 (1001)
Res B Res B N N N N N N N N	E TRC : 1 1 1		× 25.4 5.7 7.2	465 GHz 168 GHz 112 GHz 256 GHz 392 GHz	4.46 -42.39 -57.09 -56.54	7 dBm 6 dBm 3 dBm 5 dBm	FUNCTION	FUNCTION WIDTH	510	FUNCTION VALUE	5 (1001)
Res B 1 N 2 N 3 N 4 N 5 N 6	E TRC 1	SCL f f f f f f	× 25.4 5.7 7.1 9.0	165 GHz 168 GHz 112 GHz 256 GHz 392 GHz	#VI -4.46 -42.39 -57.09 -56.54 -56.60	7 dBm 6 dBm 3 dBm 5 dBm 5 dBm	FUNCTION	FUNCTION WIDTH	5₩	FUNCTION VALUE	5 (1001)
Res B 1 N 2 N 3 N 4 N 5 N 6 7	.03 G W 10 E TRC : 1 1 1	800 kHz 6 7 7 7 7 7 7	× 25.4 5.7 7.2 9.0	165 GHz 168 GHz 112 GHz 256 GHz 392 GHz	#VI -4.46 -42.39 -57.09 -56.54 -56.60	7 dBm 6 dBm 3 dBm 5 dBm 5 dBm	FUNCTION	FUNCTION WIDTH	51	FUNCTION VALUE	5 (1001)
Res B 1 N 2 N 3 N 4 N 5 N 6 7 8 9	E TRC :		X 25.4 5.4 7.2 9.0	465 GHz 68 GHz 112 GHz 256 GHz 592 GHz	#VI -4.46 -42.39 -57.09 -56.54 -56.60	7 dBm 6 dBm 3 dBm 5 dBm 5 dBm	FUNCTION	FUNCTION WIDTH	514	FUNCTION VALUE	5 (1001)
Res B NR MODI 1 N 2 N 3 N 4 N 5 N 6 7 8 9 9			× 25.4 5.7 7.1 9.0	465 GHz 168 GHz 12 GHz 256 GHz 592 GHz	#VI -4.46 -42.39 -57.09 -56.54 -56.60	7 dBm 6 dBm 3 dBm 5 dBm 6 dBm	FUNCTION	FUNCTION WIDTH	514	FUNCTION VALUE	5 (1001)
Res B 1 N 2 N 3 N 4 N 5 N 6 7 8 9 9	E TRC :	SCL f f f f f f f	× 25.4 5.7 9.0	465 GHz 168 GHz 12 GHz 256 GHz 392 GHz	#VI -4.46 -42.39 -56.54 -56.60	7 dBm 6 dBm 3 dBm 5 dBm 5 dBm	FUNCTION	FUNCTION WIDTH	SW	PUNCTION VALUE	5 (1001)

Lowest channel

Ð

Middle channel

- K	eysight	Spec	trum A	knalyzer - Swept SA										
	R		RF	50 Q AC			SENSE	PULSE		AL	IGN AUTO		05:28:4	19 PM Aug 04, 2021
Ce	nter	Fr	ed ,	13.265000	000 GHz	PNO: Fast IFGain:Low		Trig: Free #Atten: 30	Run dB		Avg Ty Avg Hol	d: 10/10	,	TYPE MUSEUM
10 (:B/di	v	Ref Ref	Offset 2.02 d 20.00 dBn	3. 1								Mkr1 2 -7	.439 GHz .203 dBm
Log									Y I					
10.	"													
0.0	9													
-10.														
-20)														
-38.														-38.59 🔬
-40.1														mark
-50.1	0 —			<u> </u>	³ ∂ ⁴		<u>}</u> 5				- Aller	as and	man man and	
-60.)	- and a	a.m	/لمن	were seen read	elver and a second s	- month	henne	and a start	alla tra	,	_			
-70.														
														00.50.011-
sta #R	es B	W 1	GH2 00	kHz		;	#VBW	300 kHz				Sv	stop veep 2.530	s (1001 pts)
MKR	MODE	TRC	SCL		x	1	Y	FUN	CTION	FUNC	FION WIDTH		FUNCTION VALUE	
1 2	N	1	1		2.439 GH	z -7	203 dE	im .						
3	Ň	1	1		5.059 GH	z -57	.771 dE	m						
45	Ň	1	Ŧ		9.718 GH	z -55 z -56	5.912 dE 5.892 dE	sm Sm						=
6														
8														
9		-	-											
11														-
uro	-	_	_						_		1 -			
NO3											LO SIATOS			

Avg Type: Log-Pwr Avg|Hold: 10/10

PNO: Fast ---- Trig: Free Run Gain:Low #Atten: 30 dB

#VBW 300 kH;

2.412 GHz 4.832 GHz 5.033 GHz 7.177 GHz 9.771 GHz

R RF 50 Ω AC nter Freq 13.265000000 GHz

> Ref Offset 2.02 dB Ref 20.00 dBm

Highest channel

Keysight Sp	ectrum A	nalyzer - Swept SA											
R	RE	50 Q AC		9	ENSE:PUI	.SE		ALIGN A	JTO			05:30:2	7 PM Aug 04, 20
Center F	req 1	3.2650000	00 GHz	PNO:Fast 🕶 FGain:Low	- Tri #At	g: Free F ten: 30	Run dB	A	g Hold:	Log-Pwr 10/10		т	TYPE MWWWW DET PNNN
10 dB/div	Ref Ref	Offset 2.02 dB 20.00 dBm										Mkr1 2 -8.	.439 GH 118 dB
10.0													
0.00		1											
-10.0													
30.0													-26.50 8
40.0			. 4	5									Junouper
-50.0	أرديهم	mannah	urmedie	and a	have	www	-	^{مر} يولية _{ال} اردين الم	handda	alour and and		and all the	
-70.0													
Start 0.03 #Res BW	3 GHz 100	kHz		#VE	3W 30	0 kHz				s	weep	Stop 2.530	26.50 GH s (1001 pt
MKR MODE T	RC SCL	×		Y		FUNC	TION	FUNCTION V	NDTH		FUNC	TION VALUE	
1 N	1		2.439 GHz	-8.11	8 dBm								
3	1		5 086 GHz	-57 44	3 dBm								
4 N	I F		7.309 GHz	-55.68	4 dBm								
5 N	f f		9.665 GHz	-57.45	6 dBm								
7													
8													
9													
11													
					_	m			_				
00	_				-	-	_	Ú s	TATUS				
7.4.1													

10. ANTENNA REQUIREMENT

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is External Antenna1, the best case gain of the antenna is 0dBi, reference to the appendix II for details

Project No.: ZKT-2108094049E Page 54 of 54

R

11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

******** END OF REPORT *******

