

Global United Technology Services Co., Ltd.

Report No.: GTS2023090272F01

TEST REPORT

Applicant: ShenZhen FLYSKY Technology Co.,Ltd

Address of Applicant: 16F, Huafeng Building, No. 6006 Shennan Road, Futian

District, Shenzhen, Guangdong, China

Manufacturer: ShenZhen FLYSKY Technology Co.,Ltd

Address of 16F, Huafeng Building, No. 6006 Shennan Road, Futian

Manufacturer: District, Shenzhen, Guangdong, China

Factory: Dongguan Flysky RC Model technology Co.,Ltd

Address of Factory: West building 3, HuangjinyuanInd Park, Qiaoli North Gate,

Changping Town, Dongguan, China

Equipment Under Test (EUT)

Product Name: Automatic Frequency Hopping Digital System

Model No.: Noble NB4+

Trade Mark: FLYSKY

FCC ID: 2A2UNNB4PLUS00

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: September 27, 2023

Date of Test: September 28, 2023-October 24, 2023

Date of report issued: October 24, 2023

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 38

2 Version

Version No.	Date	Description
00	October 24, 2023	Original

Prepared By:	Joseph Cu	Date:	October 24, 2023	
	Project Engineer			
Check By:	Johnson Lund	Date:	October 24, 2023	
	Reviewer			

3 Contents

			Page
1	cov	ZER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	7
	5.3	TEST FACILITY	7
	5.4	TEST LOCATION	
	5.5	DESCRIPTION OF SUPPORT UNITS	7
	5.6	DEVIATION FROM STANDARDS	
	5.7	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.8	ADDITIONAL INSTRUCTIONS	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
•			
	7.1	ANTENNA REQUIREMENT	
	7.2 7.3	CONDUCTED EMISSIONS	
	7.4	20DB EMISSION BANDWIDTH	
	7.5	CARRIER FREQUENCIES SEPARATION	
	7.6	HOPPING CHANNEL NUMBER	
	7.7	DWELL TIME	
	7.8	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
	7.8.1		
	7.8.2		
8		T SETUP PHOTO	
9			
9	EUT	CONSTRUCTIONAL DETAILS	38

4 Test Summary

Test Item	Section	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz-30MHz	3.1dB	(1)			
Radiated Emission	30MHz-200MHz	3.8039dB	(1)			
Radiated Emission	200MHz-1GHz	3.9679dB	(1)			
Radiated Emission	1GHz-18GHz	4.29dB	(1)			
Radiated Emission	18GHz-40GHz	3.30dB	(1)			
AC Power Line Conducted Emission 0.15MHz ~ 30MHz 3.44dB (1)						
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.			

5 General Information

5.1 General Description of EUT

Product Name:	Automatic Frequency Hopping Digital System
Model No.:	Noble NB4+
Serial No.:	RD1001512
Test sample(s) ID:	GTS2023090272-1
Sample(s) Status	Engineer sample
Operation Frequency:	2402.6MHz~2479.4MHz
Channel numbers:	43
Modulation method:	FHSS
Modulation technology:	GMSK
Antenna Type:	Integral antenna
Antenna gain:	2.21dBi
Power supply:	DC 3.7-4.2V 3450mAh Rechargeable Battery
	Or
	DC 5V 1A 4300mAh by external Battery
	The battery is charged via USB DC5V

Remark:

- 1. Antenna gain information provided by the customer
- 2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.
- 3. The system works in the frequency range of 2402.6MHz to 2479.4MHz. This band has been divided to 43 independent channels. Each radio system uses 32 different channels; the minimum channel separation is ≥1.2MHz. By using various switch-on times, hopping scheme and channel frequencies, the system can guarantee a jamming free radio transmission. Pre-testing all radio systems, this radio system recorded in the report is the worst mode. The channel list is below.

Operation F	Operation Frequency each of channel									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
1	2402.6	12	2422.4	23	2442.2	34	2463.2			
2	2404.4	13	2424.2	24	2445.2	35	2465			
3	2406.2	14	2426	25	2447	36	2466.8			
4	2408	15	2427.8	26	2448.8	37	2468.6			
5	2409.8	16	2429.6	27	2450.6	38	2470.4			
6	2411.6	17	2431.4	28	2452.4	39	2472.2			
7	2413.4	18	2433.2	29	2454.2	40	2474			
8	2415.2	19	2435	30	2456	41	2475.8			
9	2417	20	2436.8	31	2457.8	42	2477.6			
10	2418.8	21	2438.6	32	2459.6	43	2479.4			
11	2420.6	22	2440.4	33	2461.4					

The test frequencies are below:

Channel	Frequency
The lowest channel	2402.6MHz
The middle channel	2440.4MHz
The Highest channel	2479.4MHz

5.2 Test mode

Transmitting mode Keep the EUT in transmitting mode.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing.

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All other tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None.

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

5.8 Additional Instructions

Software (Used for test) from client

Built-in by manufacturer, power set default.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radiated Emission:								
Item	Test Equipment			Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024		
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023		
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024		
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024		
11	Horn Antenna (18- 26.5GHz)	1	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023		
12	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023		
13	FSV-Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024		
14	Amplifier	1	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024		
15	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS668	Dec. 20, 2022	Dec.19, 2023		
16	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	April 14, 2023	April 13, 2024		
17	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024		
18	RE cable 1	GTS	N/A	GTS675	July 31. 2023	July 30. 2024		
19	RE cable 2	GTS	N/A	GTS676	July 31. 2023	July 30. 2024		
20	RE cable 3	GTS	N/A	GTS677	July 31. 2023	July 30. 2024		
21	RE cable 4	GTS	N/A	GTS678	July 31. 2023	July 30. 2024		
22	RE cable 5	GTS	N/A	GTS679	July 31. 2023	July 30. 2024		
23	RE cable 6	GTS	N/A	GTS680	July 31. 2023	July 30. 2024		
24	RE cable 7	GTS	N/A	GTS681	July 31. 2023	July 30. 2024		
25	RE cable 8	GTS	N/A	GTS682	July 31. 2023	July 30. 2024		

Con	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024			
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 14, 2023	April 13, 2024			
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 19, 2023	April 18, 2024			
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 14, 2023	April 13, 2024			
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 14, 2023	April 13, 2024			
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 14, 2023	April 13, 2024			
10	Antenna end assembly	Weinschel	1870A	GTS560	April 14, 2023	April 13, 2024			

RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024
10	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 04, 2022	Nov. 03, 2023

Ger	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

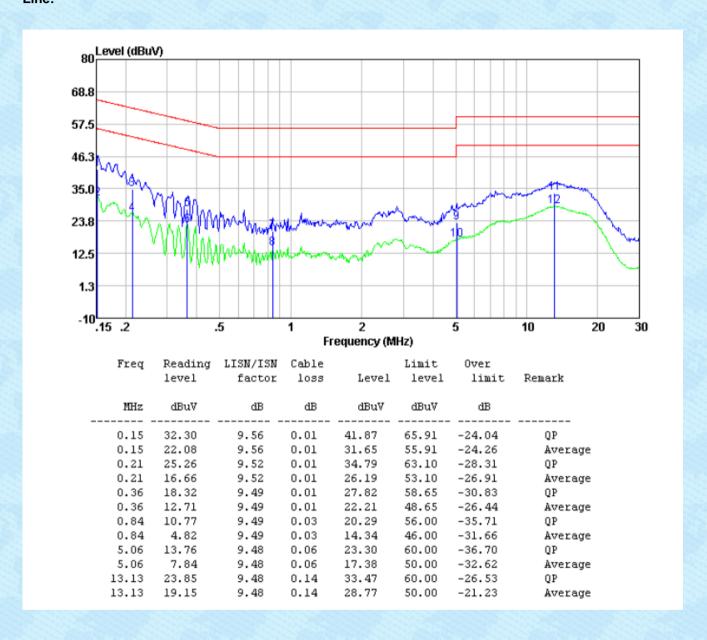
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

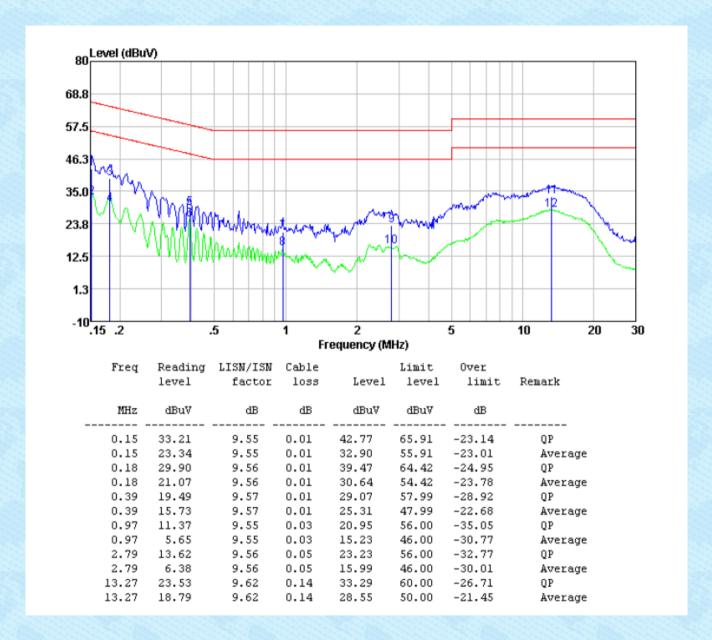
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is 2.4G On-board antenna, reference to the appendix II for details.

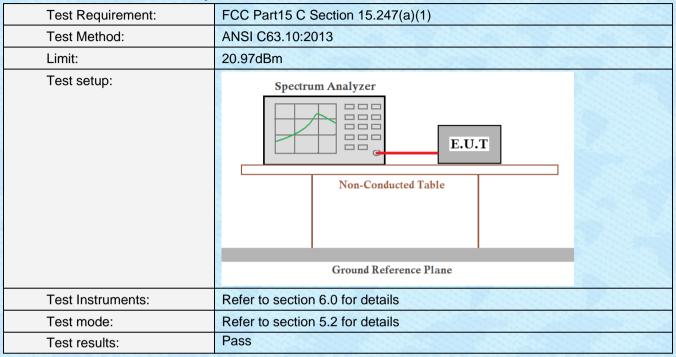

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto	
Limit:	Frequency range (MHz)	Limit	(dBuV)
	Quasi-peak		Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5 5-30	56 60	46
	* Decreases with the logarithr		30
Test setup:	Reference Plane		
	LISN 40cm LISN 80cm LISN AUX Equipment E.U.T Filter AC power Test table/Insulation plane EMI Receiver		AC power
Test procedure:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a		
	50ohm/50uH coupling impedance for the measuring equipment.2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).		
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1		
Test voltage:	AC 120V, 60Hz		
Test results:	Pass		


Measurement data:

Pre-scan all test modes, found worst case at 2402.6MHz, and so only show the test result of it **Line:**

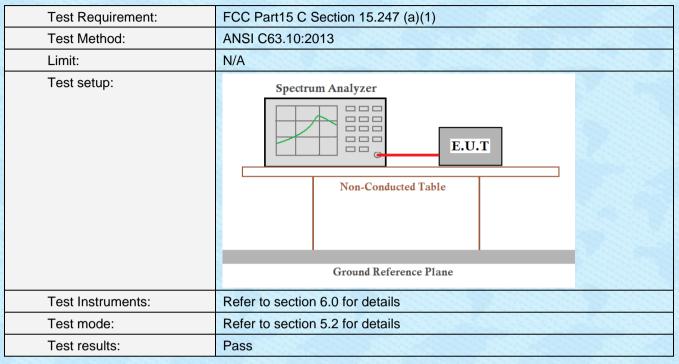
Neutral:



Motes

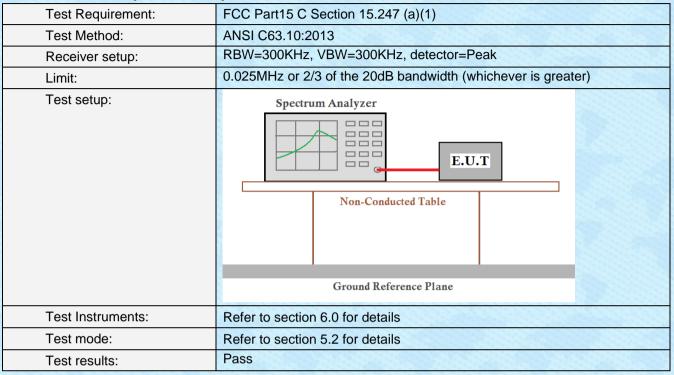
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power



Measurement Data: The detailed test data see Appendix for 2.4G.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 14 of 38

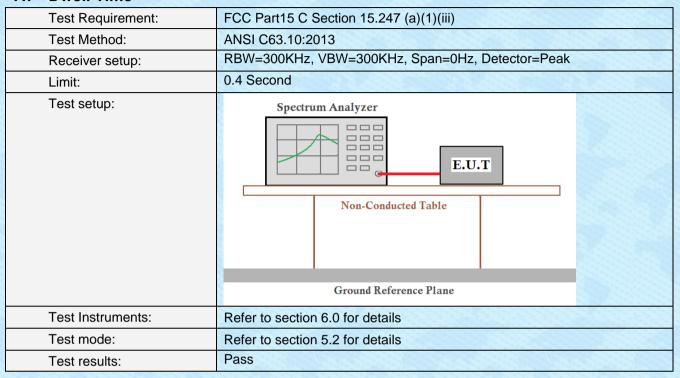

7.4 20dB Emission Bandwidth

Measurement Data: The detailed test data see Appendix for 2.4G.

7.5 Carrier Frequencies Separation

Measurement Data: The detailed test data see Appendix for 2.4G.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=300kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data: The detailed test data see Appendix for 2.4G.

7.7 Dwell Time

Measurement Data: The detailed test data see Appendix for 2.4G.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.8 Spurious Emission in Non-restricted & restricted Bands

7.8.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d) ANSI C63.10:2013		
Test Method:			
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data: The detailed test data see Appendix for 2.4G.

7.8.2 Radiated Emission Method

7.8.2 Radiated Emission Method						
Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz					
Test site:	Measurement Distar	nce: 3	Bm			
Receiver setup:	Frequency	D	etector	RBW	VBW	Value Value
	9KHz-150KHz	Qu	asi-peak	200Hz	600H	z Quasi-peak
	150KHz-30MHz	Qu	asi-peak	9KHz	30KH	z Quasi-peak
	30MHz-1GHz		asi-peak	120KHz		
	Above 1GHz		Peak	1MHz	3MHz	
			Peak	1MHz	10Hz	
	Note: For Duty cy cycle < 98%					
Limit: (Spurious Emissions)	Frequency		Limit (u\	//m)	Value	Measurement Distance
(4)	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	QP	300m
	0.490MHz-1.705M	lHz	24000/F(I	(Hz)	QP	30m
	1.705MHz-30MH	lz	30		QP	30m
	30MHz-88MHz		100		QP	
	88MHz-216MHz	Z	150		QP	
	216MHz-960MH	z	200		QP	3m
	960MHz-1GHz		500		QP	O.III
	Above 1GHz		500		verage	
			5000		Peak	
Test setup:	Below 30MHz					
	Tum Table Im Receiver					

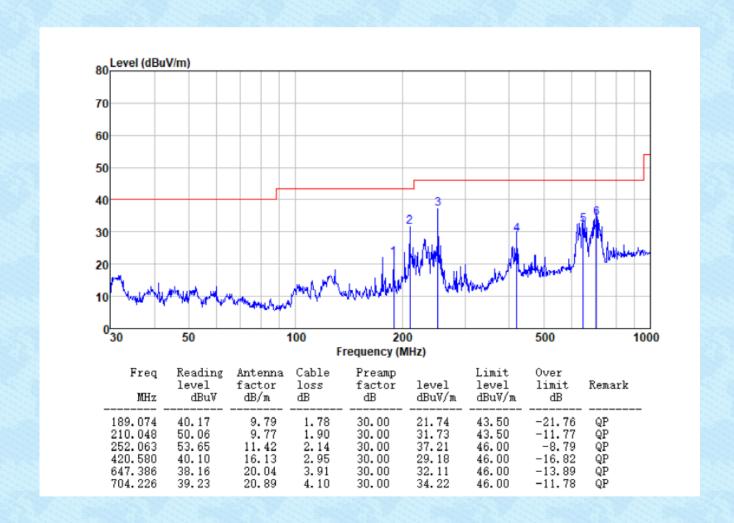
Report No.: GTS2023090272F01 Test Antenna EUT Turn Table < 80cm Turn Tables Receiver-Preamplifier. Above 1GHz Test Antenna+ < 1m ... 4m > FUT. Tum Table <150cm> Receiver-Preamplifier+ Test Procedure: The EUT was placed on the top of a rotating table (0.8 meters for below 1GHz and 1.5meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.8 for details Test mode: Refer to section 5.2 for details Temp. / Hum. Temp.: 25 °C Humid .: 52% Press.: 1 012mbar

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

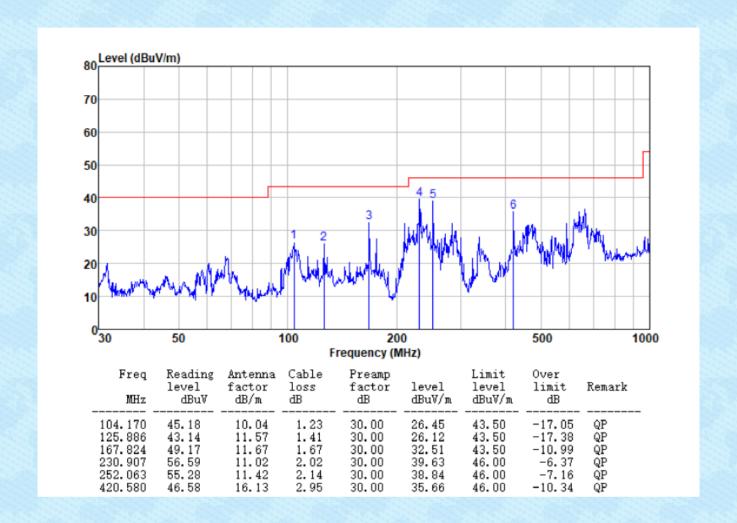
	Report No.: GTS2023090272F01
Test results:	Pass

Remark:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

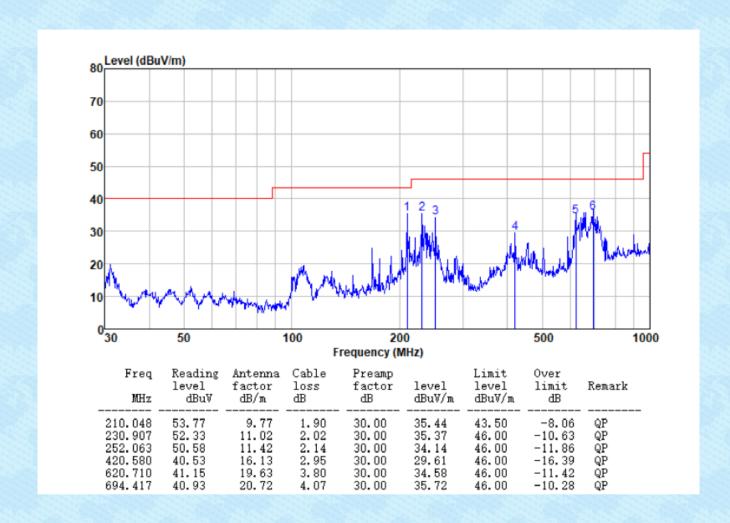

Measurement data:

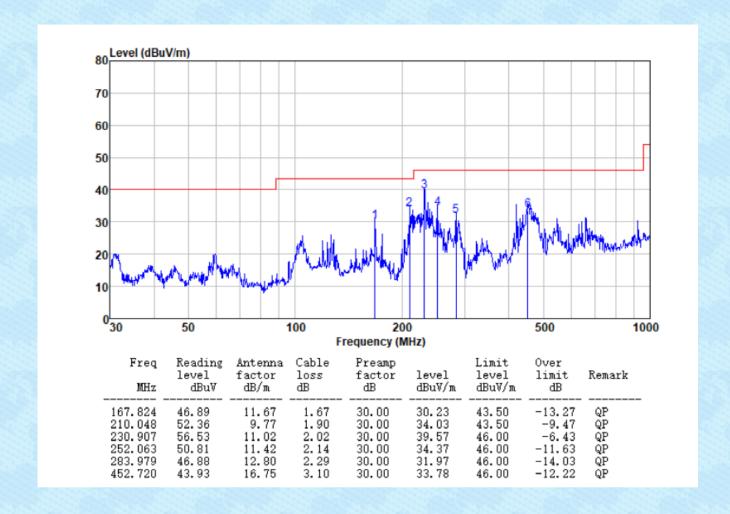
■ Below 30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

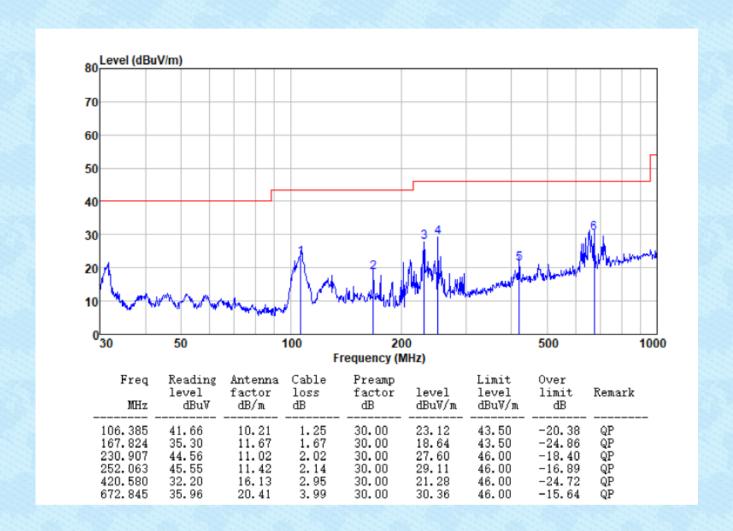
30MHz ~ 1GHz

Test channel: Lowest Polarization: Horizontal

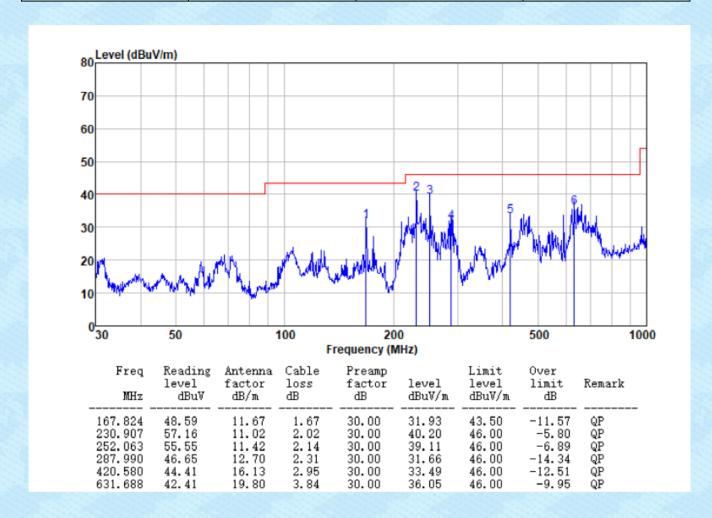




	Test channel:	Middle	Polarization:	Horizontal	
--	---------------	--------	---------------	------------	--

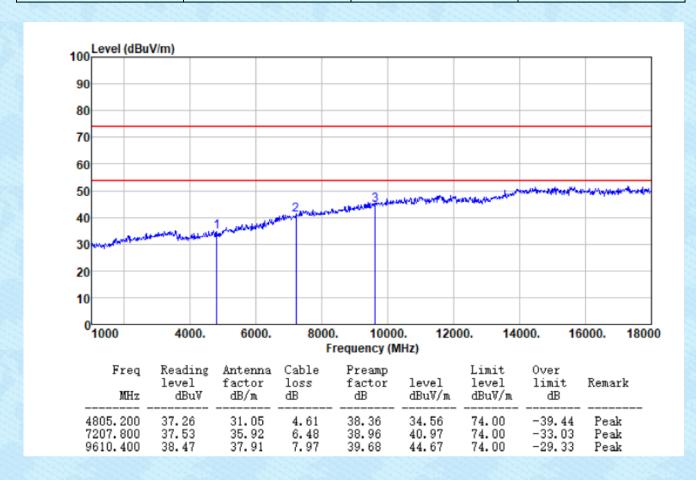

Test channel:	Middle	Polarization:	Vertical
---------------	--------	---------------	----------

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

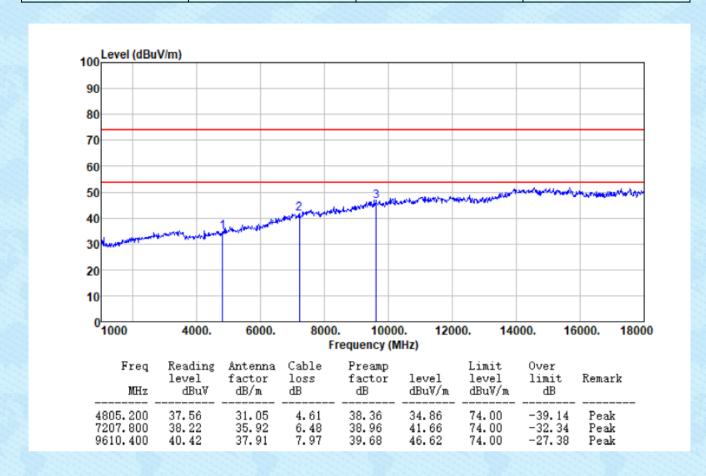


	Test channel:	Highest	Polarization:	Horizontal	
--	---------------	---------	---------------	------------	--

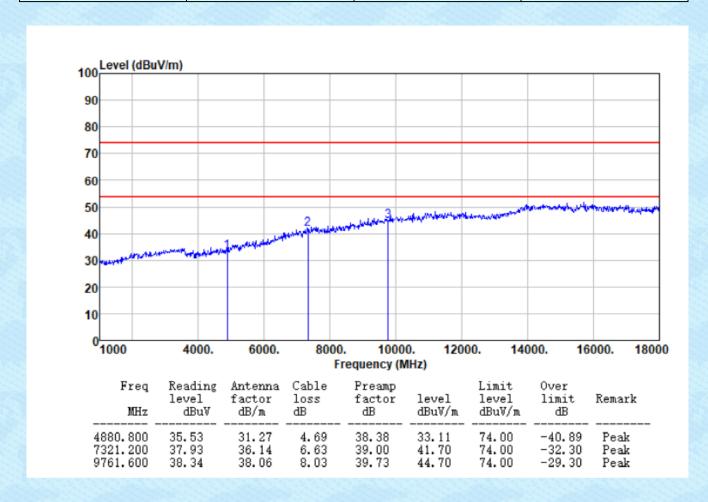
Test channel:	Highest	Polarization:	Vertical
---------------	---------	---------------	----------



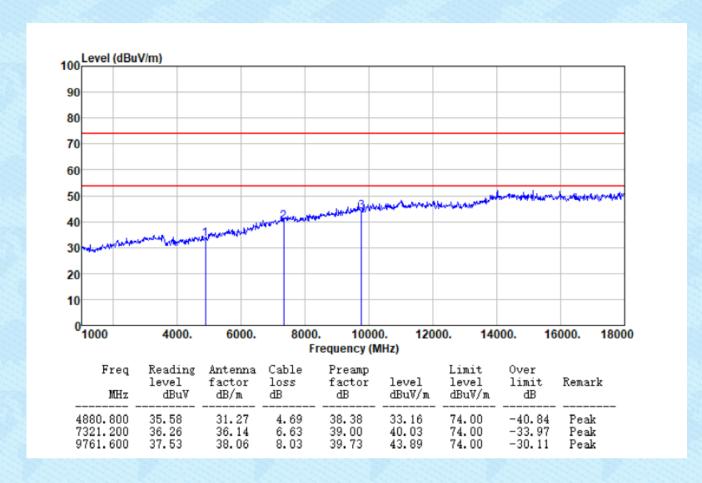
■ Above 1GHz


■ Unwanted Emissions in Non-restricted Frequency Bands

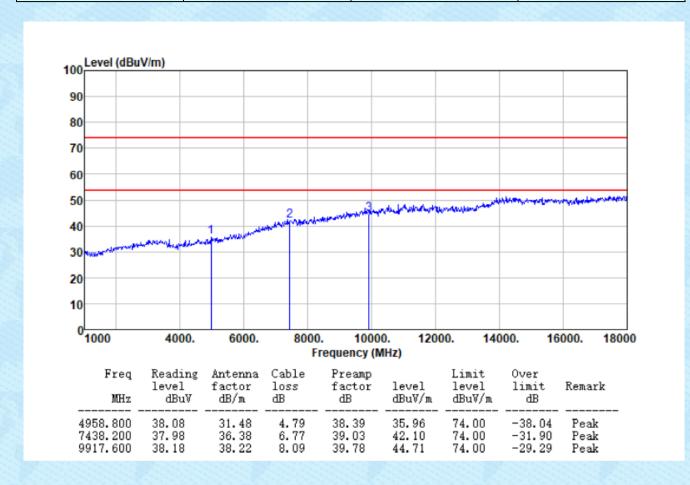
channel: Lowest	Polarization:	Horizontal
-----------------	---------------	------------



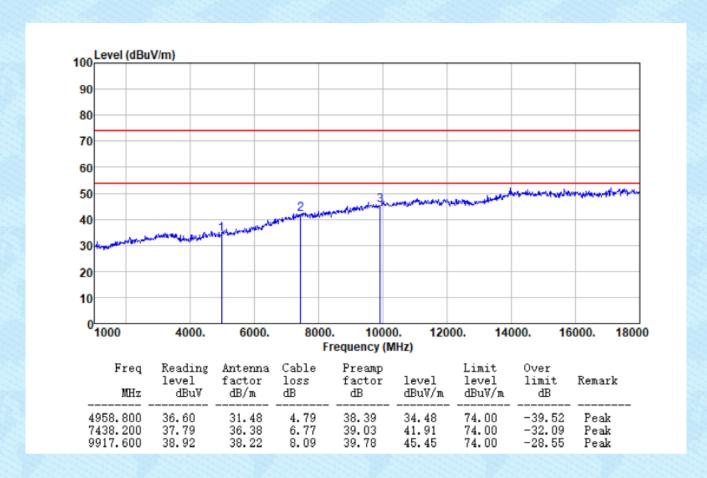
Test channel:	Lowest	Polarization:	Vertical	
---------------	--------	---------------	----------	--



Test channel:	Middle	Polarization:	Horizontal
---------------	--------	---------------	------------

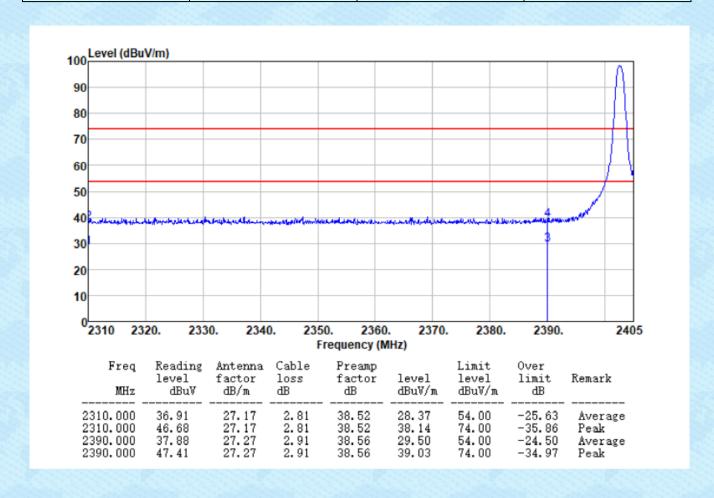


Test channel:	Middle	Polarization:	Vertical
---------------	--------	---------------	----------

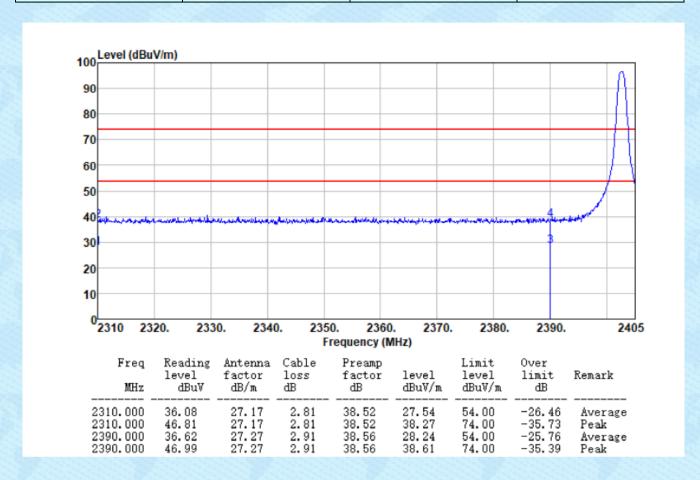


Test channel:	Highest	Polarization:	Horizontal
---------------	---------	---------------	------------

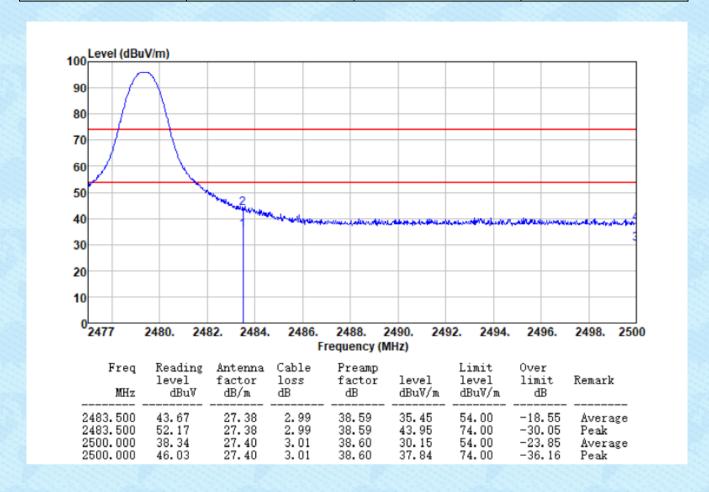
Test channel:	Highest	Polarization:	Vertical
---------------	---------	---------------	----------


Remark:

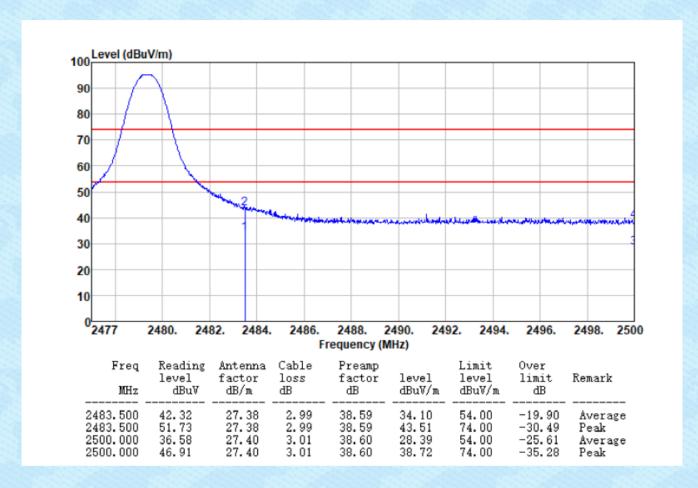
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. For above 18GHz, no emission found.


■ Unwanted Emissions in Restricted Frequency Bands

Test channel:	Lowest	Polarization:	Horizontal
---------------	--------	---------------	------------



Test channel: Lowest Polarization: Vertical



Test channel:	Highest	Polarization:	Horizontal
---------------	---------	---------------	------------

	Test channel:	Highest	Polarziation:	Vertical	
--	---------------	---------	---------------	----------	--

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---End---