

Page : 1 / 32 Report No. : RAPA21-O-025

RF TEST REPORT

Report number		RAPA21-O-025	
Name		IOT WARE Co., Ltd	
Applicant	Logo	N/A	
	Address	#1303-1, Gasan Hansin IT Tower 2cha, 47, Digital-ro 9-gil, Geumcheno-gu, Seoul, Korea	
	Name	IOT WARE Co., Ltd	
Manufacturer	Address	#1303-1, Gasan Hansin IT Tower 2cha, 47, Digital-ro 9-gil, Geumcheno-gu, Seoul, Korea	
Type of equ	ipment	RFID reader	
Basic mode	l name	RFID reader	
Multi mode	l name	I9-2000N	
Serial nui	mber	U9-2000N	
FCC ID		2A2RE-I9-2000N	
Test duration		September 3, 2021 to September 10, 2021	
Date of issue		September 10, 2021	
Total page		32 Pages (including this page)	

SUMMARY

The equipment complies with the regulation; FCC Part 15 Subpart C Section 15.247

This test report only contains the result of a single test of the sample supplied for the examination. It is not a general valid assessment of the features of the respective products of the mass-production.

September 10, 2021

September 10, 2021

Tested by MinGu Ji Tester

Reviewed by Hyun Soo Lee Executive Managing Director

Page : 2 / 32 Report No. : RAPA21-O-025

Test Report Version History

Version	Date	Reason for revision
1.0	September 10, 2021	Original Document

CONTENTS

1. Description of EUT	4
1.1 Applicant	4
1.2 Manufacturer	
1.3 Basic description	4
1.4 General description	
1.5 Alternative type(s)/model(s)	
2. General information of test	6
2.1 Test standards and results	6
2.2 Description of EUT during the test	
2.3 Test configuration	
2.4 Test Facility	
2.5 PRELIMINARY TEST	
3. Measurement data	8
3.1 Minimum 20 dB Bandwidth	8
3.2 Hopping Frequency Separation	
3.3 Number Of Hopping Chanels	13
3.3 Time Of Occupancy	15
3.3 Maximum Peak Output Power	
3.3 100 kHz Bandwidth Outside the Frequency Band	20
3.4 Radiated Emission	
3.6 Conducted Emission Test	
3.7 Antenna Requirement	
4 Test equipment list	32

Laboratory Page : 4 / 32 Report No. : RAPA21-O-025

1. Description of EUT

1.1 Applicant

• Company name : IOT WARE Co., Ltd

• Address : #1303-1, Gasan Hansin IT Tower 2cha, 47, Digital-ro 9-gil, Geumcheno-gu, Seoul, Korea

• Contact person : Rack Eon Koo / Header of research center / rekoo@iotware.net

• Phone/Fax : +82-2-866-1150 / +82-2-866-0512

1.2 Manufacturer

• Company name : IOT WARE Co., Ltd

• Address : 76, Hanam-daero, Hanam-si, Gyeonggi-do, Republic of Korea

• Phone/Fax : +82-2-866-1150 / +82-2-866-0512

1.3 Basic description

Product name : RFID reader
Basic model name : I9-2000N
Alternative model name : U9-2000N

1.4 General description

• EQUIPMENT CLASS : DSS – SPREAD SPECTRUM TRANSMITTER

• Frequency Range : 911.3 MHz ~ 925.7 MHz

Output Power : 29.8 dBm
 Modulation Type : ASK
 Number of Channel : 73

Antenna Type : Pacth Antenna
Antenna Gain : 2.45 dBi
Power Supply : DC 12.0 V

Page: 5 / 32 Report No.: RAPA21-O-025

Channel List

Number	Freq(MHz)	Number	Freq(MHz)	Number	Freq(MHz)
1	911.3	26	916.3	51	921.3
2	911.5	27	916.5	52	921.5
3	911.7	28	916.7	53	921.7
4	911.9	29	916.9	54	921.9
5	912.1	30	917.1	55	922.1
6	912.3	31	917.3	56	922.3
7	912.5	32	917.5	57	922.5
8	912.7	33	917.7	58	922.7
9	912.9	34	917.9	59	922.9
10	913.1	35	918.1	60	923.1
11	913.3	36	918.3	61	923.3
12	913.5	37	918.5	62	923.5
13	913.7	38	918.7	63	923.7
14	913.9	39	918.9	64	923.9
15	914.1	40	919.1	65	924.1
16	914.3	41	919.3	66	924.3
17	914.5	42	919.5	67	924.5
18	914.7	43	919.7	68	924.7
19	914.9	44	919.9	69	924.9
20	915.1	45	920.1	70	925.1
21	915.3	46	920.3	71	925.3
22	915.5	47	920.5	72	925.5
23	915.7	48	920.7	73	925.7
24	915.9	49	920.9		
25	916.1	50	921.1		

1.5 Alternative type(s)/model(s)

The Following Lists Consist to of the added model and their differences.

Model name	Differences	Tested
19-2000N	Basic Model	
U9-2000N	It is the same as the I9-2000N model, only the model name is added.	

Page : 6 / 32 Report No. : RAPA21-O-025

2. General information of test

2.1 Test standards and results

	Applied Standards : FCC Part 15 Subpart C			
Section	Section Description of Test			
15.247 (a) (1)	Carrier Frequency Separation	Pass		
45 047 (-) (4) (;;;)	Minimum Number of Hopping Channels	Pass		
15.247 (a) (1) (iii)	Average Time of Occupancy	Pass		
15 047 (d)	100 kHz Bandwidth Outside the Frequency Band	Pass		
15.247 (d)	Radiated Emission which fall in the Restricted Band	Pass		
15.247 (b) (1) Maximum Peak Conducted Output Power		Pass		
15.207 Conducted Limits		N/A		
15.209	Radiated Emission Limits, General Requirement			
15.203	Antenna Requirement Pass			

2.2 Description of EUT during the test

During the test, keep the EUT in continuously transmitting mode.

There was no mechanical or circuitry modification to improve RF and spurious characteristic, and any RF and spurious suppression device(s) was not added against the device tested.

The EUT was moved throughout the X, Y, and Z axis and worst case data was recorded in this report.

2.3 Test configuration

• Type of peripheral equipment used

Model	Manufacturer	Description	Connected to
19-2000N	IOT WARE Co., Ltd	USB	EUT
6560b	HP	Notebook	EUT
PPP12D-S	Delta Electronics Ltd.	Power Adapter	Notebook
B05-24-12	Daygreen	DC IN	EUT

2.4 Test Facility

• FCC Registration No: 931589

IC Company address code: 9355B
RRA Designation Number: KR0027

Place of Test

Anyang Test Site(RF Test Room)

#101 & B104 Anyang Megavalley, 268, Hagui-ro, Dongan-gu, Anyang-si, Gyeonggi-do, 14056, Korea

Page: 7 / 32 Report No.: RAPA21-O-025

2.5 PRELIMINARY TEST

2.5.1 AC Power line Conducted Emissions Tests

Not tested as it is a DC power supply and is not intended for use in vehicles.

2.5.2 General Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)	
Transmitting mode.	Х	

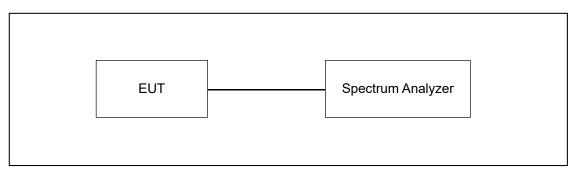
2.5.3 Special conditions for testing

This product uses 4 antenna ports, but does not support MIMO mode operation and operates in sequential SISO mode.

Antenna Port	Conducted Power (dBm)
1	31.1
2	30.8
3	30.7
4	30.9

As a result of the test for each port, port 1 was the worst, so the wired test was conducted with port 1.

Page: 8 / 32 Report No.: RAPA21-O-025


3. Measurement data

3.1 Minimum 20 dB Bandwidth

3.1.1 Requirement

• FCC Part15 subpart C Section 15.247

3.1.2 Test Procedure

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz, and peak detection was used. The 20 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 20 dB.

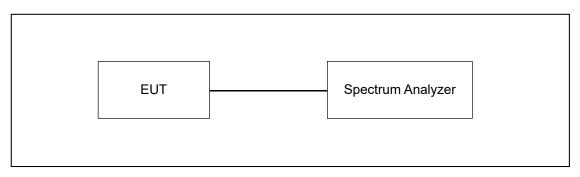
3.1.3 Test environment

• 24 °C, 48 % R.H.

3.1.4 Test results


Frequency [MHz]		Measured Value [kHz]	Limit [kHz]	Result
Low	911.3	111.0	500	
Middle	918.5	107.0	500	PASS
High	925.7	100.0	500	

3.1.5 Test Plots


Page: 11 / 32 Report No.: RAPA21-O-025

3.2 Hopping Frequency Separation

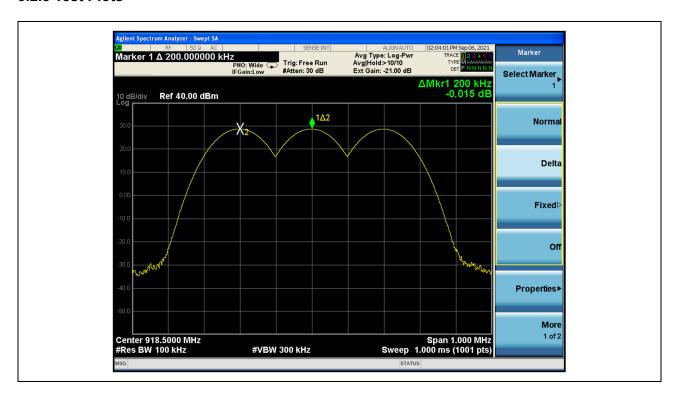
3.2.1 Requirement

• FCC Part15 subpart C Section 15.247

3.2.2 Test Procedure

The antenna output of the EUT was connected to the spectrum analyzer. The frequency span is set to 5 MHz. The analyzer is set to peak hold then a pseudo-random hopping sequence of the transmitter is captured. The mark delta function was used to measure the frequency separation between two adjacent hopping channels.

3.2.3 Test environment

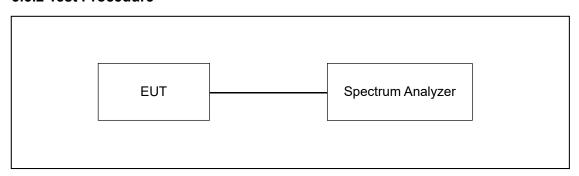

• 24 °C, 48 % R.H.

3.2.4 Test results

Frequency [MHz]	Measured Value [kHz]	Limit [dBm]	Result
918.50	200.0	Minimum of 25 kHz or the 20 dB Bandwidth	PASS

Page : 12 / 32 Report No. : RAPA21-O-025

3.2.5 Test Plots


Laboratory Page : 13 / 32 Report No. : RAPA21-O-025

3.3 Number Of Hopping Chanels

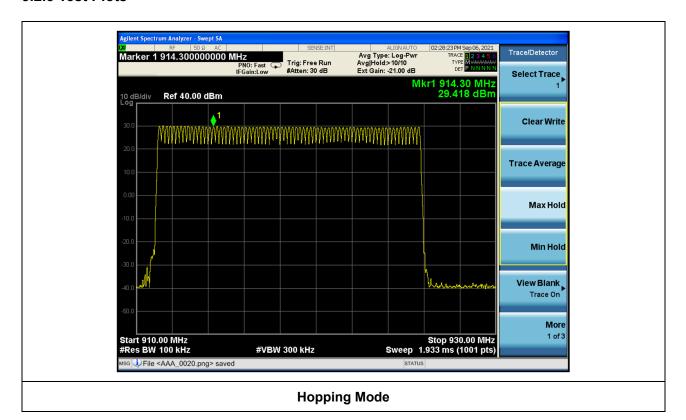
3.3.1 Requirement

• FCC Part15 subpart C Section 15.247

3.3.2 Test Procedure

The antenna output of the EUT was connected to the spectrum analyzer. The frequency span is set to frequency band of operation and the resolution bandwidth is set to 100 kHz. The analyzer is set to peak hold and then complete pseudo-random hopping sequence of the transmitter is captured..

3.3.3 Test environment

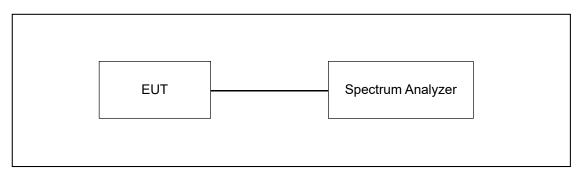

• 24 °C, 48 % R.H.

3.3.4 Test results

Frequency [MHz]	Measured Value [Number]	Limit [dBm]	Result
902 ~ 928	73	≥ 50	PASS

Page: 14 / 32 Report No.: RAPA21-O-025

3.2.5 Test Plots


Page : 15 / 32 Report No. : RAPA21-O-025

3.3 Time Of Occupancy

3.3.1 Requirement

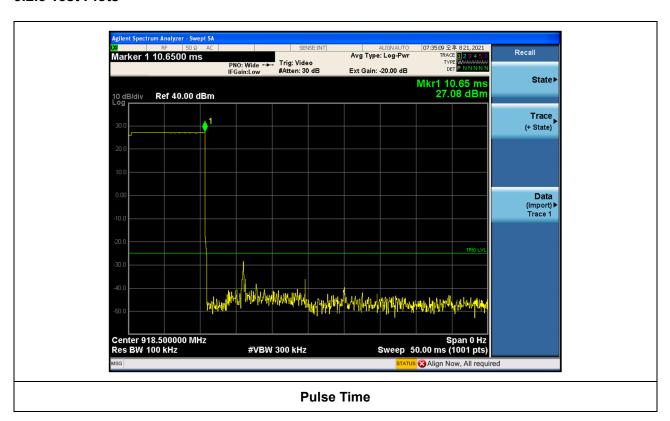
• FCC Part15 subpart C Section 15.247

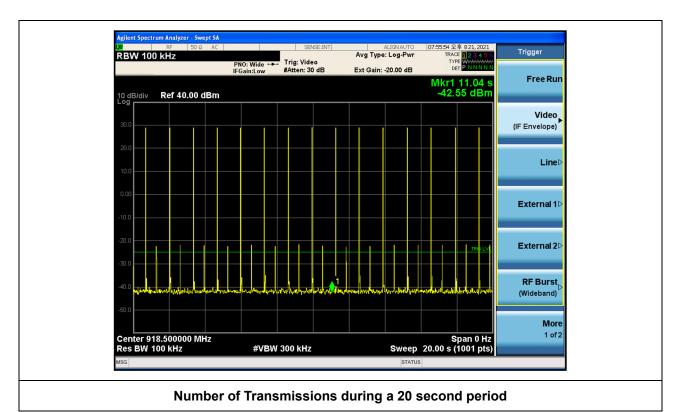
3.3.2 Test Procedure

The antenna output of the EUT was connected to the spectrum analyzer. The transmitter is set to operate in its normal frequency hopping mode. The center frequency of the spectrum analyzer is set to one of hopping channels near the center of the operating band and span is set to zero Hz. The sweep time is set to display one complete pulse. The mark delta function is used to measure the duration of the pulses.

3.3.3 Test environment

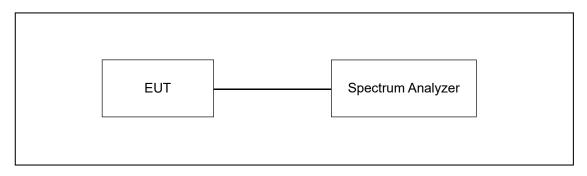
• 24 °C, 48 % R.H.


3.3.4 Test results


Frequency Range (MHz)	Pulse Time (ms)	Number of Pulse in 20 seconds	Average Occupancy Time (ms)	Limit (ms)
918.5	10.65	15	159.75	400

^{*} Average Occupancy Time = Pulse Time * Number of Pulse in 20 seconds

3.2.5 Test Plots


Page: 17 / 32 Report No.: RAPA21-O-025

3.3 Maximum Peak Output Power

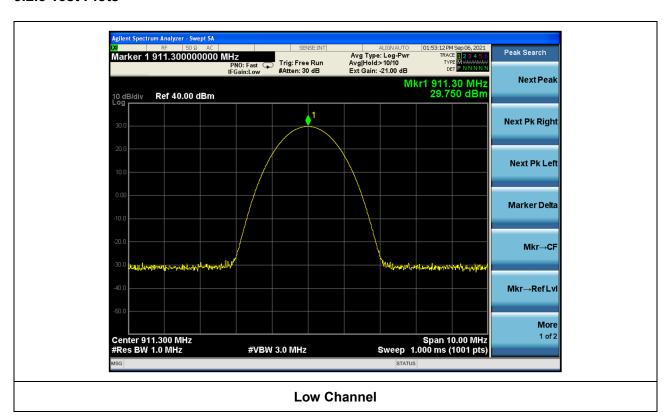
3.3.1 Requirement

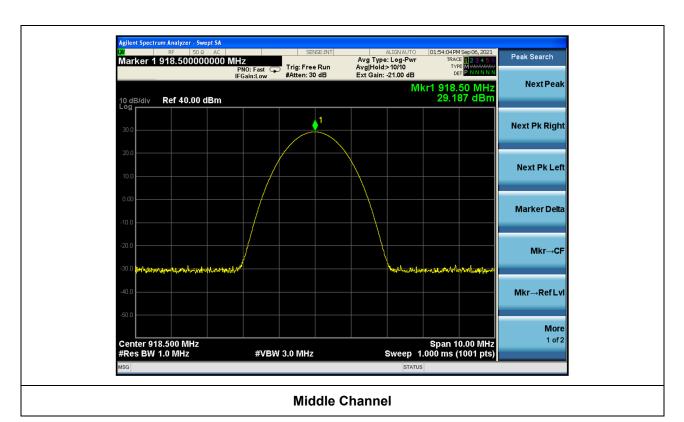
• FCC Part15 subpart C Section 15.247

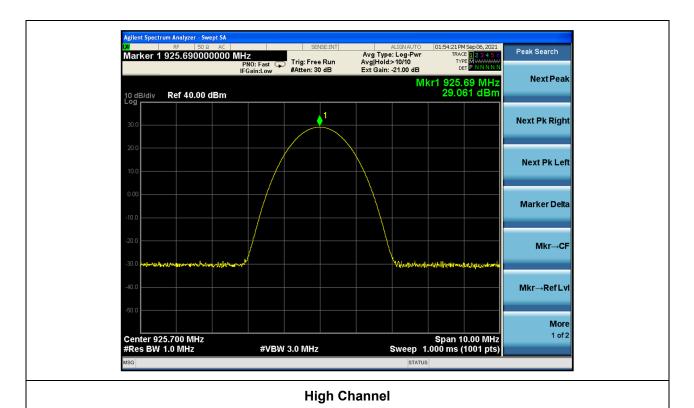
3.3.2 Test Procedure

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The EUT was operating in transmit mode at the appropriate center frequency.

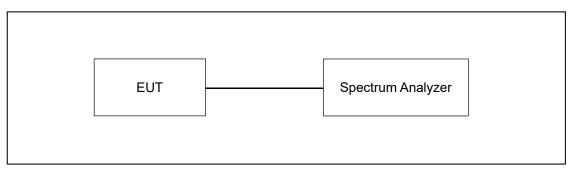
3.3.3 Test environment


• 24 °C, 48 % R.H.


3.3.4 Test results


Freque	ncy [MHz]	Measured Value [dBm]	Limit [dBm]	Result
Low	911.3	29.8		PASS
Middle	918.5	29.2	30.0	PASS
High	925.7	29.1		PASS

3.2.5 Test Plots


Page : 20 / 32 Report No. : RAPA21-O-025

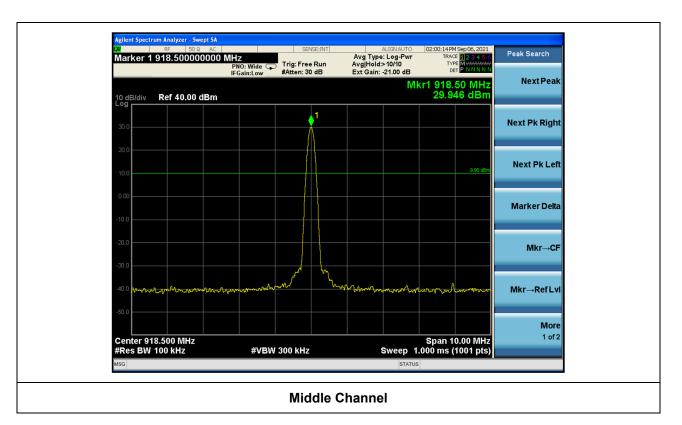
3.3 100 kHz Bandwidth Outside the Frequency Band

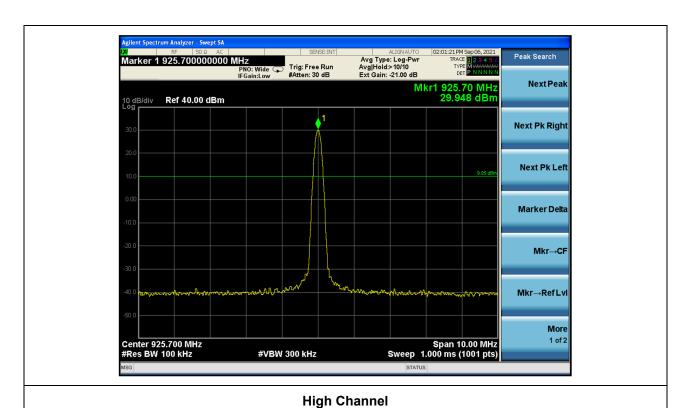
3.3.1 Requirement

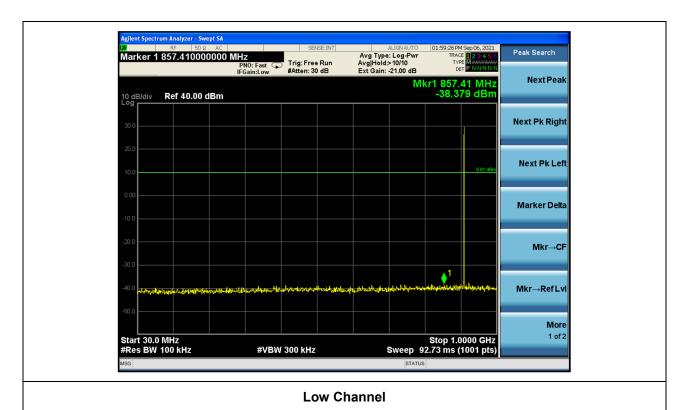
• FCC Part15 subpart C Section 15.247

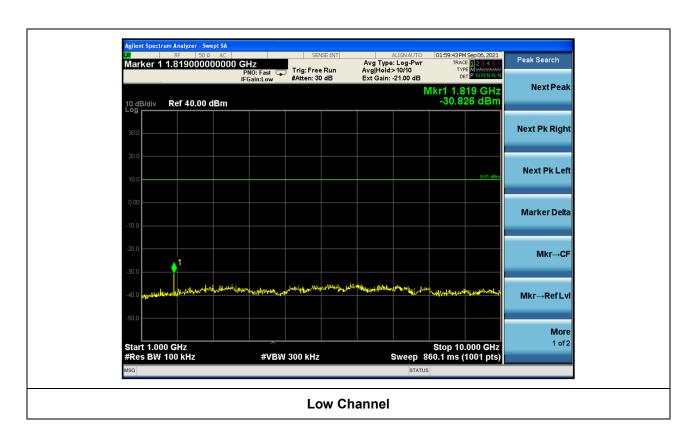
3.3.2 Test Procedure

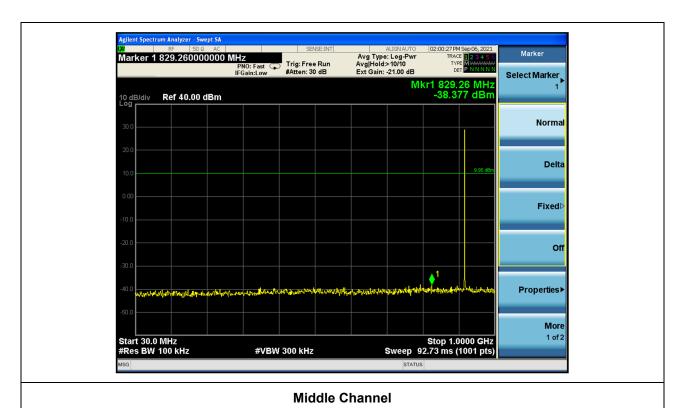
The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth and video bandwidth is set to 100 kHz, and peak detection was used.

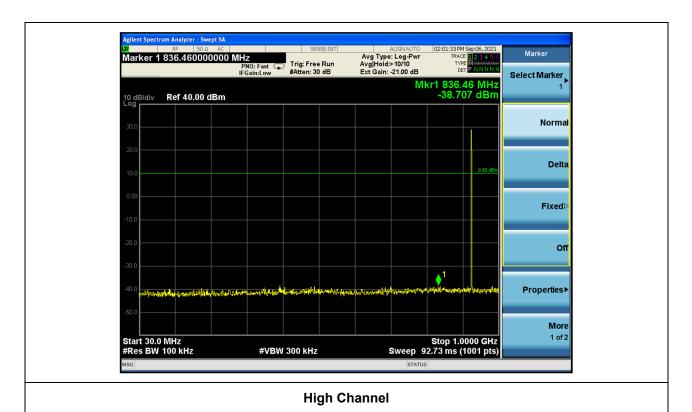

3.3.3 Test environment

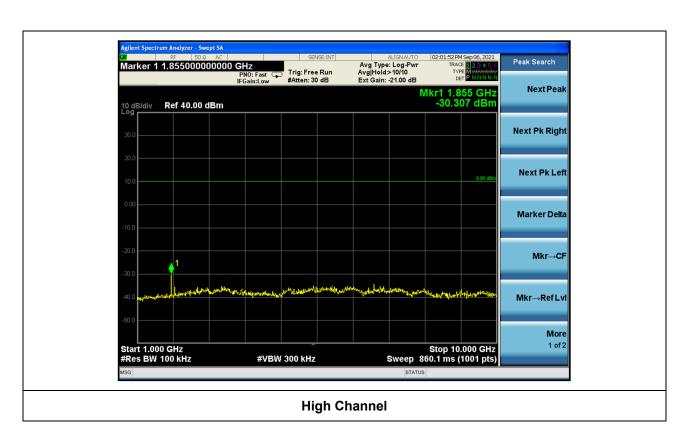

• 24 °C, 48 % R.H.




3.3.4 Test Plots







Laboratory Page : 26 / 32 Report No. : RAPA21-O-025

3.4 Radiated Emission

3.4.1 Requirement

• FCC Part15 subpart C Section 15.247

3.4.2 Test Procedure

The radiated emissions measurements were performed on the 3 m anechoic chamber. The EUT was placed on a non-conductive turntable above the ground plane. The frequency spectrum from 30 kHz to 10.0 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

3.4.3 Test environment

• 24 °C, 45 % R.H.

3.4.4 Test results

3.4.4.1 Radiated Emission which fall in the Restricted Band

Resolution bandwidth : 1 MHzVideo bandwidth : 3 MHz

•.Detector : Peak Mode(Peak), Average Mode(RMS)

•.Measurement distance : 3 m

•.Operating Condition : Highest Output Power Transmitting Mode(Low Channel and High Channel)

•.Result : PASS

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)		
Low Channel											
2733.89	44.24	Peak	Н				48.64	74.00	25.36		
2733.89	37.54	Average	Н	29.20	10.10	34.90	41.94	54.00	12.06		
2733.68	36.58	Peak	V	29.20	10.10	34.90	40.98	74.00	33.02		
2733.89	27.73	Average	V				32.13	54.00	21.87		
	Middle Channel										
2755.31	34.90	Peak	Н		10.10	34.90	39.30	74.00	34.70		
2755.31	24.55	Average	Н	29.20			28.95	54.00	25.05		
2755.52	38.45	Peak	V	29.20			42.85	74.00	31.15		
2755.52	30.05	Average	V				34.45	54.00	19.55		
High Channel											
2705.12	34.84	Peak	Н				39.24	74.00	34.76		
2777.15	24.94	Average	Н	29.20	10.10	34.90	29.34	54.00	24.66		
2777.15	36.13	Peak	V		10.10		40.53	74.00	33.47		
2777.15	28.78	Average	V				33.18	54.00	20.82		

Note 1. Total = Reading + Ant.Factor + Cable Loss – Amp Gain

Laboratory Page : 27 / 32 Report No. : RAPA21-O-025

3.4.4.2 Spurious & Harmonic Radiated Emission

Resolution bandwidth : 1 MHzVideo bandwidth : 3 MHz

•.Detector : Peak Mode(Peak), Average Mode(RMS)

•.Measurement distance : 3 m

•.Frequency range : 1 GHz ~ 10.0 GHz

• Operating Condition : Highest Output Power Transmitting Mode

•.Result : PASS

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)		
Low Channel											
1822.60	54.28	Peak	Н				52.58	74.00	21.42		
1822.60	42.53	Average	Н	26.30	7.60	25.60	40.83	54.00	13.17		
1822.60	58.07	Peak	V	20.30	7.60	35.60	56.37	74.00	17.63		
1822.60	53.18	Average	V				51.48	54.00	2.52		
Middle Channel											
1837.00	59.37	Peak	Н		7.60	35.50	57.87	74.00	16.13		
1837.00	42.47	Average	Н	26.40			40.97	54.00	13.03		
1837.00	53.79	Peak	V	20.40			52.29	74.00	21.71		
1837.00	47.55	Average	V				46.05	54.00	7.95		
High Channel											
1851.40	54.39	Peak	Н				53.09	74.00	20.91		
1851.40	38.62	Average	Н	26.60 7.60	7.60	35.50	37.32	54.00	16.68		
1851.40	50.05	Peak	V		.60 35.50	48.75	74.00	25.25			
1851.40	49.20	Average	V				47.90	54.00	6.10		

Note 1. Total = Reading + Ant.Factor + Cable Loss – Amp Gain

Laboratory Page : 28 / 32 Report No. : RAPA21-O-025

3.4.4.3 Spurious Radiated Emission

3.4.4.3.1 Test Data for Below 30 MHz for RFID Mode

•. Detector : Quasi-Peak (6 dB Bandwidth: 200 Hz, 9 kHz)

•.Measurement distance : 3 m

•.Frequency range : 9 kHz ~ 30 MHz

• Operating Condition : Highest Output Power Transmitting Mode

•.Result : PASS

Frequency	Reading	Ant. Pol.	Ant. Factor	Cable	Amp	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	(dB/m)	Loss	Gain	Level(dBµV/m)	(dBµV/m)	(dB)

Emissions observed were 20dB below the limit and thus not reported

3.4.4.3.2 Test Data for Avove 1 GHz

•. Detector : Peak, Average (6 dB Bandwidth: 1 MHz)

•.Measurement distance : 3 m

•.Frequency range : 1 GHz ~ 26.5 GHz

• Operating Condition : Highest Output Power Transmitting Mode

•.Result : PASS

•.Result : PASS

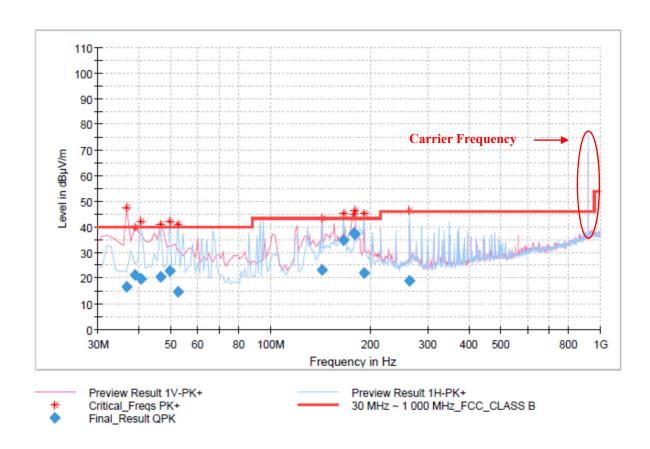
Frequency	Reading	Ant. Pol.	Ant. Factor	Cable	Amp	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	(dB/m)	Loss	Gain	Level(dBµV/m)	(dBµV/m)	(dB)

Emissions observed were 20dB below the limit and thus not reported

ratory Page : 29 / 32 Report No. : RAPA21-O-025

3.4.4.3.3 Test Data for 30 MHz ~ 1000 MHz

•. Detector : Quasi-Peak (6 dB Bandwidth: 120 kHz)


•.Measurement distance : 3 m

•.Frequency range : 30 MHz ~ 1000 MHz

• Operating Condition : Highest Output Power Transmitting Mode

•.Result : PASS

RE Test Report

Final Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(cm)		(deg)	(dB)
36.79	16.80	40.00	23.20	15000.0	400.0	٧	266.0	-24.4
38.73	21.45	40.00	18.55	15000.0	400.0	٧	266.0	-24.2
40.67	19.78	40.00	20.22	15000.0	200.3	Н	114.0	-23.9
46.49	20.72	40.00	19.28	15000.0	400.0	٧	266.0	-23.8
49.40	22.69	40.00	17.31	15000.0	400.1	Н	189.0	-24.2
52.31	14.67	40.00	25.33	15000.0	99.8	Н	73.0	-25.0
143.49	23.42	43.50	20.08	15000.0	99.7	٧	90.0	-16.8
166.77	34.91	43.50	8.59	15000.0	200.3	Н	236.0	-15.9
178.41	37.41	43.50	6.09	15000.0	99.8	٧	67.0	-19.4
180.35	37.37	43.50	6.13	15000.0	99.7	٧	95.0	-19.5
191.99	22.06	43.50	21.44	15000.0	199.9	Н	68.0	-20.9
263.77	18.98	46.00	27.02	15000.0	200.3	Н	191.0	-20.0

Page : 30 / 32 Report No. : RAPA21-O-025

3.6 Conducted Emission Test

3.6.1 Requirement

• FCC Part15 subpart C Section 15.207

3.6.2 Test Procedure

The EUT was placed on a wooden table, 0.8 m height above the floor. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

3.6.3 Test data

- Not tested as it is a DC power supply and is not intended for use in vehicles.

Laboratory Page: 31 / 32 Report No.: RAPA21-O-025

3.7 Antenna Requirement

3.7.1 Requirement

- FCC Part15 subpart C Section 15.203
- An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

3.7.2 Result

• The antenna of the EUT is a Patch Antenna on the board in the EUT.

Page : 32 / 32 Report No. : RAPA21-O-025

4. Test equipment list

Use	Model Number	Manufacturer	Description	Serial Number	Cal. Date.(Interval)
\boxtimes	AMP 20-1000	INFINITECH	BROADBAND PRE-AMP	2013 05 00003	Jan 14, 2021(1Y)
\boxtimes	GP-4303DU	EZ Digital Co.,Ltd.	DC Power Supply	2100196	Jan 14, 2021(1Y)
\boxtimes	DS 2000S	Innco GmbH	Turn Table	N/A	N/A
\boxtimes	MA4000-EP-HS	Innco GmbH	Antenna Mast	N/A	N/A
\boxtimes	MA4640-XP-ET	Innco GmbH	Tilt Antenna Mast	N/A	N/A
\boxtimes	CO3000	Innco GmbH	Controller	N/A	N/A
\boxtimes	CO3000	Innco GmbH	Controller	N/A	N/A
\boxtimes	N9020A	Agilent	Spectrum Analyzer	MY50200260	Jan 14, 2021(1Y)
\boxtimes	6502	EMCO	Loop Antenna	9609-3087	Nov 12, 2019(2Y)
\boxtimes	VULB 9168	SCHWARZBECK	Trilog-Broadband Antenna	9168-735	Nov 19, 2019(2Y)
\boxtimes	8449B	Agilent	Preamplifier	3008A02013	Jan 14, 2021(1Y)
\boxtimes	3115	ETS	Horn Antenna	9402-4229	July 28, 2020(2Y)
\boxtimes	ESCI7	Rohde & Schwarz	EMI Test Receiver	100938	Jan 14, 2021(1Y)
	ESH-Z2	Rohde & Schwarz	Pulse Limter	101631	Jan 14, 2021(1Y)
	ENV216	Rohde & Schwarz	LISN	101264	July 14, 2021(1Y)
	ES-SCAN	Rohde & Schwarz	EMI Software	N/A	N/A
\boxtimes	EMC32	Rohde & Schwarz	EMI Software	N/A	N/A
\boxtimes	FSV	Rohde & Schwarz	Spectrum Analyzer	101673	Jan 14, 2021(1Y)