

# **TEST REPORT**

| Applicant:                  | ShenZhen FLYSKY Technology Co.,Ltd                                                            |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| Address of Applicant:       | 16F, Huafeng Building, No. 6006 Shennan Road, Futian District, Shenzhen, Guangdong, China     |  |  |  |
| Manufacturer:               | ShenZhen FLYSKY Technology Co.,Ltd                                                            |  |  |  |
| Address of<br>Manufacturer: | 16F, Huafeng Building, No. 6006 Shennan Road, Futian<br>District, Shenzhen, Guangdong, China  |  |  |  |
| Factory:                    | Dongguan Flysky RC Model technology Co.,Ltd                                                   |  |  |  |
| Address of Factory:         | West building 3, Huangjinyuan Ind Park, Qiaoli North Gate,<br>Changping Town, Dongguan, China |  |  |  |
| Equipment Under Test (E     | EUT)                                                                                          |  |  |  |
| Product Name:               | 2.4G MODULE                                                                                   |  |  |  |
| Model No.:                  | FS-CBT01                                                                                      |  |  |  |
| Trade Mark:                 | FLYSKY                                                                                        |  |  |  |
| FCC ID:                     | 2A2UNCBT010                                                                                   |  |  |  |
| Applicable standards:       | FCC CFR Title 47 Part 15 Subpart C Section 15.247                                             |  |  |  |
| Date of sample receipt:     | May 09, 2024                                                                                  |  |  |  |
| Date of Test:               | May 10-16, 2024                                                                               |  |  |  |
| Date of report issued:      | May 16, 2024                                                                                  |  |  |  |
| Test Result :               | PASS *                                                                                        |  |  |  |

\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:



#### Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.



## 2 Version

| Version No. | Date         | Description |
|-------------|--------------|-------------|
| 00          | May 16, 2024 | Original    |
|             |              |             |
|             |              |             |
|             |              |             |
|             |              |             |

handlu **Prepared By:** Date: May 16, 2024 Project Engineer opinson lunt Check By: Date: May 16, 2024 Reviewer

# GTS

## Report No.: GTS2024050078F01

## **3** Contents

|   |       | Pa                                                     | ge  |
|---|-------|--------------------------------------------------------|-----|
| 1 | cov   | ER PAGE                                                | 1   |
| 2 | VFR   | SION                                                   | 2   |
| 5 |       |                                                        |     |
| 3 | CON   | TENTS                                                  | . 3 |
| 4 | TES   |                                                        | . 4 |
|   |       |                                                        |     |
| 5 | GEN   | ERAL INFORMATION                                       | . 5 |
|   | 5.1   | GENERAL DESCRIPTION OF EUT                             | . 5 |
|   | 5.2   | TEST MODE                                              | . 7 |
|   | 5.3   | DESCRIPTION OF SUPPORT UNITS                           | . 7 |
|   | 5.4   | DEVIATION FROM STANDARDS                               | . 7 |
|   | 5.5   | ABNORMALITIES FROM STANDARD CONDITIONS                 |     |
|   | 5.6   | TEST FACILITY                                          |     |
|   | 5.7   | TEST LOCATION                                          |     |
|   | 5.8   | Additional Instructions                                | . 7 |
| 6 | TES   | T INSTRUMENTS LIST                                     | . 8 |
| 7 | TES   | RESULTS AND MEASUREMENT DATA                           | 10  |
|   | 7.1   | ANTENNA REQUIREMENT                                    | 10  |
|   | 7.2   | CONDUCTED EMISSIONS                                    |     |
|   | 7.3   | CONDUCTED OUTPUT POWER                                 |     |
|   | 7.4   | CHANNEL BANDWIDTH                                      |     |
|   | 7.5   | Power Spectral Density                                 |     |
|   | 7.6   | SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS | 17  |
|   | 7.6.1 | Conducted Emission Method                              | 17  |
|   | 7.6.2 | Radiated Emission Method                               | 18  |
| 8 | TES   | Г SETUP PHOTO                                          | 32  |
| 0 | 123   |                                                        | 55  |
| 9 | EUT   | CONSTRUCTIONAL DETAILS                                 | 33  |

## 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Output Power           | 15.247 (b)(3)     | Pass   |
| Channel Bandwidth                | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

#### **Measurement Uncertainty**

| Frequency Range                                  | Measurement Uncertainty                                                | Notes                                                                                                                                                                            |  |  |
|--------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 9kHz-30MHz                                       | 3.1dB                                                                  | (1)                                                                                                                                                                              |  |  |
| 30MHz-200MHz                                     | 3.8039dB                                                               | (1)                                                                                                                                                                              |  |  |
| 200MHz-1GHz                                      | 3.9679dB                                                               | (1)                                                                                                                                                                              |  |  |
| 1GHz-18GHz                                       | 4.29dB                                                                 | (1)                                                                                                                                                                              |  |  |
| 18GHz-40GHz                                      | 3.30dB                                                                 | (1)                                                                                                                                                                              |  |  |
| AC Power Line Conducted 0.15MHz ~ 30MHz 3.44dB ( |                                                                        |                                                                                                                                                                                  |  |  |
|                                                  | 9kHz-30MHz<br>30MHz-200MHz<br>200MHz-1GHz<br>1GHz-18GHz<br>18GHz-40GHz | 9kHz-30MHz         3.1dB           30MHz-200MHz         3.8039dB           200MHz-1GHz         3.9679dB           1GHz-18GHz         4.29dB           18GHz-40GHz         3.30dB |  |  |



## **5** General Information

## 5.1 General Description of EUT

| Product Name:        | 2.4G MODULE                    |
|----------------------|--------------------------------|
| Flouuci Maine.       | 2.49 MODULE                    |
| Model No.:           | FS-CBT01                       |
| Test sample(s) ID:   | GTS2024050078-1                |
| Sample(s) Status:    | Engineer sample                |
| S/N:                 | RD1001609                      |
| Operation Frequency: | 2402MHz~2480MHz                |
| Channel Numbers:     | 40                             |
| Channel Separation:  | 2MHz                           |
| Modulation Type:     | GFSK                           |
| Data Rate:           | LE 1M PHY: 1 Mb/s              |
| Antenna Type:        | PCB Antenna                    |
| Antenna Gain:        | 2.29dBi(Declared by applicant) |
| Power Supply:        | DC 3.3V                        |

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.



| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                   | 2402 MHz  | 11      | 2422 MHz  | 21      | 2442 MHz  | 31      | 2462 MHz  |
| 2                                   | 2404 MHz  | 12      | 2424 MHz  | 22      | 2444 MHz  | 32      | 2464 MHz  |
| 3                                   | 2406 MHz  | 13      | 2426 MHz  | 23      | 2446 MHz  | 33      | 2466 MHz  |
| 4                                   | 2408 MHz  | 14      | 2428 MHz  | 24      | 2448 MHz  | 34      | 2468 MHz  |
| 5                                   | 2410 MHz  | 15      | 2430 MHz  | 25      | 2450 MHz  | 35      | 2470 MHz  |
| 6                                   | 2412 MHz  | 16      | 2432 MHz  | 26      | 2452 MHz  | 36      | 2472 MHz  |
| 7                                   | 2414 MHz  | 17      | 2434 MHz  | 27      | 2454 MHz  | 37      | 2474 MHz  |
| 8                                   | 2416 MHz  | 18      | 2436 MHz  | 28      | 2456 MHz  | 38      | 2476 MHz  |
| 9                                   | 2418 MHz  | 19      | 2438 MHz  | 29      | 2458 MHz  | 39      | 2478 MHz  |
| 10                                  | 2420 MHz  | 20      | 2440 MHz  | 30      | 2460 MHz  | 40      | 2480 MHz  |

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The lowest channel  | 2402MHz   |
| The middle channel  | 2440MHz   |
| The Highest channel | 2480MHz   |



## 5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

### 5.3 Description of Support Units

| Manufacturer                       | Description    | Model     | Serial Number |  |
|------------------------------------|----------------|-----------|---------------|--|
| ShenZhen FLYSKY Technology Co.,Ltd | Remote control | FS-MG11   | N/A           |  |
| IBM Thinkpad                       | Notebook PC    | 2374      | L3-G0686      |  |
| XIAOMI                             | USB Charger    | MDY-10-EH | N/A           |  |

#### 5.4 Deviation from Standards

None.

### 5.5 Abnormalities from Standard Conditions

None.

#### 5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

#### • ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing

#### • NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

### 5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

### 5.8 Additional Instructions

| Test Software     | Special test software provided by manufacturer |
|-------------------|------------------------------------------------|
| Power level setup | Default                                        |

# 6 Test Instruments list

| Radia | Radiated Emission:                     |                                |                       |                  |                        |                            |  |  |
|-------|----------------------------------------|--------------------------------|-----------------------|------------------|------------------------|----------------------------|--|--|
| Item  | Test Equipment                         | Manufacturer                   | Model No.             | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1     | 3m Semi- Anechoic<br>Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H) | GTS250           | June 23, 2021          | June 22, 2024              |  |  |
| 2     | Control Room                           | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H) | GTS251           | N/A                    | N/A                        |  |  |
| 3     | EMI Test Receiver                      | Rohde & Schwarz                | ESU26                 | GTS203           | April 11, 2024         | April 10, 2025             |  |  |
| 4     | BiConiLog Antenna                      | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9168              | GTS640           | March 19, 2023         | March 18, 2025             |  |  |
| 5     | Double -ridged<br>waveguide horn       | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D           | GTS208           | April 17, 2023         | April 16, 2025             |  |  |
| 6     | EMI Test Software                      | AUDIX                          | E3                    | N/A              | N/A                    | N/A                        |  |  |
| 7     | Wideband Radio<br>Communication Tester | Rohde & Schwarz                | CMW500                | GTS575           | April 11, 2024         | April 10, 2025             |  |  |
| 8     | Loop Antenna                           | ZHINAN                         | ZN30900A              | GTS534           | Nov. 13, 2023          | Nov.12, 2024               |  |  |
| 9     | Broadband Preamplifier                 | SCHWARZBECK                    | BBV9718               | GTS535           | April 11, 2024         | April 10, 2025             |  |  |
| 10    | Amplifier(1GHz-26.5GHz)                | HP                             | 8449B                 | GTS601           | April 11, 2024         | April 10, 2025             |  |  |
| 11    | Horn Antenna (18-<br>26.5GHz)          | /                              | UG-598A/U             | GTS664           | Oct. 29, 2023          | Oct. 28, 2024              |  |  |
| 12    | Horn Antenna<br>(26.5-40GHz)           | A.H Systems                    | SAS-573               | GTS665           | Oct. 29, 2023          | Oct. 28, 2024              |  |  |
| 13    | FSV-Signal Analyzer<br>(10Hz-40GHz)    | Keysight                       | FSV-40-N              | GTS666           | March 12, 2024         | March 11, 2025             |  |  |
| 14    | Amplifier                              | /                              | LNA-1000-30S          | GTS650           | April 11, 2024         | April 10, 2025             |  |  |
| 15    | CDNE M2+M3-16A                         | НСТ                            | 30MHz-300MHz          | GTS692           | Nov. 08, 2023          | Nov.07, 2024               |  |  |
| 16    | Wideband Amplifier                     | 1                              | WDA-01004000-15P35    | GTS602           | April 11, 2024         | April 10, 2025             |  |  |
| 17    | Thermo meter                           | JINCHUANG                      | GSP-8A                | GTS643           | April 18, 2024         | April 17, 2025             |  |  |
| 18    | RE cable 1                             | GTS                            | N/A                   | GTS675           | July 31. 2023          | July 30. 2024              |  |  |
| 19    | RE cable 2                             | GTS                            | N/A                   | GTS676           | July 31. 2023          | July 30. 2024              |  |  |
| 20    | RE cable 3                             | GTS                            | N/A                   | GTS677           | July 31. 2023          | July 30. 2024              |  |  |
| 21    | RE cable 4                             | GTS                            | N/A                   | GTS678           | July 31. 2023          | July 30. 2024              |  |  |
| 22    | RE cable 5                             | GTS                            | N/A                   | GTS679           | July 31. 2023          | July 30. 2024              |  |  |
| 23    | RE cable 6                             | GTS                            | N/A                   | GTS680           | July 31. 2023          | July 30. 2024              |  |  |
| 24    | RE cable 7                             | GTS                            | N/A                   | GTS681           | July 31. 2023          | July 30. 2024              |  |  |
| 25    | RE cable 8                             | GTS                            | N/A                   | GTS682           | July 31. 2023          | July 30. 2024              |  |  |



| Cond | Conducted Emission   |                             |                      |                  |                        |                            |  |  |
|------|----------------------|-----------------------------|----------------------|------------------|------------------------|----------------------------|--|--|
| Item | Test Equipment       | Manufacturer                | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | Shielding Room       | ZhongYu Electron            | 7.3(L)x3.1(W)x2.9(H) | GTS252           | July 12, 2022          | July 11, 2027              |  |  |
| 2    | EMI Test Receiver    | R&S                         | ESCI 7               | GTS552           | April 11, 2024         | April 10, 2025             |  |  |
| 3    | LISN                 | <b>ROHDE &amp; SCHWARZ</b>  | ENV216               | GTS226           | April 11, 2024         | April 10, 2025             |  |  |
| 4    | Coaxial Cable        | GTS                         | N/A                  | GTS227           | N/A                    | N/A                        |  |  |
| 5    | EMI Test Software    | AUDIX                       | E3                   | N/A              | N/A                    | N/A                        |  |  |
| 6    | Thermo meter         | JINCHUANG                   | GSP-8A               | GTS642           | April 18, 2024         | April 17, 2025             |  |  |
| 7    | Absorbing clamp      | Elektronik-<br>Feinmechanik | MDS21                | GTS229           | April 11, 2024         | April 10, 2025             |  |  |
| 8    | ISN                  | SCHWARZBECK                 | NTFM 8158            | GTS565           | April 11, 2024         | April 10, 2025             |  |  |
| 9    | High voltage probe   | SCHWARZBECK                 | TK9420               | GTS537           | April 11, 2024         | April 10, 2025             |  |  |
| 10   | Antenna end assembly | Weinschel                   | 1870A                | GTS560           | April 11, 2024         | April 10, 2025             |  |  |
|      |                      |                             |                      |                  |                        |                            |  |  |

| RF Co | RF Conducted Test:                                   |              |                  |            |                        |                            |  |  |
|-------|------------------------------------------------------|--------------|------------------|------------|------------------------|----------------------------|--|--|
| Item  | Test Equipment                                       | Manufacturer | Model No.        | Serial No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1     | MXA Signal Analyzer                                  | Agilent      | N9020A           | GTS566     | April 11, 2024         | April 10, 2025             |  |  |
| 2     | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | April 11, 2024         | April 10, 2025             |  |  |
| 3     | PSA Series Spectrum<br>Analyzer                      | Agilent      | E4440A           | GTS536     | April 11, 2024         | April 10, 2025             |  |  |
| 4     | MXG vector Signal<br>Generator                       | Agilent      | N5182A           | GTS567     | April 11, 2024         | April 10, 2025             |  |  |
| 5     | ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | GTS568     | April 11, 2024         | April 10, 2025             |  |  |
| 6     | USB RF Power Sensor                                  | DARE         | RPR3006W         | GTS569     | April 11, 2024         | April 10, 2025             |  |  |
| 7     | RF Switch Box                                        | Shongyi      | RFSW3003328      | GTS571     | April 11, 2024         | April 10, 2025             |  |  |
| 8     | Programmable Constant<br>Temp & Humi Test<br>Chamber | WEWON        | WHTH-150L-40-880 | GTS572     | April 11, 2024         | April 10, 2025             |  |  |
| 9     | Thermo meter                                         | JINCHUANG    | GSP-8A           | GTS641     | April 18, 2024         | April 17, 2025             |  |  |
| 10    | EXA Signal Analyzer                                  | Keysight     | N9010B           | MY60241168 | Nov. 03, 2023          | Nov. 02, 2024              |  |  |

| Ger  | General used equipment: |              |           |                  |                        |                            |  |  |
|------|-------------------------|--------------|-----------|------------------|------------------------|----------------------------|--|--|
| Item | Test Equipment          | Manufacturer | Model No. | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |
| 1    | Barometer               | KUMAO        | SF132     | GTS647           | April 18, 2024         | April 17, 2025             |  |  |



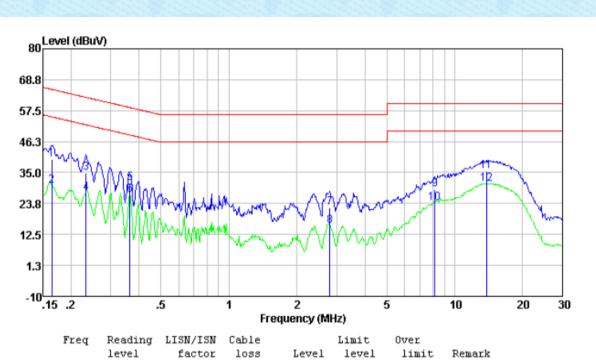
## 7 Test results and Measurement Data

## 7.1 Antenna requirement

| Standard requirement:                                                                           | FCC Part15 C Section 15.203 /247(c)                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 15.203 requirement:                                                                             | 15.203 requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| responsible party shall be use<br>antenna that uses a unique co<br>so that a broken antenna can | An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. |  |  |  |  |  |
| 15.247(c) (1)(i) requirement:                                                                   | 15.247(c) (1)(i) requirement:                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| operations may employ transi<br>maximum conducted output p                                      | (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.                                                                                          |  |  |  |  |  |
| E.U.T Antenna:                                                                                  | E.U.T Antenna:                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| The antenna is PCB antenna,                                                                     | , reference to the appendix II for details                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |



## 7.2 Conducted Emissions


| Test Des lines of     | 500 D. 115 0.0. 15 007                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sweep time=auto                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
| Limit:                | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
|                       | Quasi-peak Average                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
|                       | 0.15-0.5 66 to 56* 56 to 46*                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
|                       | 0.5-5<br>5-30                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                    | 46                                                                                                                                      |                                                           |  |  |  |
|                       | * Decreases with the logarithn                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
|                       | AUX       E.U.T         Equipment       E.U.T         Test table/Insulation plane         Remark:         E.U.T: Equipment Under Test         LISN: Line Impedence Stabilization Network         Test table height=0.8m                                                                                                                                                        | EMI<br>Receiver                                                                                                                                                                                                             | AC power                                                                                                                                |                                                           |  |  |  |
| Test procedure:       | <ol> <li>The E.U.T and simulators a<br/>line impedance stabilization<br/>50ohm/50uH coupling impedence<br/>2. The peripheral devices are<br/>LISN that provides a 50ohn<br/>termination. (Please refer to<br/>photographs).</li> <li>Both sides of A.C. line are of<br/>interference. In order to find<br/>positions of equipment and<br/>according to ANSI C63.10:</li> </ol> | n network (L.I.S.N.). T<br>edance for the measu<br>also connected to the<br>n/50uH coupling impe-<br>o the block diagram of<br>checked for maximum<br>d the maximum emiss<br>all of the interface ca<br>2013 on conducted m | This provides<br>uring equipme<br>e main power<br>edance with 5<br>of the test setu<br>n conducted<br>sion, the relati<br>ables must be | a<br>nt.<br>through a<br>Oohm<br>up and<br>ive<br>changed |  |  |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
| Test mode:            | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
| Test environment:     | Temp.: 25 °C Hum                                                                                                                                                                                                                                                                                                                                                               | nid.: 52%                                                                                                                                                                                                                   | Press.:                                                                                                                                 | 1012mbar                                                  |  |  |  |
| Test voltage:         | AC 120V, 60Hz                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                         |                                                           |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                | 11111111111111111111111111111111111111                                                                                                                                                                                      |                                                                                                                                         |                                                           |  |  |  |



#### Measurement data

## Report No.: GTS2024050078F01

| Pre-scan all test modes, for | Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of it. |                 |      |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------|-----------------|------|--|--|--|--|
| Test mode:                   | Transmitting mode                                                                             | Phase Polarity: | Line |  |  |  |  |



| MHz   | dBuV  | dB   | dB   | dBu∛  | dBuV  | dB     |         |
|-------|-------|------|------|-------|-------|--------|---------|
|       |       |      |      |       |       |        |         |
| 0.16  | 30.25 | 9.55 | 0.01 | 39.81 | 65.25 | -25.44 | QP      |
| 0.16  | 20.60 | 9.55 | 0.01 | 30.16 | 55.25 | -25.09 | Average |
| 0.23  | 25.27 | 9.51 | 0.01 | 34.79 | 62.35 | -27.56 | QP      |
| 0.23  | 18.17 | 9.51 | 0.01 | 27.69 | 52.35 | -24.66 | Average |
| 0.36  | 21.75 | 9.49 | 0.01 | 31.25 | 58.65 | -27.40 | QP      |
| 0.36  | 17.35 | 9.49 | 0.01 | 26.85 | 48.65 | -21.80 | Average |
| 2.79  | 12.46 | 9.54 | 0.05 | 22.05 | 56.00 | -33.95 | QP      |
| 2.79  | 6.13  | 9.54 | 0.05 | 15.72 | 46.00 | -30.28 | Average |
| 8.15  | 19.59 | 9.31 | 0.10 | 29.00 | 60.00 | -31.00 | QP      |
| 8.15  | 14.60 | 9.31 | 0.10 | 24.01 | 50.00 | -25.99 | Average |
| 13.84 | 25.93 | 9.52 | 0.15 | 35.60 | 60.00 | -24.40 | QP      |
| 13.84 | 21.21 | 9.52 | 0.15 | 30.88 | 50.00 | -19.12 | Average |
|       |       |      |      |       |       |        |         |

# GTS

Report No.: GTS2024050078F01

| Test mode:                                 | Transmitting m                                                                                                                                                                                                                                                                                                                                                          | obode                                                                                       | Phase Polar                                                                                                                                                                                                                                                                                                                          | ity:                                                                                                                                | Neutral                                                                                           |       |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|
| rest mode.                                 | Transmitting fi                                                                                                                                                                                                                                                                                                                                                         | loue                                                                                        | r nase r olai                                                                                                                                                                                                                                                                                                                        | ity.                                                                                                                                | Neutrai                                                                                           |       |
|                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
|                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
| 80 Level (dBuV                             | <i>n</i>                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
|                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
| 68.8                                       |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
| 57.5                                       |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
| Jrij                                       |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
| 46.3                                       |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
| 1 Maria                                    |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     | m                                                                                                 |       |
| 35.0                                       | WAL. 7                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |                                                                                                                                                                                                                                                                                                                                      | سعير                                                                                                                                |                                                                                                   |       |
| 220 MAN                                    | Martin                                                                                                                                                                                                                                                                                                                                                                  | a man man                                                                                   | non                                                                                                                                                                                                                                                                                                                                  | www.1p                                                                                                                              |                                                                                                   |       |
| 23.8                                       | VM Million Marine                                                                                                                                                                                                                                                                                                                                                       | dis                                                                                         | MARY A W.                                                                                                                                                                                                                                                                                                                            | المم مم مر                                                                                                                          |                                                                                                   | have  |
| 12.5                                       | · VII/WWWWW                                                                                                                                                                                                                                                                                                                                                             | Murray and                                                                                  | ~~~~~~                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                   |       |
|                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | - V V I                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     |                                                                                                   | ~     |
|                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
| 1.3                                        |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
|                                            |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                   |       |
|                                            | .5                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                           | 2                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                   | 10 2                                                                                              | 20 30 |
| 1.3<br>-10<br>.15 .2                       | .5                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | 2<br>quency (MHz)                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                   | 10 2                                                                                              | 20 30 |
|                                            | Reading LISN/ISN                                                                                                                                                                                                                                                                                                                                                        | Fred<br>Cable                                                                               | quency (MHz)<br>Limit                                                                                                                                                                                                                                                                                                                | . Over                                                                                                                              |                                                                                                   | 20 30 |
| -10.15 .2                                  |                                                                                                                                                                                                                                                                                                                                                                         | Free                                                                                        | quency (MHz)                                                                                                                                                                                                                                                                                                                         | . Over                                                                                                                              | 10 2<br>Remark                                                                                    | 20 30 |
| -10.15 .2                                  | Reading LISN/ISN                                                                                                                                                                                                                                                                                                                                                        | Fred<br>Cable                                                                               | quency (MHz)<br>Limit                                                                                                                                                                                                                                                                                                                | 0ver<br>1 limit                                                                                                                     |                                                                                                   | 20 30 |
| -10 <mark>.15 .2</mark><br>Freq<br>MHz     | Reading LISN/ISN<br>level factor<br>dBuV dB                                                                                                                                                                                                                                                                                                                             | Cable<br>loss<br>dB                                                                         | quency (MHz)<br>Limit<br>Level leve<br>dBuV dBuV                                                                                                                                                                                                                                                                                     | over<br>1 limit<br>dB                                                                                                               | Remark                                                                                            | 20 30 |
| -10 <mark>.15 .2</mark><br>Freq<br>MHz<br> | Reading LISN/ISN<br>level factor<br>dBuV dB<br>                                                                                                                                                                                                                                                                                                                         | Free<br>Cable<br>loss<br>dB<br>0.01                                                         | uency (MHz)<br>Limit<br>Level leve<br>dBu∛ dBu∛<br>40.78 65.25                                                                                                                                                                                                                                                                       | 0ver<br>1 limit<br>dB<br>24.47                                                                                                      | Remark<br><br>QP                                                                                  | 20 30 |
| -10.15 .2<br>Freq<br>                      | Reading         LISN/ISN           level         factor           dBuV         dB           31.22         9.55           21.13         9.55                                                                                                                                                                                                                             | Fred<br>Cable<br>loss<br>dB<br>0.01<br>0.01                                                 | uency (MHz)<br>Limit<br>Level leve<br>dBuV dBuV<br><br>40.78 65.25<br>30.69 55.25                                                                                                                                                                                                                                                    | 0ver<br>1 limit<br>dB<br>                                                                                                           | Remark<br><br>QP<br>Average                                                                       | 20 30 |
| -10.15 .2<br>Freq<br>MHz<br>               | Reading<br>level         LISN/ISN<br>factor           dBuV         dB           31.22         9.55           21.13         9.55           26.36         9.56           18.22         9.56                                                                                                                                                                               | Free<br>Cable<br>loss<br>dB<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                         | uency (MHz)<br>Limit<br>Level leve<br>dBuV dBuV<br>40.78 65.25<br>30.69 55.25<br>35.93 62.35<br>27.79 52.35                                                                                                                                                                                                                          | Over<br>1 limit<br>dB<br>-24.47<br>-24.56<br>-26.42<br>-24.56                                                                       | Remark<br><br>QP<br>Average<br>QP<br>Average                                                      | 20 30 |
| -10.15 .2<br>Freq<br>MHz<br>               | Reading<br>level         LISN/ISN<br>factor           dBuV         dB           31.22         9.55           21.13         9.55           26.36         9.56           18.22         9.56           21.70         9.57                                                                                                                                                  | Free<br>Cable<br>loss<br>dB<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                 | uency (MHz)<br>Limit<br>Level leve<br>dBuV dBuV<br>40.78 65.25<br>30.69 55.25<br>35.93 62.35<br>27.79 52.35<br>31.28 58.65                                                                                                                                                                                                           | Over<br>1 limit<br>dB<br>-24.47<br>-24.56<br>-26.42<br>-24.56<br>-27.37                                                             | Remark<br><br>QP<br>Average<br>QP<br>Average<br>QP                                                | 20 30 |
| -10.15 .2<br>Freq<br>MHz<br>               | Reading<br>level         LISN/ISN<br>factor           dBuV         dB           31.22         9.55           21.13         9.55           26.36         9.56           18.22         9.56           21.70         9.57           14.98         9.57                                                                                                                     | Free<br>Cable<br>loss<br>dB<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01         | uency (MHz)<br>Limit<br>Level leve<br>dBuV dBuV<br>40.78 65.25<br>30.69 55.25<br>35.93 62.35<br>27.79 52.35<br>31.28 58.65<br>24.56 48.65                                                                                                                                                                                            | Over<br>1 limit<br>dB<br>-24.47<br>-24.56<br>-26.42<br>-24.56<br>-27.37<br>-24.09                                                   | Remark<br><br>QP<br>Average<br>QP<br>Average<br>QP<br>Average                                     | 20 30 |
| -10.15 .2<br>Freq<br>MHz<br>               | Reading<br>level         LISN/ISN<br>factor           dBuV         dB           31.22         9.55           21.13         9.55           26.36         9.56           18.22         9.56           21.70         9.57                                                                                                                                                  | Free<br>Cable<br>loss<br>dB<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.0  | uency (MHz)<br>Limit<br>Level leve<br>dBuV dBuV<br>40.78 65.25<br>30.69 55.25<br>35.93 62.35<br>27.79 52.35<br>31.28 58.65                                                                                                                                                                                                           | Over<br>1 limit<br>dB<br>-24.47<br>-24.56<br>-26.42<br>-24.56<br>-27.37<br>-24.09<br>-27.57                                         | Remark<br><br>QP<br>Average<br>QP<br>Average<br>QP                                                | 20 30 |
| -10.15 .2<br>Freq<br>MHz<br>               | Reading<br>level         LISN/ISN<br>factor           dBuV         dB           31.22         9.55           21.13         9.55           26.36         9.56           18.22         9.56           21.70         9.57           14.98         9.57           18.85         9.56           11.43         9.56           19.83         9.52                              | Free<br>Cable<br>loss<br>dB<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02 | uency (MHz)<br>Limit<br>Level leve<br>dBuV dBuV<br>40.78 65.25<br>30.69 55.25<br>35.93 62.35<br>27.79 52.35<br>31.28 58.65<br>24.56 48.65<br>28.43 56.00<br>21.01 46.00<br>29.44 60.00                                                                                                                                               | Over<br>1 limit<br>dB<br>-24.47<br>-24.56<br>-26.42<br>-24.56<br>-27.37<br>-24.09<br>-27.57<br>-24.99<br>-30.56                     | Remark<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP                  | 20 30 |
| -10.15 .2<br>Freq<br>MHz<br>               | Reading<br>level         LISN/ISN<br>factor           dBuV         dB           31.22         9.55           21.13         9.55           26.36         9.56           18.22         9.56           21.70         9.57           14.98         9.57           18.85         9.56           11.43         9.56           19.83         9.52           14.34         9.52 | Free<br>Cable<br>loss<br>dB<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02 | Auency (MHz)         Limit           Level         level           dBuV         dBuV           40.78         65.25           30.69         55.25           31.28         58.65           24.56         48.65           28.43         56.00           21.01         46.00           29.44         60.00           23.95         50.00 | Over<br>1 limit<br>dB<br>-24.47<br>-24.56<br>-26.42<br>-24.56<br>-27.37<br>-24.09<br>-27.57<br>-24.99<br>-30.56<br>-26.05           | Remark<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP | 20 30 |
| -10.15 .2<br>Freq<br>MHz<br>               | Reading<br>level         LISN/ISN<br>factor           dBuV         dB           31.22         9.55           21.13         9.55           26.36         9.56           18.22         9.56           21.70         9.57           14.98         9.57           18.85         9.56           11.43         9.56           19.83         9.52                              | Free<br>Cable<br>loss<br>dB<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02 | uency (MHz)<br>Limit<br>Level leve<br>dBuV dBuV<br>40.78 65.25<br>30.69 55.25<br>35.93 62.35<br>27.79 52.35<br>31.28 58.65<br>24.56 48.65<br>28.43 56.00<br>21.01 46.00<br>29.44 60.00                                                                                                                                               | Over<br>1 limit<br>dB<br>-24.47<br>-24.56<br>-26.42<br>-24.56<br>-27.37<br>-24.09<br>-27.57<br>-24.99<br>-30.56<br>-26.05<br>-21.76 | Remark<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP                  | 20 30 |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



Report No.: GTS2024050078F01

## 7.3 Conducted Output Power

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                          |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02              |  |  |  |  |  |
| Limit:            | 30dBm                                                                       |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |  |  |  |
| Test results:     | Pass                                                                        |  |  |  |  |  |

## 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                          |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02              |  |  |  |  |  |
| Limit:            | >500KHz                                                                     |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |  |  |  |
| Test results:     | Pass                                                                        |  |  |  |  |  |



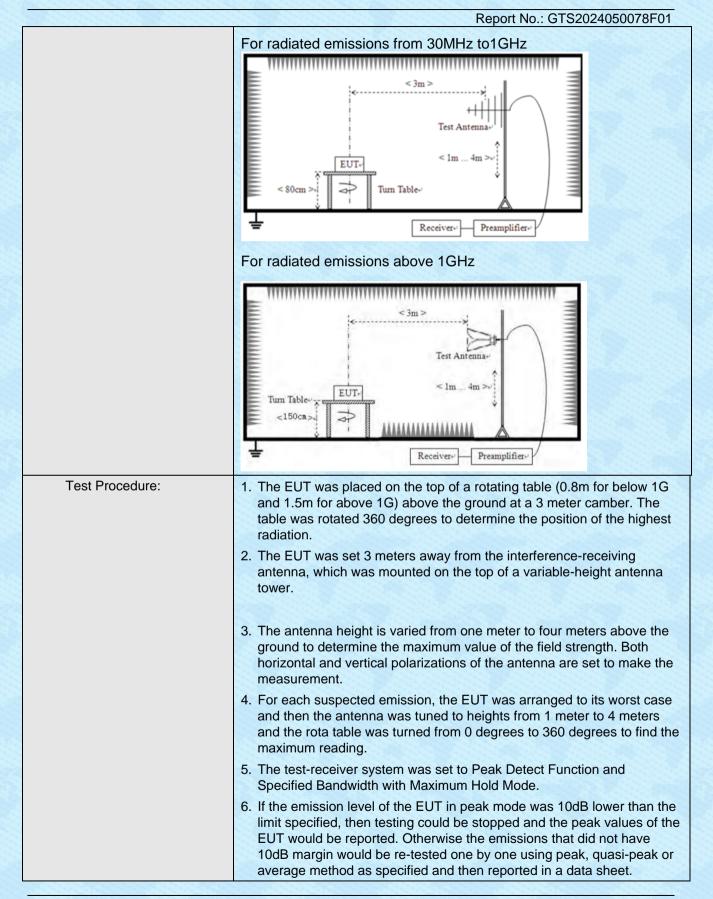
Report No.: GTS2024050078F01

## 7.5 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                             |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02              |  |  |  |  |  |
| Limit:            | 8dBm/3kHz                                                                   |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                            |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                            |  |  |  |  |  |
| Test results:     | Pass                                                                        |  |  |  |  |  |

## 7.6 Spurious Emission in Non-restricted & restricted Bands

## 7.6.1 Conducted Emission Method


GTS

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

| 7.6.2 Radiated Emission Met | liou                                     | and the second sec |            |             |                         |  |  |  |
|-----------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------------------|--|--|--|
| Test Requirement:           | FCC Part15 C Section 15.209              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |                         |  |  |  |
| Test Method:                | ANSI C63.10:2013                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |                         |  |  |  |
| Test Frequency Range:       | 9kHz to 25GHz                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |                         |  |  |  |
| Test site:                  | Measurement Distance: 3m                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |                         |  |  |  |
| Receiver setup:             | Frequency Detector RBW VBW Value         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |                         |  |  |  |
|                             | 9KHz-150KHz                              | 600Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quasi-peak |             |                         |  |  |  |
|                             | 150KHz-30MHz                             | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |             |                         |  |  |  |
|                             | 30MHz-1GHz                               | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120KHz     | 300KHz      | Quasi-peak              |  |  |  |
|                             | Above 1GHz                               | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1MHz       | 3MHz        | Peak                    |  |  |  |
|                             | Above TGHZ                               | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1MHz       | 10Hz        | Average                 |  |  |  |
|                             | Note: For Duty cycle cycle < 98%, averag |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             |                         |  |  |  |
| Limit:                      | Frequency                                | Limit (u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V/m)       | Value       | Measurement<br>Distance |  |  |  |
|                             | 0.009MHz-0.490M                          | Hz 2400/F(I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KHz) Q     | P/PK/AV     | 300m                    |  |  |  |
|                             | 0.490MHz-1.705M                          | Hz 24000/F(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (KHz)      | QP          | 30m                     |  |  |  |
|                             | 1.705MHz-30MH                            | z 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | QP          | 30m                     |  |  |  |
|                             | 30MHz-88MHz                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | QP          |                         |  |  |  |
|                             | 88MHz-216MHz                             | z 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | QP          |                         |  |  |  |
|                             | 216MHz-960MH                             | z 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | QP          | 3m                      |  |  |  |
|                             | 960MHz-1GHz                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | QP          | Sill                    |  |  |  |
|                             | Above 1GHz                               | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A          | verage      |                         |  |  |  |
|                             |                                          | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )          | Peak        |                         |  |  |  |
| Test setup:                 | For radiated emiss                       | ions from 9kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lz to 30M⊢ | Iz          |                         |  |  |  |
|                             | < \$0cm >                                | < 3m >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Δ          | est Antenna |                         |  |  |  |

## 7.6.2 Radiated Emission Method





Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

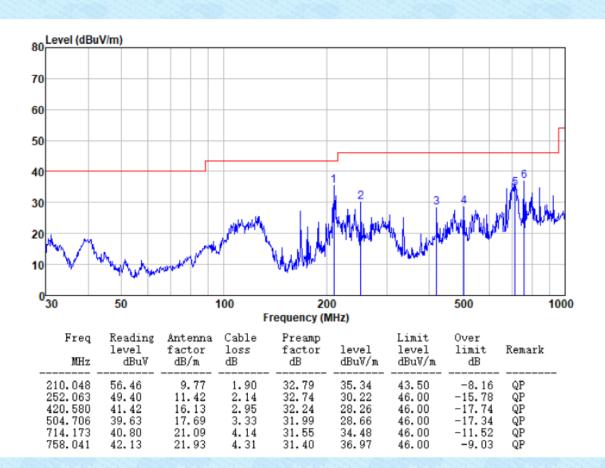


|                   |              |                 |         | Report No | .: GTS20240 | 050078F01 |
|-------------------|--------------|-----------------|---------|-----------|-------------|-----------|
| Test Instruments: | Refer to see | ction 6.0 for c | letails |           |             |           |
| Test mode:        | Refer to see | ction 5.2 for c | letails |           |             |           |
| Test environment: | Temp.:       | 25 °C           | Humid.: | 52%       | Press.:     | 1012mbar  |
| Test voltage:     | AC 120V, 6   | 0Hz             |         |           |             |           |
| Test results:     | Pass         |                 |         |           |             |           |

#### Measurement data:

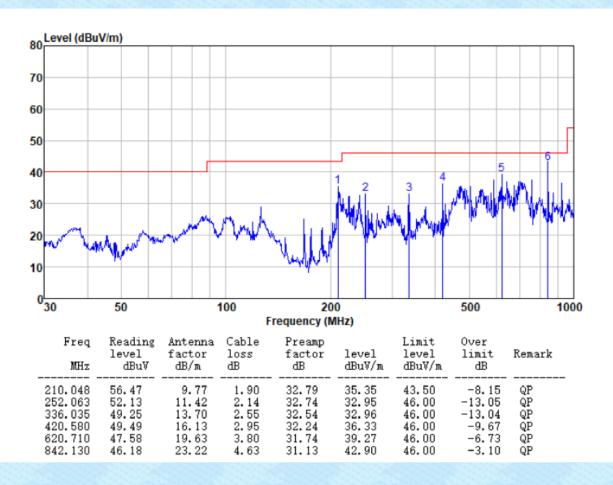
#### Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


#### ■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.




#### Below 1GHz

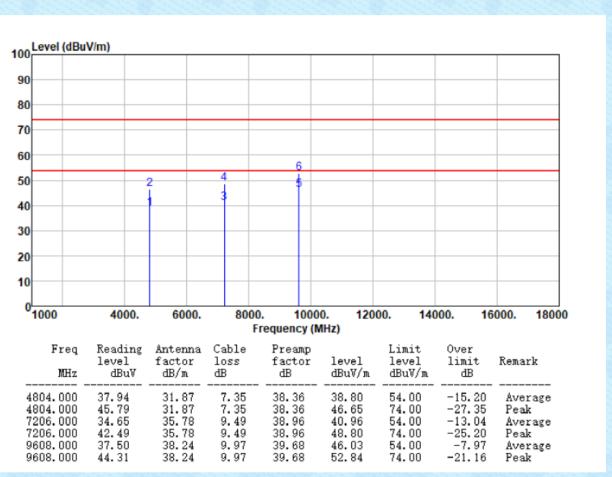
Pre-scan all test modes, found worst case at 2402MHz, and so only show the test result of it. **Horizontal:** 





#### Vertical:






Report No.: GTS2024050078F01

#### Above 1GHz

#### Unwanted Emissions in Non-restricted Frequency Bands

| Test channel: | Lowest | Polarization: | Horizontal |
|---------------|--------|---------------|------------|
|               |        |               |            |





Report No.: GTS2024050078F01

| st channel:          | Lowest               |                      | Polar                    | ization:        |                 | Vertica          | al              |
|----------------------|----------------------|----------------------|--------------------------|-----------------|-----------------|------------------|-----------------|
|                      |                      |                      |                          |                 |                 |                  |                 |
|                      |                      |                      |                          |                 |                 |                  |                 |
| 100 Level (dBu       | iV/m)                |                      |                          |                 |                 |                  |                 |
| 90                   |                      |                      |                          |                 |                 |                  |                 |
| 80                   |                      |                      |                          |                 |                 |                  |                 |
| 70                   |                      |                      |                          |                 |                 |                  |                 |
| 60                   |                      |                      |                          |                 |                 |                  |                 |
| 50                   | 2                    | 4                    | 6                        |                 |                 |                  |                 |
| 40                   |                      | 3                    | Ĭ                        |                 |                 |                  |                 |
| 30                   |                      |                      |                          |                 |                 |                  |                 |
| 20                   |                      |                      |                          |                 |                 |                  |                 |
| 10                   |                      |                      |                          |                 |                 |                  |                 |
| 0                    |                      |                      |                          |                 |                 |                  |                 |
| °1000                | 4000.                | 6000. 800            | 00. 1000<br>Frequency (I |                 | 00. 1400        | 00. 16           | 000. 18000      |
| Freq                 |                      | enna Cable           | Preamp                   | 1 1             | Limit           | Over             | Barash          |
| MHz                  | level fac<br>dBuV dB | tor loss<br>/m dB    | factor<br>dB             | level<br>dBu∛/m | level<br>dBu∛/m | limit<br>dB      | Remark          |
| 4804.000<br>4804.000 | 35.64 31<br>43.52 31 | .87 7.35<br>.87 7.35 | 38.36<br>38.36           | 36.50<br>44.38  | 54.00<br>74.00  | -17.50<br>-29.62 | Average<br>Peak |
| 7206.000<br>7206.000 | 34.55 35             | .78 9.49<br>.78 9.49 | 38.96<br>38.96           | 40.86<br>48.96  | 54.00<br>74.00  | -13.14<br>-25.04 | Average<br>Peak |
| 9608.000<br>9608.000 | 36.82 38             | .24 9.97<br>.24 9.97 | 39.68<br>39.68           | 45.35<br>53.15  |                 | -8.65<br>-20.85  | Average<br>Peak |
| 9008.000             | 44.02 38             | .24 9.97             | 39.08                    | 03.10           | 74.00           | -20.85           | reak            |



Report No.: GTS2024050078F01

| Test channel: | Middle | Polarization: | Horizontal |
|---------------|--------|---------------|------------|
|               |        |               |            |

100 Level (dBuV/m) 90 80 70 60 6 0 50 40 30 20 10 0<sup>1</sup>1000 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000 Frequency (MHz) Reading Antenna Cable Freq Preamp Limit Over level factor level level Remark factor loss limit MHz dBu∛ dB/m dB dBu∛/m dBu∛/m dB dB  $7.04 \\ 7.04$ 4880.000 39.85 32.04 38.38 40.55 54.00 -13.45 Average 4880.000 46.93 32.04 38.38 47.63 74.00 -26.37Peak 37.74 9.18 44.02 50.97 54.00 74.00 -9.98 39.00 7320.000 36.10 Average 7320.000 9.18 39.00 44.69 36.10 -23.03 Peak 46.25 53.21 9760.000 37.41 38.30 10.27 39.73 54.00 -7.75 Average 9760.000 44.37 38.30 10.27 39.73 74.00 -20.79Peak



Report No.: GTS2024050078F01

| Fest channel:   | Middle                                                                                 |                                       | Polarization:                                                                    |                                             | Vertical                                                |                                                       |
|-----------------|----------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
|                 |                                                                                        |                                       |                                                                                  |                                             |                                                         |                                                       |
|                 |                                                                                        |                                       |                                                                                  |                                             |                                                         |                                                       |
| 100 Level (dBuV | //m)                                                                                   |                                       |                                                                                  |                                             |                                                         |                                                       |
| 90              |                                                                                        |                                       |                                                                                  |                                             |                                                         |                                                       |
| 80              |                                                                                        |                                       |                                                                                  |                                             |                                                         |                                                       |
| 70              |                                                                                        |                                       |                                                                                  |                                             |                                                         |                                                       |
| 60              |                                                                                        |                                       | 6                                                                                |                                             |                                                         |                                                       |
| 50              | 2                                                                                      | 4                                     | \$                                                                               |                                             |                                                         |                                                       |
| 40              |                                                                                        | 3                                     |                                                                                  |                                             |                                                         |                                                       |
| 30              |                                                                                        |                                       |                                                                                  |                                             |                                                         |                                                       |
| 20              |                                                                                        |                                       |                                                                                  |                                             |                                                         |                                                       |
| 10              |                                                                                        |                                       |                                                                                  |                                             |                                                         |                                                       |
| 0               | 4000. 600                                                                              |                                       | 10000.<br>Juency (MHz)                                                           | 12000. 140                                  | 00. 160                                                 | 00. 18000                                             |
| Freq<br>MHz     | Reading Antenn<br>level factor<br>dBuV dB/m                                            |                                       | Preamp<br>factor leve<br>dB dBuV                                                 |                                             | Over<br>limit 1<br>dB                                   | Remark                                                |
|                 | 37.43 32.04<br>45.51 32.04<br>35.93 36.10<br>42.86 36.10<br>37.86 38.30<br>44.58 38.30 | 4 7.04<br>0 9.18<br>0 9.18<br>0 10.27 | 38.38 38.1<br>38.38 46.2<br>39.00 42.2<br>39.00 49.1<br>39.73 46.7<br>39.73 53.4 | 21 74.00<br>21 54.00<br>4 74.00<br>70 54.00 | -15.87<br>-27.79<br>-11.79<br>-24.86<br>-7.30<br>-20.58 | Average<br>Peak<br>Average<br>Peak<br>Average<br>Peak |



Report No.: GTS2024050078F01

| Highest                                                                                                                                                                                                                                 | Polarization:                                                                                                                                                                                                                                                                                                     | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 4                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 3                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | 14000. 16000. 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ding Antenna Cable<br>el factor loss<br>BuV dB/m dB                                                                                                                                                                                     | factor level 1                                                                                                                                                                                                                                                                                                    | imit Over<br>evel limit Remark<br>BuV/m dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23         32.21         6.71           78         32.21         6.71           13         36.43         9.02           37         36.43         9.02           29         38.37         10.07           17         38.37         10.07 | 38.39 48.31 7<br>39.03 41.55 5<br>39.03 48.79 7<br>39.78 45.95 5                                                                                                                                                                                                                                                  | 4.00 -13.24 Average<br>4.00 -25.69 Peak<br>4.00 -12.45 Average<br>4.00 -25.21 Peak<br>4.00 -8.05 Average<br>4.00 -8.17 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                         | 2 4<br>2 4<br>3<br>2 4<br>3<br>000. 6000. 800<br>ding Antenna Cable<br>el factor loss<br>BuV dB/m dB<br>23 32.21 6.71<br>78 32.37 10.07 | 2         4         6           2         4         6           2         4         6           3         6         6           4         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         6           1         3         3           1         3         3           1         3         3 |



Report No.: GTS2024050078F01

| est channel:                                                                                           | High                                                     | est                                                |                                                | Pola                                                        | rization:                                          |                                                             | Vertic                                                  | al                                                    |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
|                                                                                                        |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
|                                                                                                        |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| Level (dBu)                                                                                            | //m)                                                     |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| 100                                                                                                    |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| 90                                                                                                     |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| 80                                                                                                     |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| 70                                                                                                     |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| 60                                                                                                     |                                                          |                                                    |                                                | 6                                                           |                                                    |                                                             |                                                         |                                                       |
| 50                                                                                                     | 2                                                        |                                                    | 4                                              | 4                                                           |                                                    |                                                             |                                                         |                                                       |
| 40                                                                                                     |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| 30                                                                                                     |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| 20                                                                                                     |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| 10                                                                                                     |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |
| 01000                                                                                                  | 4000.                                                    | 6000.                                              | 800                                            | 0. 1000                                                     | 0. 1200                                            | 0. 1400                                                     | 0 16                                                    | 6000. 18000                                           |
| 1000                                                                                                   | 4000.                                                    | 0000.                                              |                                                | Frequency (I                                                |                                                    | . 1400                                                      |                                                         | 10000                                                 |
| Freq<br>MHz                                                                                            |                                                          | Antenna<br>factor<br>dB/m                          | Cable<br>loss<br>dB                            | Preamp<br>factor<br>dB                                      | level<br>dBu∛/m                                    | Limit<br>level<br>dBu∛/m                                    | Over<br>limit<br>dB                                     | Remark                                                |
| $\begin{array}{c} \\ 4960.000 \\ 4960.000 \\ 7440.000 \\ 7440.000 \\ 9920.000 \\ 9920.000 \end{array}$ | 41. 19<br>48. 03<br>36. 24<br>43. 36<br>37. 43<br>44. 64 | 32.21<br>32.21<br>36.43<br>36.43<br>38.37<br>38.37 | 6.71<br>6.71<br>9.02<br>9.02<br>10.07<br>10.07 | 38.39<br>38.39<br>39.03<br>39.03<br>39.03<br>39.78<br>39.78 | 41.72<br>48.56<br>42.66<br>49.78<br>46.09<br>53.30 | 54.00<br>74.00<br>54.00<br>74.00<br>54.00<br>54.00<br>74.00 | -12.28<br>-25.44<br>-11.34<br>-24.22<br>-7.91<br>-20.70 | Average<br>Peak<br>Average<br>Peak<br>Average<br>Peak |
|                                                                                                        |                                                          |                                                    |                                                |                                                             |                                                    |                                                             |                                                         |                                                       |

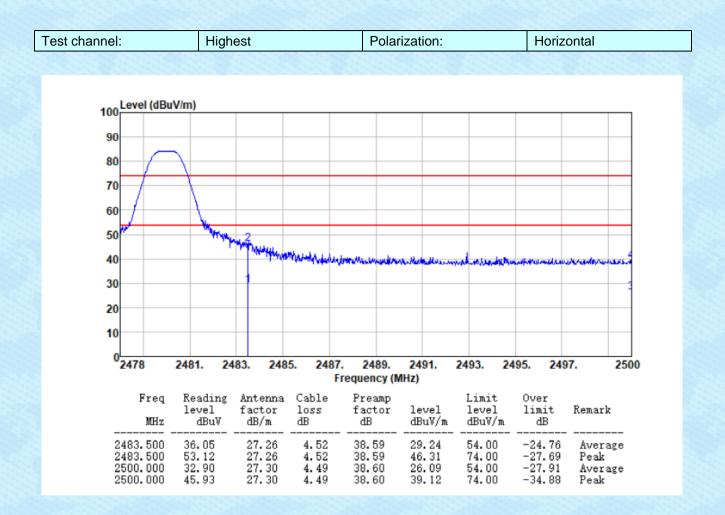
Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| channe              | el:                                 | Lov                                     | vest                                    |                                               | Pola                                                     | rization:                                  |                                   | Horiz                         | ontal                |
|---------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------------------------|--------------------------------------------|-----------------------------------|-------------------------------|----------------------|
|                     |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               |                      |
|                     |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               |                      |
|                     |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               |                      |
| 100                 | Level (dBu\                         | //m)                                    |                                         |                                               |                                                          |                                            |                                   |                               |                      |
| 90                  |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               | 0                    |
|                     |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               |                      |
| 80                  |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               |                      |
| 70                  |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               |                      |
| 60                  |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               | -                    |
| 50                  |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               |                      |
|                     |                                     |                                         |                                         |                                               |                                                          |                                            |                                   |                               |                      |
|                     |                                     |                                         |                                         |                                               |                                                          |                                            |                                   | 4.                            | 1 Ball All Charles   |
| 40                  | )<br>E-Marghas-Lingaate             | fer water and a strategy                | an top of the balance                   | terretarianteria                              |                                                          | delogradion a                              | usyk Myken Webskare               | uth pratic style              | 1 Strektwater        |
| 40<br>30            | -martin warner                      | det son der ser ophan                   | na tapatishi kana a                     | (co, tobacionito ibre                         |                                                          | Adams of the second                        | usyd Mydda Wydaig Amer            | uter nuter where the          | 1 Stort & And We     |
| 40<br>30<br>20      |                                     | det under der einen der soch soc        | an ta particular and a                  | (c.,.telani,telan                             |                                                          | shines of the s                            | usylitti destante                 | uth puntra fish               | A DE REMAINS         |
| 30                  |                                     | de Maria de La seta po                  | an the second second                    |                                               |                                                          | alalan ar tar na a                         | w94764444444444                   | addreantre of yell<br>3       | Jb AMARA             |
| 30<br>20<br>10      |                                     |                                         |                                         |                                               |                                                          |                                            |                                   | 3                             |                      |
| 30<br>20<br>10      |                                     |                                         |                                         | 0. 2350                                       | . 2360                                                   | 0. 2370                                    |                                   | 3                             |                      |
| 30<br>20<br>10      | 2310 232                            | 20. 233                                 | 0. 234                                  | 0. 2350<br>Fre                                | ). 236(<br>equency (N                                    | 0. 2370                                    | . 2380                            | . 2390                        |                      |
| 30<br>20<br>10      | 2310 232<br>Freq                    | 20. 233<br>Reading<br>level             | 0. 234<br>Antenna<br>factor             | 0. 2350<br>Fre<br>Cable<br>loss               | ). 2360<br>equency (N<br>Preamp<br>factor                | ). 2370<br>IHZ)<br>level                   | Limit<br>level                    | Over<br>limit                 |                      |
| 30<br>20<br>10      | 2310 232                            | 20. 233<br>Reading                      | 0. 234<br>Antenna                       | 0. 2350<br>Fre<br>Cable                       | ). 236(<br>equency (N<br>Preamp                          | ). 2370<br>IHZ)                            | ). 2380.<br>Limit                 | . 2390<br>Over                | 0. 2404              |
| 30<br>20<br>10<br>0 | 2310 232<br>Freq<br>MHz<br>2310.000 | 20. 233<br>Reading<br>level<br>dBuV<br> | 0. 234<br>Antenna<br>factor<br>dB/m<br> | 0. 2350<br>Fre<br>Cable<br>loss<br>dB<br>4.60 | 0. 2360<br>equency (N<br>Preamp<br>factor<br>dB<br>38.52 | 0. 2370<br>HZ)<br>level<br>dBuV/m<br>26.39 | Limit<br>level<br>dBuV/m<br>54.00 | Over<br>limit<br>dB<br>-27.61 | . 2404<br>Remark<br> |
| 30<br>20<br>10<br>0 | 2310 232<br>Freq<br>MHz             | 20. 233<br>Reading<br>level<br>dBuV     | 0. 234<br>Antenna<br>factor<br>dB/m     | 0. 2350<br>Fre<br>Cable<br>loss<br>dB         | ). 2360<br>equency (N<br>Preamp<br>factor<br>dB          | 0. 2370<br>1Hz)<br>level<br>dBuV/m         | Limit<br>level<br>dBuV/m          | Over<br>limit<br>dB           | ). 2404<br>Remark    |


#### Unwanted Emissions in Restricted Frequency Bands



Report No.: GTS2024050078F01

| nannel:              | Lov              | vest              |                        | Po               | larization      | :                          | Ver              | tical           |
|----------------------|------------------|-------------------|------------------------|------------------|-----------------|----------------------------|------------------|-----------------|
|                      |                  |                   |                        |                  |                 |                            |                  |                 |
|                      |                  |                   |                        |                  |                 |                            |                  |                 |
| 100 Level (dBu       | IV/m)            |                   |                        |                  |                 |                            |                  |                 |
|                      |                  |                   |                        |                  |                 |                            |                  | n               |
| 90                   |                  |                   |                        |                  |                 |                            |                  |                 |
| 80                   |                  |                   |                        |                  |                 |                            |                  |                 |
| 70                   |                  |                   |                        |                  |                 |                            |                  |                 |
| 60                   |                  |                   |                        |                  |                 |                            |                  | -++             |
| 50                   |                  |                   |                        |                  |                 |                            |                  |                 |
| 40                   |                  |                   | ad an a dalla          |                  |                 | and the state of the later |                  | ALCON BRANNEY   |
| 30                   |                  |                   | and in addition of the |                  |                 |                            |                  |                 |
|                      |                  |                   |                        |                  |                 |                            | 3                |                 |
| 20                   |                  |                   |                        |                  |                 |                            |                  |                 |
| 10                   |                  |                   |                        |                  |                 |                            |                  |                 |
| 02310 23             | 20. 233          | 0. 234            | 0. 23                  | 50. 236          | 50. <b>2</b> 37 | 70. 2380                   | ). 2390          | . 2404          |
|                      |                  |                   | 1                      | Frequency (      | MHz)            |                            |                  |                 |
| Freq                 | Reading<br>level | Antenna<br>factor | Cable<br>loss          | Preamp<br>factor | level           | Limit<br>level             | Over<br>limit    | Remark          |
| MHz                  | dBuV             | dB/m              | dB                     | dB               | dBuV/m          |                            | dB               | LOBULE          |
| 2310.000             | 32.21            | 26.81             | 4.60                   | 38.52            | 25.10           | 54.00                      | -28.90           | Average         |
| 2310.000             | 47.37<br>31.78   | 26.81<br>27.01    | 4.60<br>4.65           | 38.52<br>38.56   | 40.26<br>24.88  | 74.00<br>54.00             | -33.74<br>-29.12 | Peak<br>Average |
| 2390.000<br>2390.000 | 45.68            | 27.01             | 4.65                   | 38.56            | 38.78           | 74.00                      | -35.22           | Peak            |







Report No.: GTS2024050078F01

| Test channel:            | Highest                                  |                         | Pola               | ization:                |                   | Vertic                     | al                      |
|--------------------------|------------------------------------------|-------------------------|--------------------|-------------------------|-------------------|----------------------------|-------------------------|
|                          |                                          |                         |                    |                         |                   |                            |                         |
|                          |                                          |                         |                    |                         |                   |                            |                         |
| 100 Level (dBuV/n        | n)                                       |                         |                    |                         |                   |                            |                         |
| 90                       |                                          |                         |                    |                         |                   |                            |                         |
| 80                       |                                          |                         |                    |                         |                   |                            |                         |
| 70                       |                                          |                         |                    |                         |                   |                            |                         |
| 60                       |                                          |                         |                    |                         |                   |                            |                         |
| 50                       | mar 2                                    |                         |                    |                         |                   |                            |                         |
| 40                       | and and a second second                  | and many starts         | ulturoperation     | w. An in provide        | the start and the | -                          | mana                    |
| 30                       |                                          |                         |                    |                         |                   |                            |                         |
| 20                       |                                          |                         |                    |                         |                   |                            |                         |
| 10                       |                                          |                         |                    |                         |                   |                            |                         |
|                          |                                          |                         |                    |                         |                   |                            |                         |
| 2478 24                  | 81. 2483. 248                            |                         | 2489.<br>quency (N |                         | 2493. 24          | 195. 249                   | 97. 2500                |
|                          | Reading Antenna                          | Cable                   | Preamp             |                         | Limiț             | Over                       |                         |
| MHz                      | .evel factor<br>dBuV dB/m                | loss<br>dB              | factor<br>dB       | level<br>dBu∛/m         | level<br>dBu∛/m   | limit<br>dB                | Remark                  |
| 2483.500 3<br>2483.500 5 | 4.51 27.26<br>4.39 27.26                 | 4.52<br>4.52            | 38.59<br>38.59     | 27.70<br>47.58          | 54.00<br>74.00    | -26.30<br>-26.42           | Average<br>Peak         |
| 2500.000 3               | 14.39 27.20<br>3.51 27.30<br>16.90 27.30 | 4. 52<br>4. 49<br>4. 49 | 38.60<br>38.60     | 47.58<br>26.70<br>40.09 |                   | -20.42<br>-27.30<br>-33.91 | Feak<br>Average<br>Peak |
| 2000.000 4               | 21.30                                    | 4.40                    | 50.00              | 40.05                   | 14.00             | 33.31                      | ICAK                    |

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

# GTS

Report No.: GTS2024050078F01

# 8 Test Setup Photo

Reference to the appendix I for details.

# 9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----