

Global United Technology Services Co., Ltd.

Report No.: GTSL202107000285F01

TEST REPORT

Applicant: Shenzhen Mingxing Electronic Commerce Co.,Ltd

1701, Block C, Haixinhuifuyuan, No. 266, Jihua Rd., Jihua Sub-**Address of Applicant:**

dist., Longgang Dist., Shenzhen, China

Manufacturer/Factory: Shenzhen Mingxing Electronic Commerce Co.,Ltd

1701, Block C, Haixinhuifuyuan, No. 266, Jihua Rd., Jihua Sub-Address of

dist., Longgang Dist., Shenzhen, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: HIKER AUDIO K1 ANC

Model No.: K1 ANC

Trade Mark: **HIKER AUDIO**

FCC ID: 2A2PX-K1

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: Jul.22, 2021

Date of Test: Jul.23, 2021- Jul.27, 2021

Date of report issued: Jul.29, 2021

PASS * **Test Result:**

Authorized Signature:

Robinson Lu **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date Description			
00	Jul.29, 2021	Original		

Prepared By:	Typontly	Date:	Jul.28, 2021	
	Project Engineer			e de la companya de l
Check By:	Latingon lunt	Date:	Jul.28, 2021	
	Reviewer			

3 Contents

		Page
1	COVER PAGE	1
2	2 VERSION	9
		2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 DEVIATION FROM STANDARDS	7
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	11
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 20DB EMISSION BANDWIDTH	
	7.5 CARRIER FREQUENCIES SEPARATION	
	7.6 HOPPING CHANNEL NUMBER	
	7.7 DWELL TIME	
	7.8 BAND EDGE	
	7.8.1 Conducted Emission Method	
	7.8.2 Radiated Emission Method	
	7.9 Spurious Emission	
	7.9.2 Radiated Emission Method	
8	TEST SETUP PHOTO	48
۵	FUT CONSTRUCTIONAL DETAILS	//8

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

5 General Information

5.1 General Description of EUT

Product Name:	HIKER AUDIO K1 ANC
Model No.:	K1 ANC
Test sample(s) ID:	GTSL202107000285-1
Sample(s) Status:	Engineer sample
Serial No.:	N/A A A A A A A A A A A A A A A A A A A
Hardware Version:	JH808-A2-AC6955F
Software Version:	AC6955F_ANC Bluetooth Headphones
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK,8-DPSK
Antenna Type:	PCB Antenna
Antenna gain:	-0.58dBi(Declare by applicant)
Power supply:	DC 5V or DC 3.7V from battery

Operation I	Frequency eac	h of channel		8	E E	7 8	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz	68	E E

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode

Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Adapter Model: HW-090200CH0

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-

anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accredit ation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	iated Emission:	0 0				0 0
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged SCHWARZBECK waveguide horn MESS-ELEKTRONIK		BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna ETS-LINDGREI		3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software AUDIX		E3	N/A	N/A	N/A
8	Coaxial Cable GTS		N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable GTS		N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable GTS		N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	A HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	Breitband SCHWARZBECK		GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Cond	Conducted Emission								
Item	Test Equipment	Manufacturer	turer Model No. Inve		Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022			
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022			
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022			

RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022		

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
_1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022			
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

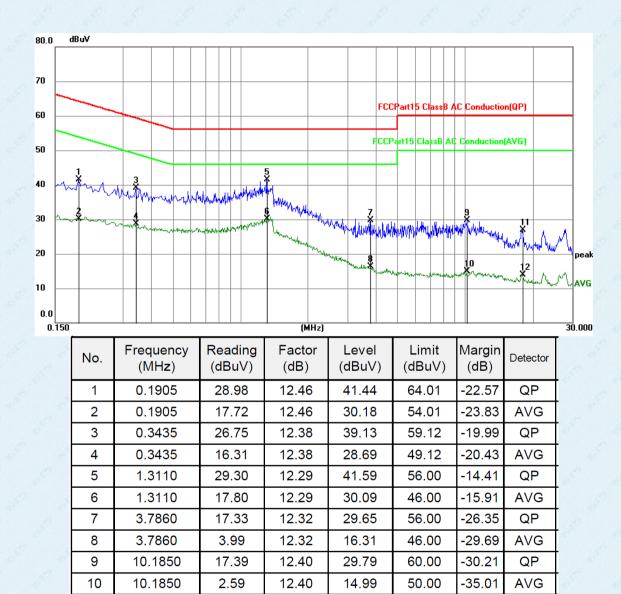
E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the is -0.58dBi, reference to the appendix II for details

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Conducted Emissions

71E Odiladotea Elillosiono		48"		
Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto		
Limit:		Limit	(dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
Test setup:	* Decreases with the logarith			
Test procedure:	Remark E.U.T Receiver Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a			
	 50ohm/50uH coupling imp The peripheral devices are LISN that provides a 50oh termination. (Please refere photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10 	e also connected to the m/50uH coupling impute to the block diagram of the checked for maximum and the maximum emised all of the interface cannot be also connected to the maximum emised all of the interface cannot be also connected to the maximum emised all of the interface cannot be also connected to the interface of the inter	ne main power through a edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed	
Test Instruments:	Refer to section 6.0 for detail		9 49 49	
Test mode:	Refer to section 5.2 for details			
	Refer to section 5.2 for details	3		
		27 27 27 27	Press.: 1011mbar	
Test environment:	Temp.: 25.1 °C Hu	mid.: 59%	Press.: 1011mbar	
		27 27 27 27	Press.: 1011mbar	


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of GFSK 2402MHz

Line:

11

12

18.0150

18.0150

14.32

1.43

12.51

12.51

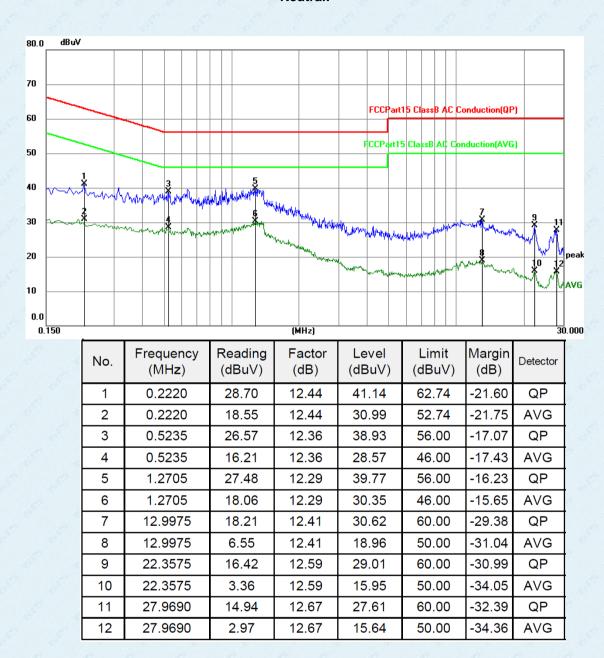
26.83

13.94

-33.17

36.06

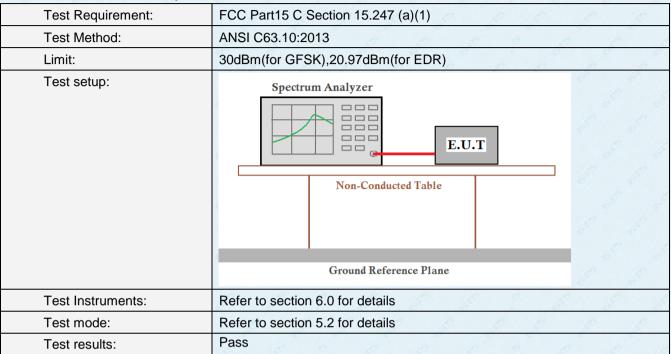
QP


AVG

60.00

50.00

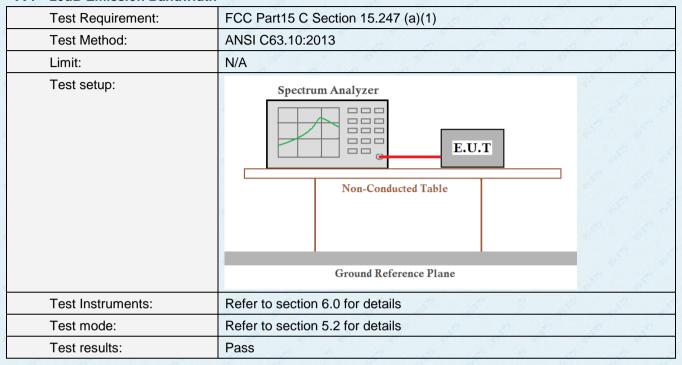
Neutral:



Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power



Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	2.54	20 20	2
GFSK	Middle	2.37	30.00	Pass
	Highest	2.29		
	Lowest	-1.22		
π/4-DQPSK	Middle	-1.61	20.97	Pass
8 8	Highest	-1.74		8 8
p p	Lowest	-1.03	2 2 3	g g
8-DPSK	Middle	-1.40	20.97	Pass
	Highest	-1.58		

7.4 20dB Emission Bandwidth

Measurement Data

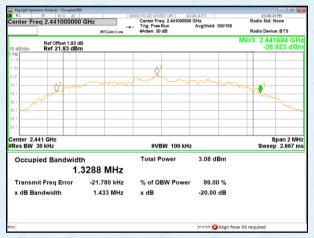
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.906	10 10 10
GFSK	Middle	0.902	Pass
	Highest	0.909	
	Lowest	1.417	6 - 6 - 6
π/4-DQPSK	Middle	1.433	Pass
8 8 2	Highest	1.417	8 8 6
2 2 2 3	Lowest	1.437	2 2
8-DPSK	Middle	1.448	Pass
	Highest	1.439	

Page 15 of 48

Test plot as follows:

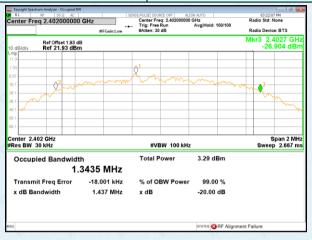
Test mode: GFSK mode

Lowest channel


Highest channel

Test mode: $\pi/4$ -DQPSK mode

Lowest channel



Highest channel

Test mode: 8-DPSK mode

Lowest channel

Highest channel

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass // // // // // // // // // // // // /	

Measurement Data

Mode	Test channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result	
	Lowest	1.0035	0.604	Pass	
GFSK	Middle	1.0020	0.601	Pass	
	Highest	0.9885	0.606	Pass	
8 8	Lowest	1.1190	0.945	Pass	
π/4-DQPSK	Middle	1.0455	0.955	Pass	
	Highest	1.0065	0.945	Pass	
9 99 99	Lowest	1.0095	0.958	Pass	
8-DPSK	Middle	1.0245	0.965	Pass	
	Highest	0.9930	0.959	Pass	

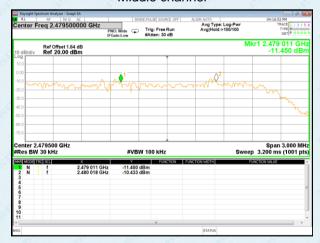
Note: According to section 7.4

Test plot as follows:

Modulation mode: GFSK

Lowest channel

Highest channel



Test mode: $\pi/4$ -DQPSK

Lowest channel

Highest channel

Test mode: 8-DPSK

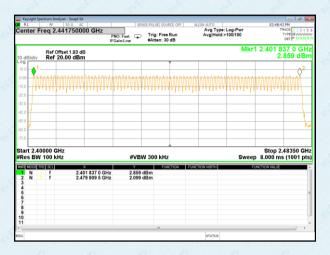
Lowest channel

Highest channel

7.6 Hopping Channel Number

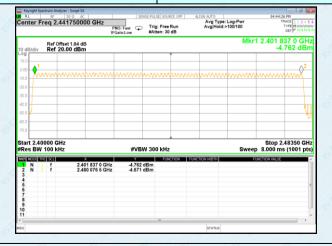
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data:


Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass
8-DPSK	79	15	Pass

Test plot as follows:

Report No.: GTSL202107000285F01


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

Global United Technology Services Co., Ltd.

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass (%)		

Measurement Data

Report No.: GTSL202107000285F01

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	121.28	400	Pass
2441MHz	DH3	261.76	400	Pass
2441MHz	DH5	307.52	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.379(ms)*(1600/ (2*79))*31.6=121.28ms DH3 time slot=1.636ms)*(1600/ (4*79))*31.6=261.76ms DH5 time slot=2.883(ms)*(1600/ (6*79))*31.6=307.52ms

π/4-DQPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	124.48	400	Pass
2441MHz	DH3	262.56	400	Pass
2441MHz	DH5	308.16	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.389(ms)*(1600/(2*79))*31.6=124.48msDH3 time slot=1.641(ms)*(1600/(4*79))*31.6=262.56msDH5 time slot=2.889 (ms)*(1600/(6*79))*31.6=308.16ms

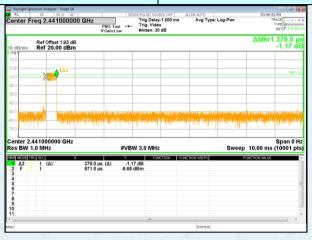
8-DPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	124.48	400	Pass
2441MHz	DH3	262.40	400	Pass
2441MHz	DH5	308.37	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow


DH1 time slot=0.389(ms)*(1600/(2*79))*31.6=124.48msDH3 time slot=1.640(ms)*(1600/(4*79))*31.6=262.40msDH5 time slot=2.891(ms)*(1600/(6*79))*31.6=308.37ms

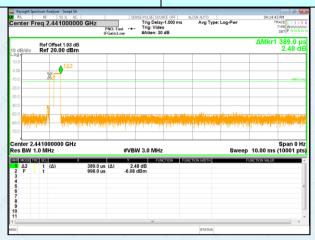
Test plot as follows:

GFSK mode:

Test channel: 2441MHz

DH1

DH3


Report No.: GTSL202107000285F01

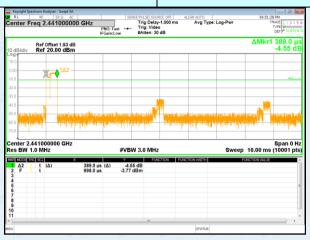
π/4-DQPSK mode

Report No.: GTSL202107000285F01

Test channel: 2441MHz

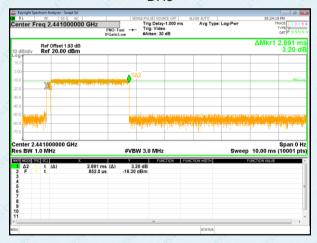
DH1

DH3


DH₅


8-DPSK

Report No.: GTSL202107000285F01


Test channel: 2441MHz

DH1

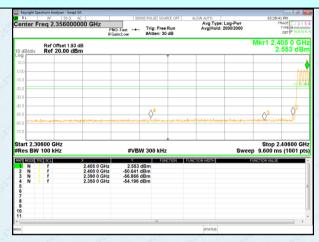
DH3

DH₅

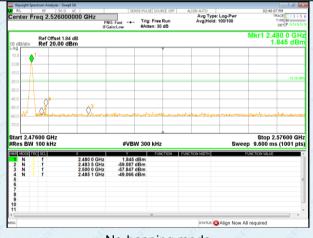
7.8 Band Edge

7.8.1 Conducted Emission Method

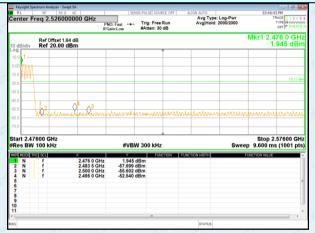
Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Test plot as follows:

GFSK Mode:


No-hopping mode

Lowest channel


Hopping mode

Test channel:

No-hopping mode

Highest channel

Hopping mode

π/4-DQPSK Mode:

No-hopping mode

Hopping mode

Test channel: | Stright (Section Audion: Sweet A. | Society (Section Audion Art) | Stright (Section Art) | Stright (Secti

No-hopping mode

Highest channel

Hopping mode

8-DPSK Mode:

Test channel: Lowest channel Lowest channel Lowest channel Storage Special Angue Nature Storage Special Special Angue Nature Special Spec

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

7.8.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		Peak	1MHz	10Hz	Average Value		
Limit:	Freque	ncy	Limit (dBuV		Remark		
	Above 1	GHz	54.0 74.0	A 4	Average Value Peak Value		
Test setup:	Turn Tables <150cm > .	< 3n	Test Antenna-	amplifier.			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section	5.2 for details	je j	9 9	19 10 1		
Test results:	Pass	4 6	6, 6	4			

Measurement Data

Report No.:	GTSL202107000285F01
-------------	---------------------

Test mode:	GFSK			L	owest channe	el		
Peak value:	2 7				B B	1	2 1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	48.12	27.59	5.38	30.18	50.91	74.00	-23.09	Horizontal
2400.00	62.43	27.58	5.40	30.18	65.23	74.00	-8.77	Horizontal
2310.00	49.65	27.59	5.38	30.18	52.44	74.00	-21.56	Vertical
2400.00	63.18	27.58	5.40	30.18	65.98	74.00	-8.02	Vertical
Average valu	ue:	6 6		3	8 8		4 6	8
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	38.48	27.59	5.38	30.18	41.27	54.00	-12.73	Horizontal
2400.00	47.26	27.58	5.40	30.18	50.06	54.00	-3.94	Horizontal
2310.00	38.16	27.59	5.38	30.18	40.95	54.00	-13.05	Vertical
2400.00	46.69	27.58	5.40	30.18	49.49	54.00	-4.51	Vertical
9 8	B - 3	9 30	20	2 - 2	P	le de	8	De la Constitución de la Constit
Test channe	l:			H	lighest chann	el		

_ 600		
Peak	1/2	יםוו
ı car	. va	IUC.

i eak value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	47.09	27.53	5.47	29.93	50.16	74.00	-23.84	Horizontal
2500.00	45.38	27.55	5.49	29.93	48.49	74.00	-25.51	Horizontal
2483.50	46.92	27.53	5.47	29.93	49.99	74.00	-24.01	Vertical
2500.00	44.58	27.55	5.49	29.93	47.69	74.00	-26.31	Vertical

Average value:

Tirerage ran	(4)	68	400	(A)	6-8	44	College College	43
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	35.65	27.53	5.47	29.93	38.72	54.00	-15.28	Horizontal
2500.00	36.17	27.55	5.49	29.93	39.28	54.00	-14.72	Horizontal
2483.50	38.44	27.53	5.47	29.93	41.51	54.00	-12.49	Vertical
2500.00	35.93	27.55	5.49	29.93	39.04	54.00	-14.96	Vertical

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 4. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

7.9 Spurious Emission

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

GFSK mode:
Test channel:

Report No.: GTSL202107000285F01

Lowest channel

30MHz~26.5GHz

Test channel:

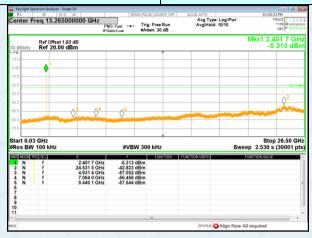
Middle channel

30MHz~26.5GHz

Test channel:

Highest channel

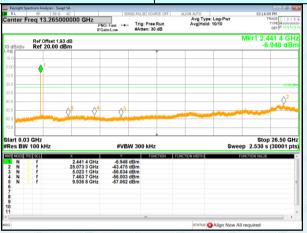
30MHz~26.5GHz



π/4-DQPSK mode:

Test channel:

Report No.: GTSL202107000285F01


Lowest channel

30MHz~26.5GHz

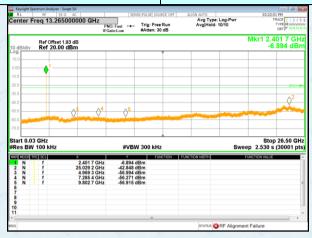
Test channel:

Middle channel

30MHz~26.5GHz

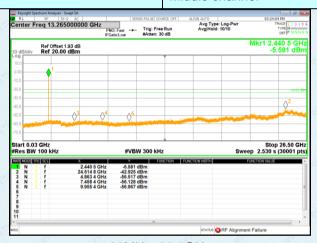
Test channel:

Highest channel



30MHz~26.5GHz

8-DPSK mode: Test channel: Report No.: GTSL202107000285F01


Lowest channel

30MHz~26.5GHz

Test channel:

Middle channel

30MHz~26.5GHz

Test channel:

Highest channel

30MHz~26.5GHz

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209	10	je.	B	9 0	
Test Method:	ANSI C63.10:2013		5 <u>6</u>	Ø	, 47	9		
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m	48	68	68		
Receiver setup:	Frequency	E	Detector		V	VBW	Value	
	9KHz-150KHz	Qι	ıasi-peak	200⊦	łz	600Hz	Quasi-peak	
	150KHz-30MHz	Qu	ıasi-peak	9KH	z	30KHz	Quasi-peak	
	30MHz-1GHz	Qı	ıasi-peak	120KI	Hz	300KHz	Quasi-peak	
	Above 1GHz		Peak	1MH	z	3MHz	Peak	
	Above IGHZ	6	Peak	1MH	z	10Hz	Average	
Limit:	Frequency		Limit (u\	//m)	Val	lue	Measurement Distance	
	0.009MHz-0.490M	0.009MHz-0.490MHz			Q	Р	300m	
	0.490MHz-1.705M	0.490MHz-1.705MHz			Q	P	30m	
	1.705MHz-30MH	30	30		P	30m		
	30MHz-88MHz	100	EST .	Q	P			
	88MHz-216MHz	88MHz-216MHz			Q	Р		
	216MHz-960MH	200	10	QP		3m		
	960MHz-1GHz	500		QP		Ø Ø		
	Above 1GHz		500		Average			
	Above Toriz		5000		Peak			
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MHz	£ 6	S	
	< 80cm >		< 3m > Test Ar m Table-	lm Receiver-				

Report No.: GTSL202107000285F01 For radiated emissions from 30MHz to1GHz 4m > EUT. Tum Table Receiver. Preamplifier. For radiated emissions above 1GHz Test Antenna-< 1m ... 4m > EUT. Turn Table <150cm> Receiver Preamplifier-Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

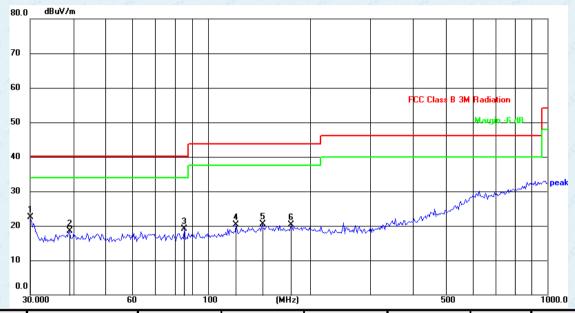
		Report No.: GTSL202107000285F01						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V,	AC 120V, 60Hz						
Test results:	Pass	10 10	19	10		0 0		

Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

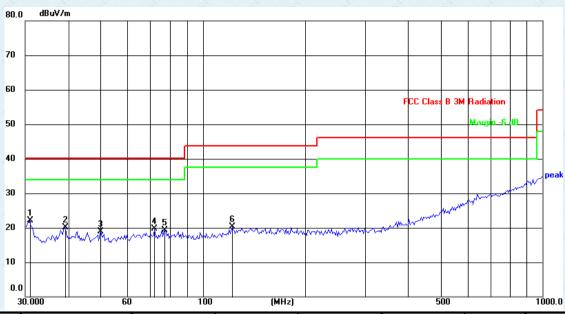
■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of GFSK 2402MHz

Horizontal:



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	30.0000	44.00	-21.52	22.48	40.00	-17.52	QP
2	39.1615	39.18	-20.70	18.48	40.00	-21.52	QP
3	85.2980	39.55	-20.36	19.19	40.00	-20.81	QP
4	121.1231	39.61	-19.24	20.37	43.50	-23.13	QP
5	144.3348	39.27	-18.72	20.55	43.50	-22.95	QP
6	175.6516	38.39	-18.13	20.26	43.50	-23.24	QP

Vertical:

Report No.: GTSL202107000285F01

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	30.8535	43.63	-21.48	22.15	40.00	-17.85	QP
2	39.1616	40.77	-20.70	20.07	40.00	-19.93	QP
3	50.0566	39.95	-21.01	18.94	40.00	-21.06	QP
4	72.0843	40.28	-20.49	19.79	40.00	-20.21	QP
5	77.3210	39.71	-20.36	19.35	40.00	-20.65	QP
6	121.9755	39.30	-19.02	20.28	43.50	-23.22	QP

■ Above 1GHz

Test channel: Lowest channel

Peak value:

Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	polarization
	(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
4804.00	47.65	31.78	8.60	32.09	55.94	74.00	-18.06	Vertical
7206.00	42.12	36.15	11.65	32.00	57.92	74.00	-16.08	Vertical
9608.00	38.54	37.95	14.14	31.62	59.01	74.00	-14.99	Vertical
12010.00	*	6	0 0		6 6 5	74.00	6 6	Vertical
14412.00	*	8 8	6			74.00		Vertical
4804.00	48.67	31.78	8.60	32.09	56.96	74.00	-17.04	Horizontal
7206.00	38.09	36.15	11.65	32.00	53.89	74.00	-20.11	Horizontal
9608.00	35.53	37.95	14.14	31.62	56.00	74.00	-18.00	Horizontal
12010.00	*	8 8	2	9 8		74.00	g.	Horizontal
14412.00	ø* ø	Ø	.0	g g	20 2	74.00	9	Horizontal

Average value:

rivolugo van	397	-99	100	99	99 (9)		-99	369
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	34.69	31.78	8.60	32.09	42.98	54.00	-11.02	Vertical
7206.00	29.42	36.15	11.65	32.00	45.22	54.00	-8.78	Vertical
9608.00	24.81	37.95	14.14	31.62	45.28	54.00	-8.72	Vertical
12010.00	*	67		8 6	8 6	54.00	6 6	Vertical
14412.00	*		1			54.00	67	Vertical
4804.00	35.65	31.78	8.60	32.09	43.94	54.00	-10.06	Horizontal
7206.00	26.58	36.15	11.65	32.00	42.38	54.00	-11.62	Horizontal
9608.00	24.06	37.95	14.14	31.62	44.53	54.00	-9.47	Horizontal
12010.00	* *	6	*		6" 6	54.00	6" 6	Horizontal
14412.00	*	6	8			54.00		Horizontal

Test channel: Middle channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	45.09	31.85	8.67	32.12	53.49	74.00	-20.51	Vertical
7323.00	37.31	36.37	11.72	31.89	53.51	74.00	-20.49	Vertical
9764.00	33.63	38.35	14.25	31.62	54.61	74.00	-19.39	Vertical
12205.00	*	8	- 6°		8	74.00	6	Vertical
14646.00	*	8	6	8 6	6 6	74.00	e e	Vertical
4882.00	44.87	31.85	8.67	32.12	53.27	74.00	-20.73	Horizontal
7323.00	36.16	36.37	11.72	31.89	52.36	74.00	-21.64	Horizontal
9764.00	32.75	38.35	14.25	31.62	53.73	74.00	-20.27	Horizontal
12205.00	*		10	9 9	9	74.00	A	Horizontal
14646.00	*	20 10	6	4		74.00	g	Horizontal

Average value:

Average van		269	400	A 10		<i></i>		69 69
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	31.34	31.85	8.67	32.12	39.74	54.00	-14.26	Vertical
7323.00	25.62	36.37	11.72	31.89	41.82	54.00	-12.18	Vertical
9764.00	21.25	38.35	14.25	31.62	42.23	54.00	-11.77	Vertical
12205.00	*	8 8	8	2	9	54.00	S.	Vertical
14646.00	*	100	g .	9 9	19 1	54.00	g e	Vertical
4882.00	32.71	31.85	8.67	32.12	41.11	54.00	-12.89	Horizontal
7323.00	22.17	36.37	11.72	31.89	38.37	54.00	-15.63	Horizontal
9764.00	22.09	38.35	14.25	31.62	43.07	54.00	-10.93	Horizontal
12205.00	*	8 - 8	- 8	4 - 6		54.00	- 61	Horizontal
14646.00	*		(\$ ³	8 8	8 8	54.00	8	Horizontal

Test channel: Highest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	41.45	31.93	8.73	32.16	49.95	74.00	-24.05	Vertical
7440.00	35.43	36.59	11.79	31.78	52.03	74.00	-21.97	Vertical
9920.00	31.73	38.81	14.38	31.88	53.04	74.00	-20.96	Vertical
12400.00	*	6 6		4		74.00	- 63	Vertical
14880.00	*	6	6		6 6	74.00	6 4	Vertical
4960.00	42.15	31.93	8.73	32.16	50.65	74.00	-23.35	Horizontal
7440.00	34.38	36.59	11.79	31.78	50.98	74.00	-23.02	Horizontal
9920.00	32.16	38.81	14.38	31.88	53.47	74.00	-20.53	Horizontal
12400.00	*	9	10	9 9	20	74.00	9	Horizontal
14880.00	*	69 A	@	4	8 (C	74.00	e e	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	33.26	31.93	8.73	32.16	41.76	54.00	-12.24	Vertical
7440.00	25.14	36.59	11.79	31.78	41.74	54.00	-12.26	Vertical
9920.00	23.82	38.81	14.38	31.88	45.13	54.00	-8.87	Vertical
12400.00	*	8 8	8	7 6		54.00	S.	Vertical
14880.00	*	100	g .	0 0	A S	54.00	, P	Vertical
4960.00	32.73	31.93	8.73	32.16	41.23	54.00	-12.77	Horizontal
7440.00	24.58	36.59	11.79	31.78	41.18	54.00	-12.82	Horizontal
9920.00	22.17	38.81	14.38	31.88	43.48	54.00	-10.52	Horizontal
12400.00	*	8 - 8	8	1 6	63	54.00	6	Horizontal
14880.00	*				E E	54.00	e ^e	Horizontal

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----