

Xiamen Joint Tech. Co., Ltd

RF TEST REPORT

Report Type:

FCC Part 15.225 RF report

Model:

JNT-EVCxx/xxAC/xxC/xx/xx

REPORT NUMBER:

220801138SHA-001

ISSUE DATE:

October 18, 2022

DOCUMENT CONTROL NUMBER:

TTRFFCCPART15C_V1 © 2018 Intertek

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

Telephone: 86 21 6127 8200

www.intertek.com

Report no.: 220801138SHA-001

Applicant: Xiamen Joint Tech. Co., Ltd

Building #1, No. 268 HouXiang Rd, Xinyang Industrial Park, Haicang District,

XIAMEN Fujian

Manufacturer: Xiamen Joint Tech. Co., Ltd

Building #1, No. 268 HouXiang Rd, Xinyang Industrial Park, Haicang District,

XIAMEN Fujian

Manufacturing Site: Xiamen Joint Tech. Co., Ltd

Building #1, No. 268 HouXiang Rd, Xinyang Industrial Park, Haicang District,

XIAMEN Fujian

Product Name: Electric Vehicle AC Charger

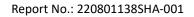
Type/Model: JNT-EVCxx/xxAC/xxC/xx/xx

FCC ID: 2A2RN-ACEVCN13P2

SUMMARY:

DDEDARED DV.

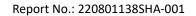
The equipment complies with the requirements according to the following standard(s) or Specification:

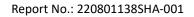

47CFR Part 15 (2019): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

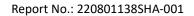
FILLEARLD DI.	KLVILVVLD DI.	
Tylan tang	Wakeyou	
Project Engineer	Reviewer	
Dylan Tang	Wakevou Wang	

DEV/IEW/ED BV


This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

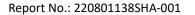

Content

RE	VISIO	ON HISTORY	
М	EASU	JREMENT RESULT SUMMARY	
1	G	GENERAL INFORMATION	
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	-
	1.2	TECHNICAL SPECIFICATION	
	1.3	DESCRIPTION OF TEST FACILITY	
2	т	EST SPECIFICATIONS	
_			
	2.1	STANDARDS OR SPECIFICATION	
	2.2	MODE OF OPERATION DURING THE TEST	
	2.3	TEST SOFTWARE LIST	
	2.4	TEST PERIPHERALS LIST	
	2.5	TEST ENVIRONMENT CONDITION:	
	2.6	INSTRUMENT LIST	
	2.7	MEASUREMENT UNCERTAINTY	
3	F	UNDAMENTAL EMISSION	13
	3.1	LIMIT	13
	3.2	Measurement Procedure	13
	3.3	TEST CONFIGURATION	14
	3.4	TEST RESULTS OF FUNDAMENTAL EMISSIONS	15
4	S	PURIOUS EMISSION	10
	4.1	LIMIT	16
	4.2	Measurement Procedure	
	4.3	TEST RESULTS OF RADIATED EMISSIONS	
5	FI	REQUENCY STABILITY (TEMPERATURE VARIATION)	19
	5.1	TEST LIMIT	10
	5.2	TEST CONFIGURATION	
	5.3	TEST PROCEDURE AND TEST SETUP	
	5.4	TEST PROTOCOL	
6		REQUENCY STABILITY (VOLTAGE VARIATION)	
U		•	
	6.1	. =	
	6.2	TEST CONFIGURATION	
	6.3	TEST PROCEDURE AND TEST SETUP	
	6.4	TEST PROTOCOL	22
7	C	CONDUCTED EMISSIONS	23
	7.1	LIMIT	23
	7.2	TEST CONFIGURATION	23
	7.3	MEASUREMENT PROCEDURE	24
	7.4	TEST RESULTS OF CONDUCTED EMISSIONS	25
8	2	ODB BANDWIDTH	27
	811	LIMIT	
		TEST CONFIGURATION	
		. == . == ==	


	8.4 Test protocol	29
9	ANTENNA REQUIREMENT	30

Revision History

Report No.	Version	Description	Issued Date
220801138SHA-001	Rev. 01	Initial issue of report	October 18, 2022

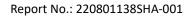


Measurement result summary

TEST ITEM	FCC REFERANCE	RESULT
Fundamental emission	15.225(a) (b) (c)	Pass
Spurious emission	15.225(d)	Pass
Frequency stability	15.225(e)	Pass
Conducted emissions	15.207	Pass
99% and 20dB Bandwidth	15.215(c)	Pass
Antenna requirement	15.203	Pass

Notes: 1: NA =Not Applicable

2: Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

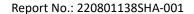

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	Electric Vehicle AC Charger
	JNT-EVCxx/xxAC/xxC/xx/xx
	"xx" denotes Appearance, can be 10=10type,11=11ytpe,12=12type,
	16=16type,17=17type.
	"xx" denotes Wattage, can be 80=80A.
	"xx" denotes Outlet type, can be 01=type 1,02=type 2.
	"xx" denotes Colour, can be SR=Silver, RD=Red, BK=Black, BU=Blue
	or other colour.
	"xx" denotes Function, can be WF=WiFi+BT, 4G=4G,RF=RFID,
	RF/4G= RFID+4G, RF/WF=RFID+WiFi, If blank, it means Plug and
Type/Model:	charge.
	The EUT is Electric Vehicle AC Charger with RFID Function, it supports
	WIFI and LTE function, the wireless modular FCC ID is 2AC7Z- ESP
	WROOM32 and XMR201909EC25AFX. Both module are selectable, but
	cannot be used at same. there have two models and they are same
	except the appearance and display screen. So choose
Description of EUT:	JNT-EVC10/80AC/01C/SR/4G to test as representative.
Rating:	200-240V ~ 60Hz
EUT type:	☐ Table top ☐ Floor standing
Software Version:	N1-3P2-C6
Hardware Version:	N1-3P2
Serial numbers:	0221019-44-001(for radiation sample)
Sample received date:	August 15, 2022
Date of test:	August 15, 2022 ~ September 30, 2022

1.2 Technical Specification

Frequency Range:	13.56 MHz ~ 13.56 MHz
Modulation:	ASK
Antenna gain:	ЗdВі



1.3 Description of Test Facility

Name:	Intertek Testing Services Shanghai
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is	CNAS Accreditation Lab
recognized,	Registration No. CNAS L0139
certified, or	FCC Accredited Lab
accredited by these	Designation Number: CN1175
organizations:	IC Registration Lab CAB identifier.: CN0051 VCCI Registration Lab Registration No.: R-14243, G-10845, C-14723, T-12252
	A2LA Accreditation Lab Certificate Number: 3309.02

2 TEST SPECIFICATIONS

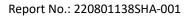
2.1 Standards or specification

47CFR Part 15 (2019) ANSI C63.10 (2013)

2.2 Mode of operation during the test

While testing, the internal modulation and continuously transmission was applied.

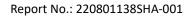
2.3 Test software list

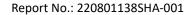

Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

Item No	Description	Band and Model	S/No
-	-	-	-

2.5 Test environment condition:


Test items	Temperature	Humidity
Radiated emission	26°C	53% RH
Power line conducted emission	27°C	53% RH


2.6 Instrument list

2.6 Instrument list									
	Conducted En	nission/Disturbance	e Power/Tri-loop Tes	t/CDN method					
Used	Equipment Manufacturer		Туре	Internal no.	Due date				
>	Test Receiver	R&S	ESCS 30	EC 2107	2023-07-18				
>	A.M.N.	R&S	ESH2-Z5	EC 3119	2022-11-09				
	A.M.N.	R&S	ENV 216	EC 3393	2023-07-17				
	A.M.N.	R&S	ENV4200	EC 3558	2023-06-04				
	Absorbing clamp	R&S	MDS 21	EC 2108	2023-06-04				
	CDN	Frankonia	CDN M2M316	EC 5969	2023-02-10				
	CDN	Schaffner	CDN M316	EC 2113-1	2023-09-19				
>	Attenuator	Weinschel	68-6-44	EC 3043-9	2023-02-08				
	Tri-loop	Schwarzbeck	HXYZ 9170	EC 3384	2023-01-20				
	Voltage Probe	Schwarzbeck	TK9420	EC 4888	2022-10-10				
	Current probe	R&S	EZ-17	EC 3221	2022-12-22				
	I.S.N.	FCC	FCC-TLISN -T2-02	EC 3754	2023-02-08				
	I.S.N.	FCC	FCC-TLISN -T4-02	EC 3755	2023-02-08				
	I.S.N.	FCC	FCC-TLISN -T8-02	EC 3756	2023-02-08				
		Radiated	l Emission						
Used	Equipment	Manufacturer	Туре	Internal no.	Due date				
>	Test Receiver	R&S	ESIB 26	EC 3045	2022-10-19				
>	Bilog Antenna	TESEQ	CBL 6112B	EC 6411	2023-08-23				
	Pre-amplifier	Tonscend	tap01018050	EC 6432-1	2022-12-26				
	Horn antenna	Tonscend	bha9120d	EC 6432-2	2023-01-09				
	Horn antenna	ETS	3117	EC 4792-1	2023-08-28				
	Horn antenna	TOYO	HAP18-26W	EC 4792-3	2023-07-29				
>	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2023-06-15				
		EM TEST	NETWAVE-30- 400	EC 5383-2	2023-06-17				

	RF test									
Used	Equipment	Manufacturer	Туре	Internal no.	Due date					
>	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2023-03-14					
>	Power sensor	Agilent	U2021XA	EC 5338-1	2023-03-14					
>	Vector Signal Generator	Agilent	N5182B	EC 5175	2023-03-14					
~	Spectrum analyzer	R&S	CMW500	EC5944	2023-01-20					
>	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2023-03-14					
	Mobile Test System	Litepoint	Iqxel	EC 5176	2023-01-11					
	Test Receiver	R&S	ESCI 7	EC 4501	2022-12-09					
		Tet	Site							
Used	Equipment	Manufacturer	Туре	Internal no.	Due date					
>	Shielded room	Zhongyu	-	EC 2838	2023-01-11					
	Shielded room	Zhongyu	-	EC 2839	2023-01-11					
>	Semi-anechoic chamber	Albatross project	-	EC 3048	2023-07-08					
	Fully-anechoic chamber	Albatross project	-	EC 3047	2023-07-08					
		Additional	instrument							
Used	Equipment	Manufacturer	Туре	Internal no.	Due date					
>	Spectrum analyzer	Agilent	E7402A	EC 2254	2023-07-17					
>	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3783	2023-03-24					
	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 2122	2023-03-08					
>	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 5198	2023-01-03					
	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3326	2023-03-08					
	Pressure meter	YM3	Shanghai Mengde	EC 3320	2023-09-13					

2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Expanded Uncertainty (k=2)
Conducted emission at mains parts	9kHz ~ 150kHz	3.52 dB
Conducted emission at mains ports	150kHz ~ 30MHz	3.19 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	4.90 dB
Redicted Emissions above 1 CUz	1GHz ~ 6GHz	5.02 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.28 dB

Report No.: 220801138SHA-001

3 Fundamental Emission

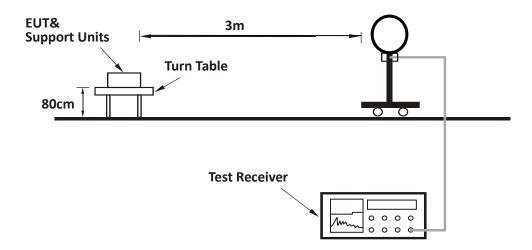
Test result: Pass

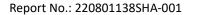
3.1 Limit

Frequencies (MHz)	Limit at 30m (dBuV/m)	Limit at 3m (dBuV/m)
13.110 – 13.410	40.50	80.50
13.410 – 13.553	50.50	90.50
13.553 – 13.567	84.00	124.00
13.567 – 13.710	50.50	90.50
13.710 – 14.010	40.50	80.50

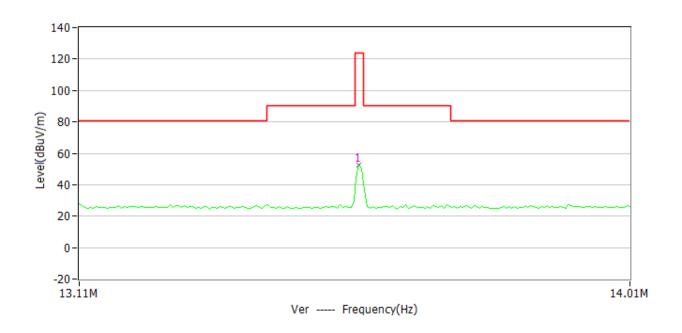
3.2 Measurement Procedure

- a) The EUT was placed on a 0.1m plank above the ground at a 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to PK Detect Function and Specified Bandwidth with Maximum Hold Mode.


NOTE:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

Report No.: 220801138SHA-001


3.3 Test Configuration

3.4 Test Results of Fundamental Emissions

Antenna Polarization	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin	Detector
Х	13.56	52.8	20.40	124.00	71.2	PK
Υ	13.56	41.0	20.40	124.00	83.0	PK
Z	13.56	50.5	20.40	124.00	73.5	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,

Limit = 40.00dBuV/m.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m;

Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m;

Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

Report No.: 220801138SHA-001

4 Spurious Emission

Test result: Pass

4.1 Limit

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

4.2 Measurement Procedure

For Radiated emission below 30MHz:

- f) The EUT was placed on a 0.1m plank above the ground at a 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- g) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- h) Both X and Y axes of the antenna are set to make the measurement.
- i) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- j) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz:

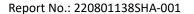
- a) The EUT was placed on a 0.1m plank above the ground at a 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Report No.: 220801138SHA-001

TEST REPORT

- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. All modes of operation were evaluated and the worst-case emissions were reported

4.3 Test Results of Radiated Emissions

The EUT has been tested in all three orthogonal planes, it has the worst case when it is in horizontal position for both below 30MHz & above 30MHz.

Test data below 30MHz:

Antenna Polarization	Frequency	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin	Detector	Remark
Х	9.848kHz	57.9	20.1	127.7	69.8	PK	Spurious
Х	449.098kHz	56.7	20.0	94.6	37.9	PK	Spurious
Х	568.738kHz	53.4	20.0	72.5	19.1	PK	Spurious
Х	688.377kHz	50.7	20.1	70.9	20.2	PK	Spurious
Х	9.003MHz	44.5	20.3	69.5	25.0	PK	Spurious
Х	22.582MHz	46.0	20.7	69.5	23.5	PK	Spurious
Υ	9.848kHz	70.2	20.1	127.7	57.6	PK	Spurious
Υ	508.918kHz	54.3	20.0	73.5	19.2	PK	Spurious
Υ	688.377kHz	50.0	20.1	70.9	20.8	PK	Spurious
Υ	7.328MHz	43.5	20.3	69.5	26.0	PK	Spurious
Υ	9.482MHz	44.8	20.3	69.5	24.7	PK	Spurious
Υ	22.463MHz	48.4	20.7	69.5	21.1	PK	Spurious
Z	9.848kHz	56.0	20.1	127.7	71.8	PK	Spurious
Z	269.639kHz	51.7	20.1	99.0	47.3	PK	Spurious
Z	389.279kHz	55.2	20.0	95.8	40.6	PK	Spurious
Z	568.738kHz	54.6	20.0	72.5	17.9	PK	Spurious
Z	808.016kHz	44.8	20.2	69.5	24.7	PK	Spurious
Z	1.765MHz	32.2	20.4	69.5	37.3	PK	Spurious

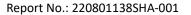
Test data from 30MHz to 1000MHz:

Antenna Polarization	Frequency (MHz)	Corrected Reading (dBuV/m)	Correct Factor (dB/m)	Limit (dBuV/m)	Margin	Detector
Н	108.473	31.9	10.6	43.5	11.6	PK
Н	120.889	35.2	11.7	43.5	8.3	PK
Н	129.910	43.0	12.8	43.5	0.5	PK
Н	141.453	32.7	14.1	43.5	10.8	PK
Н	189.856	36.6	12.2	43.5	6.9	PK
Н	515.291	37.7	20.5	46.0	8.3	PK
V	30.388	35.3	12.8	40.0	4.7	PK
V	40.670	34.9	13.8	40.0	5.1	PK
V	129.813	37.8	12.8	43.5	5.7	PK
V	189.856	33.9	12.2	43.5	9.6	PK
V	474.648	36.6	19.5	46.0	9.4	PK
V	515.291	45.4	20.5	46.0	0.6	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

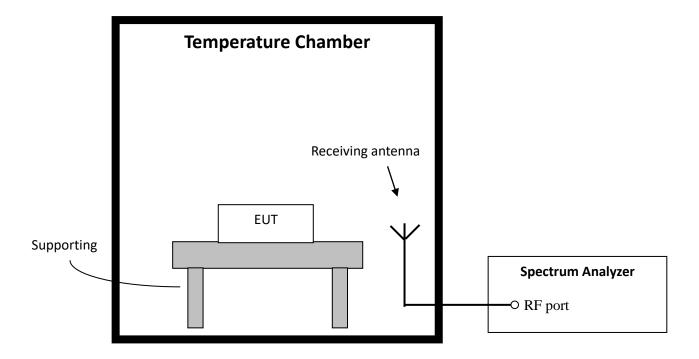

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,

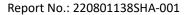
Limit = 40.00dBuV/m.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m;

Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m;

Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

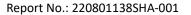

5 Frequency Stability (Temperature Variation)


Test result: PASS

5.1 Test limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage.

5.2 Test Configuration



5.3 Test procedure and test setup

Test Procedure as per ANSI 63.10 clause 6.8.1.

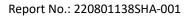
5.4 Test protocol

Voltage	Temp	Freq measured	Freq nominal	Tolerance (%)	Limit	
(V)	(₀C)	(MHz)	(MHz)		(%)	
	-20	13.554		0.006		
	-10	13.556		0.004	0.01	
	0	13.560		0		
240	10	13.560	13.560	0		
	20	13.560	25,533	0		
	30	13.557		0.003		
	40	13.558		0.002		
	50	13.555		0.005	1	


6 Frequency Stability (Voltage Variation)

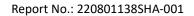
Test result: PASS

6.1 Test limit


The frequency tolerance of the carrier signal shall be maintained within ±0.01% for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

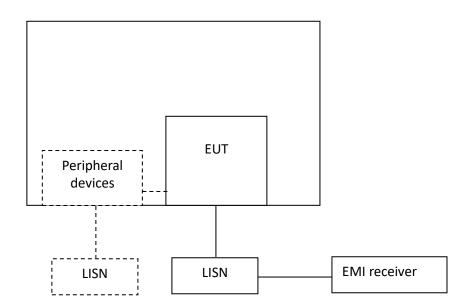
6.2 Test Configuration

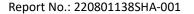
6.3 Test procedure and test setup


Test Procedure as per ANSI 63.10 clause 6.8.2.

6.4 Test protocol

Temp (ºC)	Voltage (V)	Freq Measured (MHz)	Freq nominal (MHz)	Tolerance (%)	Limit (%)
	240	13.560		0	
20	204	13.555	13.560	0.005	0.01
	276	13.554		0.006	

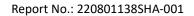

7 Conducted emissions


Test result: Pass

7.1 Limit

Francisco es of Francisco (DALL-)	Conducted Emissions Limit (dBuV)				
Frequency of Emission (MHz)	QP	AV			
0.15-0.5	66 to 56*	56 to 46 *			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

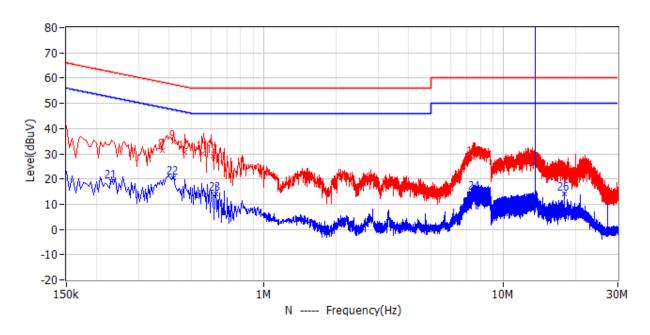
7.2 Test Configuration

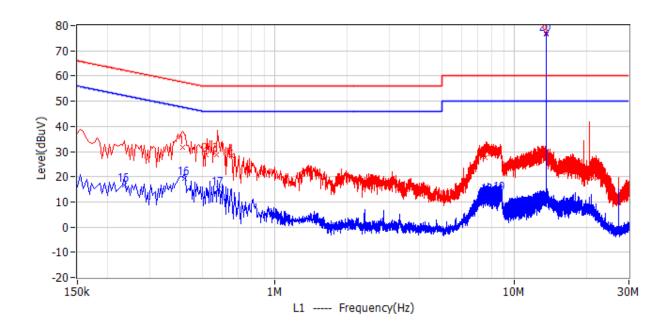


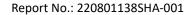
7.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

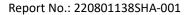

The bandwidth of the test receiver is set at 9 kHz.





7.4 Test Results of Conducted Emissions

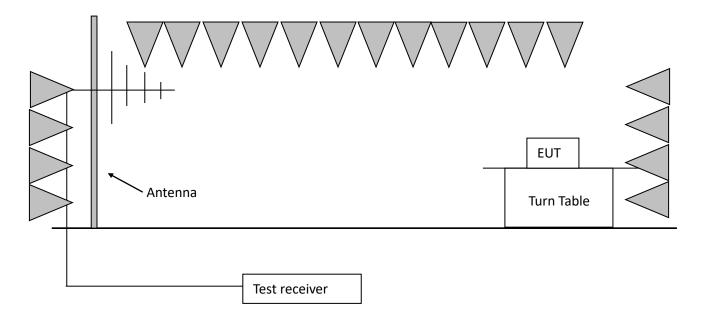
Test Curve:

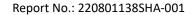


No	- Fraguenov	Limit	Level	Margin	Reading	Factor	Detector	Dhaca
No.	Frequency	dBuV	dBuV	dB	dBuV	dB	Detector	Phase
1	411.000kHz	57.6	31.8	25.9	25.6	6.2	QP	L1
2	514.500kHz	56.0	28.6	27.4	22.4	6.2	QP	L1
3	573.000kHz	56.0	28.8	27.2	22.6	6.2	QP	L1
4	658.500kHz	56.0	28.2	27.8	22.0	6.2	QP	L1
5	7.526MHz	60.0	27.7	32.3	21.4	6.3	QP	L1
!6	13.560MHz		77.1		70.7	6.4	QP	L1
7	20.657MHz	60.0	19.7	40.3	13.3	6.4	QP	L1
8	375.000kHz	58.4	31.2	27.2	25.0	6.2	QP	N
9	420.000kHz	57.4	34.5	23.0	28.2	6.3	QP	Ν
10	469.500kHz	56.5	30.6	25.9	24.3	6.3	QP	Ν
11	555.000kHz	56.0	30.1	25.9	23.8	6.3	QP	Ν
12	613.500kHz	56.0	29.2	26.8	22.9	6.3	QP	N
13	7.490MHz	60.0	28.2	31.8	21.8	6.4	QP	N
!14	13.560MHz		83.6		77.2	6.4	QP	Ν
15	235.500kHz	52.3	16.6	35.6	10.4	6.2	AV	L1
16	420.000kHz	47.4	19.5	28.0	13.3	6.2	AV	L1
17	582.000kHz	46.0	15.1	30.9	8.9	6.2	AV	L1
18	7.751MHz	50.0	12.7	37.3	6.4	6.3	AV	L1
19	8.741MHz	50.0	13.3	36.7	7.0	6.3	AV	L1
!20	13.560MHz		76.7		70.3	6.4	AV	L1
21	231.000kHz	52.4	18.9	33.6	12.6	6.3	AV	Ν
22	420.000kHz	47.4	20.6	26.9	14.3	6.3	AV	N
23	631.500kHz	46.0	14.1	31.9	7.8	6.3	AV	N
24	7.589MHz	50.0	14.3	35.7	7.9	6.4	AV	N
!25	13.560MHz		83.3		76.9	6.4	AV	N
26	17.903MHz	50.0	14.1	35.9	7.6	6.5	AV	N

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Corrected Reading
- 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

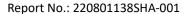

8 20dB Bandwidth


Test result: Pass

8.1 Limit

The 20dB bandwidth should be fallen in the allocated operating frequency range. No limit for 99% bandwidth.

8.2 Test configuration

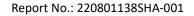

8.3 Test procedure and test set up

The measurement was applied in a 3m semi-anechoic chamber.

The center of the loop antenna shall be 1 m above the horizontal metal ground plane.

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set RBW = 1% to 5% of the OBW
- 3. Set VBW \geq 3 · RBW
- 4. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 5. Use the 99 % power bandwidth function of the instrument (if available).
- 6. the 20dB bandwidth is also measured with the same setting.



8.4 Test protocol

	Lower point	Higher point	Bandwidth	Allocated bandwidth
	(MHz)	(MHz)	(kHz)	(MHz)
20dB Bandwidth	13.559899	13.562398	2.119	13.553 ~ 13.567

9 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:
EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions
of this section.