

FCC - TEST REPORT

Report Number	:	68.950.23.0749.0	01	Date of	Issue:	August 19, 2023
Model No.	<u>:</u>	HH4V-152600-10	000-10			
Product Type	<u>:</u>	Electronic Fence	Receiver			
Applicant	<u>:</u>	Hangzhou Hopec	hart IoT Tec	hnology	Co., Ltd.	
Address	<u>:</u>	17th Floor, Hongo	quan Building	g, 35 Qiz	zhi Street	, Xixing Street,
		Binjiang District, 3	310051, Han	ngzhou c	ity, Zhejia	ang Province,
		PEOPLE'S REPU	JBLIC OF CH	HINA		
Manufacturer	:	Zhejiang Hongqu	an Electronic	c Techno	ology Co.	, Ltd.
Address	<u>:</u>	508 Tianzihu Ave	enue, Tianzih	nu Town,	, Anji Cou	nty,
		313300, Huzhou	City, Zhejian	ng Provin	nce,	
		PEOPLE'S REPU	JBLIC OF CH	HINA		
Test Result	:	■ Positive □	☐ Negative			
Total pages including Appendices	:	33				
	•					

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4.

1 Table of Contents

1	Ta	able of Contents2	2
2	D	etails about the Test Laboratory3	}
3	D	escription of the Equipment Under Test4	ļ
4	S	ummary of Test Standards5	;
5	S	ummary of Test Results6	;
6	G	eneral Remarks	,
7	Te	est Setups	}
8	S	ystems test configuration)
9	Te	echnical Requirement)
ç	9.1	Conducted peak output power)
ç	9.2	20 dB Bandwidth	<u>)</u>
9	9.3	Carrier Frequency Separation	;
ç	9.4	Number of hopping frequencies	,
ç	9.5	Dwell Time)
ç	9.6	Spurious RF conducted emissions	<u>)</u>
ç	9.7	Band edge	;
ç	8.6	Spurious radiated emissions for transmitter	,
10		Test Equipment List	<u>}</u>
11		System Measurement Uncertainty	3

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12 & 13, Zhiheng Wisdomland Business Park, Guankou Erlu,

Nantou, Nanshan District

Shenzhen 518052

P.R. China

Telephone: 86 755 8828 6998

Fax: 86 755 8828 5299

FCC Registration 514049

No.:

Number:

FCC Designation CN5009

IC Registration

10320A

No.:

3 Description of the Equipment Under Test

Product: Electronic Fence Receiver

Model No.: HH4V-152600-1000-10

FCC ID: 2A2NKHQB204-S01-023

Options and accessories: N/A

Rating: Rechargeable Li-ion battery (3.5-4.2VDC) or powered by external

USB (5VDC)

RF Transmission

Frequency:

905.25MHz-921.5MHz

No. of Operated Channel: 51

Modulation: LORA

Antenna Type: FPC antenna

Antenna Gain: -7.04dBi

Description of the EUT: The Equipment Under Test (EUT) is an Electronic Fence Receiver

which supports LORA function operated at 905.25MHz-921.5MHz.

Operate Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	905.250	14	909.800	28	914.350	42	918.900
1	905.575	15	910.125	29	914.675	43	919.225
2	905.900	16	910.450	30	915.000	44	919.550
3	906.225	17	910.775	31	915.325	45	919.875
4	906.550	18	911.100	32	915.650	46	920.200
5	906.875	19	911.425	33	915.975	47	920.525
6	907.200	20	911.750	34	916.300	48	920.850
7	907.525	21	912.075	35	916.625	49	921.175
8	907.850	22	912.400	36	916.950	50	921.500
9	908.175	23	912.725	37	917.275		
10	908.500	24	913.050	38	917.600		
11	908.825	25	913.375	39	917.925		
12	909.150	26	913.700	40	918.250		
13	909.475	27	914.025	41	918.575		

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2021 Edition	Subpart C - Intentional Radiators

Test Method:

KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

5 Summary of Test Results

Technical Requirements					
FCC Part 15 Subpart C					
Test Condition		Test Site	Test Result Pass Fail N/A		
§15.207	Conducted emission AC power port				
§15.247 (b)(2)	Conducted peak output power	Site 1	\boxtimes		
§15.247(a)(1)(i)	20dB bandwidth	Site 1	\boxtimes		
§15.247(a)(1)	Carrier frequency separation	Site 1	\boxtimes		
§15.247(a)(1)(i)	Number of hopping frequencies	Site 1	\boxtimes		
§15.247(a)(1)(i)	Dwell Time	Site 1	\boxtimes		
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth				\boxtimes
§15.247(e)	Power spectral density				\boxtimes
§15.247(d)	Spurious RF conducted emissions	Site 1	\boxtimes		
§15.247(d)	Band edge	Site 1			
§15.247(d) & §15.209 & §15.205	Spurious radiated emissions for transmitter	Site 1	\boxtimes		
§15.203	Antenna requirement	See note 2			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a FPC antenna, which gain is -7.04dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2A2NKHQB204-S01-023 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

SUMMARY:

All tests according to the regulations cited on page 5 were.

- Performed
- □ Not Performed

The Equipment under Test

- **Fulfills** the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: August 07, 2023

August 07, 2023 **Testing Start Date:**

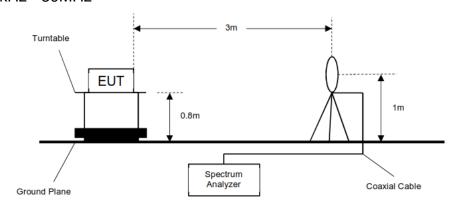
Testing End Date: August 16, 2023

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

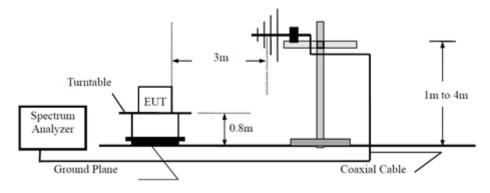
Reviewed by: Prepared by: Tested by:

John Zhi **Project Manager**

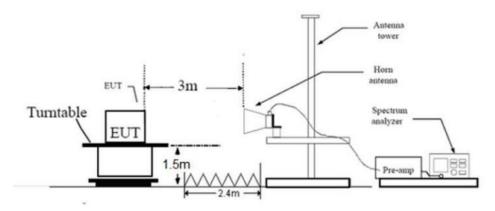
Sanvin Zheng **Project Engineer**

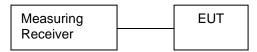

Test Engineer

Carry Cai



7 Test Setups


7.1 Radiated test setups 9kHz - 30MHz


Below 1GHz

Above 1GHz

7.2 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Notebook	Thinkpad	X220	

Test software information:

Test Software Version	EC2GUI.exeTest Tool		
Modulation	Setting TX Power	Packet Type	
LORA	22	LORA	

The system was configured to hopping mode and non-hopping mode. Non-hopping mode testing channel is 0 (905.250MHz), 26 (913.700MHz), 50 (921.500MHz).

9 Technical Requirement

9.1 Conducted peak output power

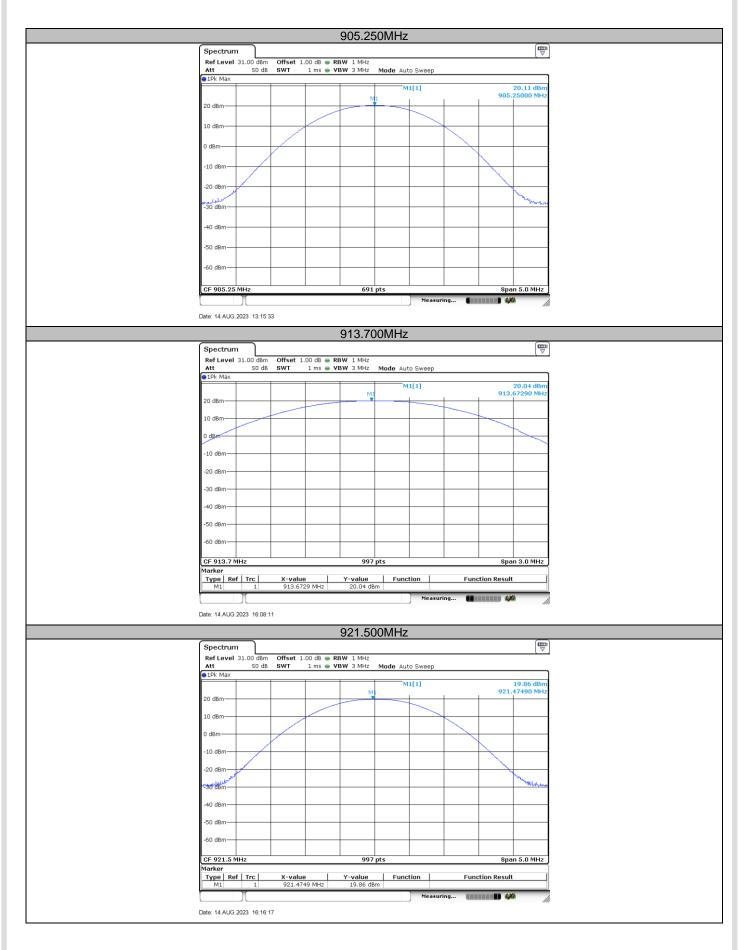
Test Method

- 1. The RF output of EUT was connected to the test spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following test receiver settings:

 Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW,

 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report.
- 5. Repeat above procedures until all frequencies measured were completed.

Limits


According to §15.247 (b) (2), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
905.25-921.5	≤1	≤30

Test result as below table

Frequency MHz	Conducted Peak Output Power dBm	Result
Bottom channel 905.250MHz	20.11	Pass
Middle channel 913.700MHz	20.04	Pass
Top channel 921.500MHz	19.86	Pass

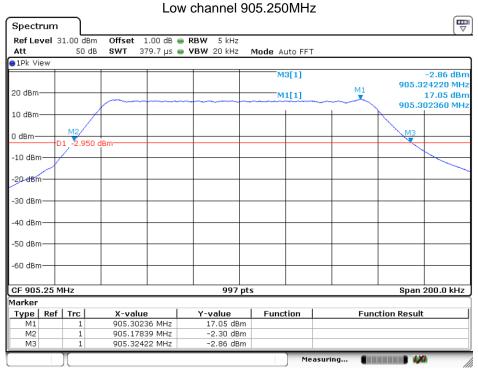
9.2 20 dB Bandwidth

Test Method

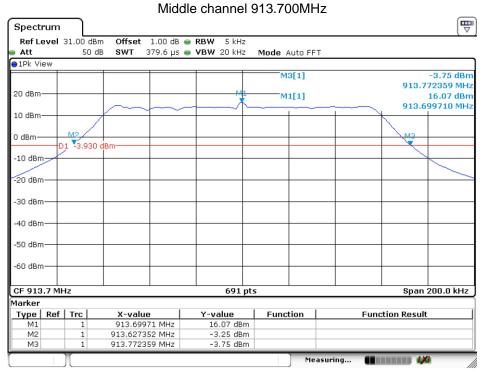
- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Use the following test receiver settings: Span = approximately two times and five times the 20dB bandwidth, centered on a hopping channel, RBW shall be in the range of 1% to 5% of the 20dB bandwidth, VBW shall be at least three times 20dB bandwidth, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

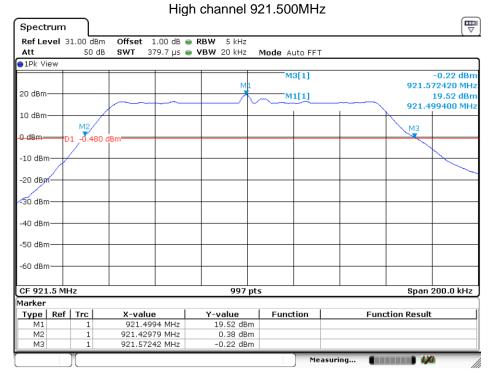
According to §15.247(a)(1)(i), 20 dB Bandwidth limit as below:


Limit [kHz]	
≤500	_

Test result


Frequency MHz	20 dB bandwidth kHz	Result
Bottom channel 905.250MHz	145.83	Pass
Middle channel 913.700MHz	145.01	Pass
Top channel 921.500MHz	142.63	Pass

20 dB Bandwidth



Date: 14.AUG.2023 16:00:58

Date: 14.AUG.2023 18:44:15

Date: 14.AUG.2023 16:18:34

9.3 Carrier Frequency Separation

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 4. By using the Max-Hold function record the separation of two adjacent channels.
- 5. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function. Record the results.
- 6. Repeat above procedures until all frequencies measured were complete.

Limit

According to §15.247(a)(1), Carrier Frequency Separation limit as below:


Limit
kHz
≥25kHz or ≥20 dB bandwidth which is greater

Test Frequency	20 dB Bandwidth
	kHz
905.250MHz	145.83
913.700MHz	145.01
921.500MHz	142.63

Test result: The measurement was performed with the typical configuration (normal hopping status).

Test Mode	Carrier Frequency Separation kHz	Result
LORA	321.00	Pass

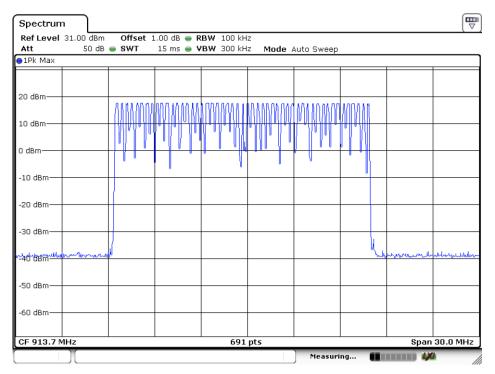
Date: 14.AUG.2023 15:44:47

9.4 Number of hopping frequencies

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Use the following spectrum analyzer settings: Span = the frequency band of operation, RBW ≥ 1% of the span, VBW ≥RBW, Sweep = auto, Detector function = peak
- 4. Set the spectrum analyzer on Trace = max hold
- 5. Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

Limit


According to §15.247(a)(1)(i), Number of hopping frequencies limit as below:

Limit	
 number	
 ≥ 50	

Test result: The measurement was performed with the typical configuration (normal hopping status).

Number of hopping frequencies	Result
51	Pass

Date: 16.AUG.2023 11:51:13

9.5 Dwell Time

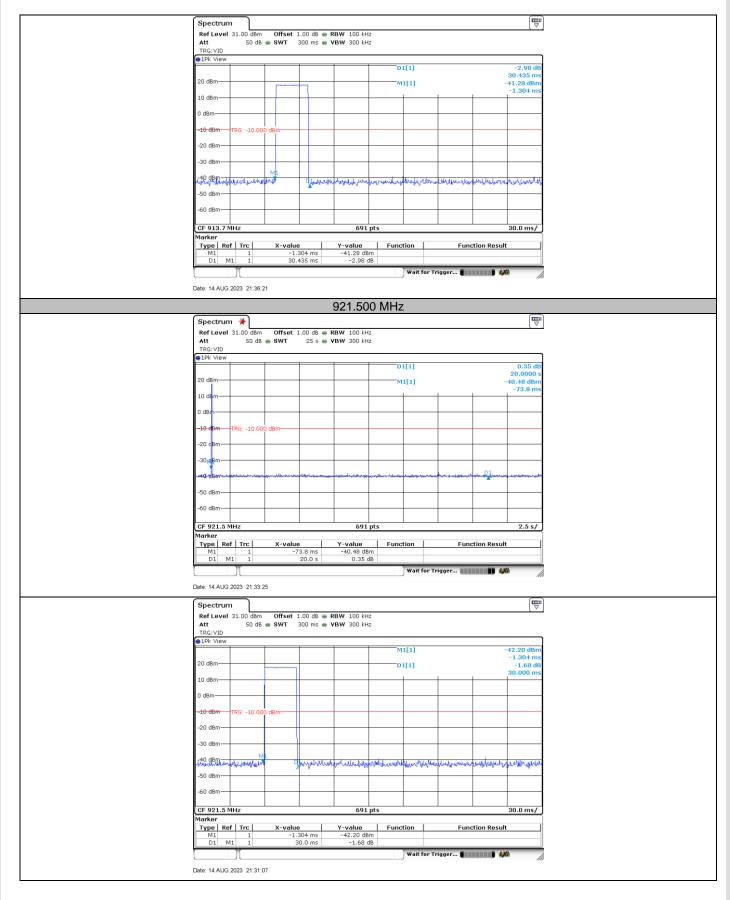
Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Span: Zero span, centered on a hopping channel.
- 4. RBW shall be \ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 5. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 6. Detector function: Peak.
- 7. Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Limit

According to §15.247(a)(1)(i), Dwell Time limit as below:

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.


Test Result

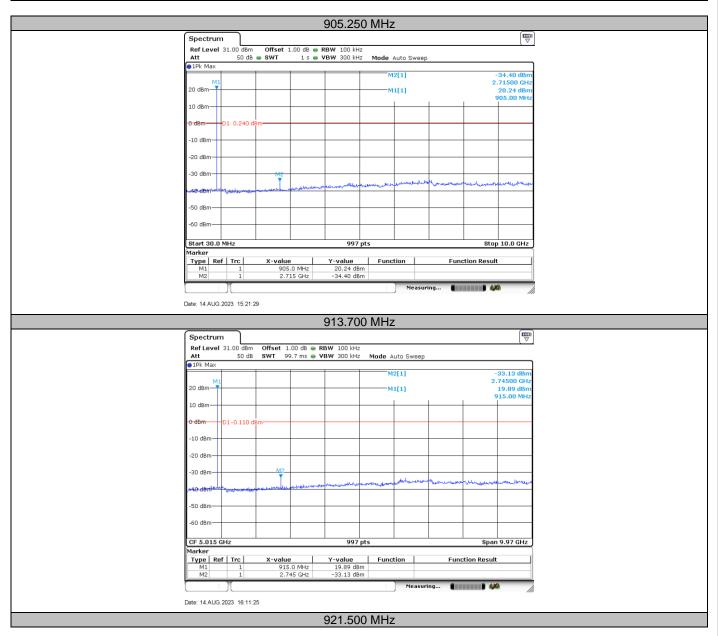
Test Mode	Antenna	Channel (MHz)	Result (ms)	Limit (ms)	Verdict
		905.250	30.870	<400	PASS
LORA	ANT 1	913.700	30.435	<400	PASS
		921.500	30.000	<400	PASS

9.6 Spurious RF conducted emissions

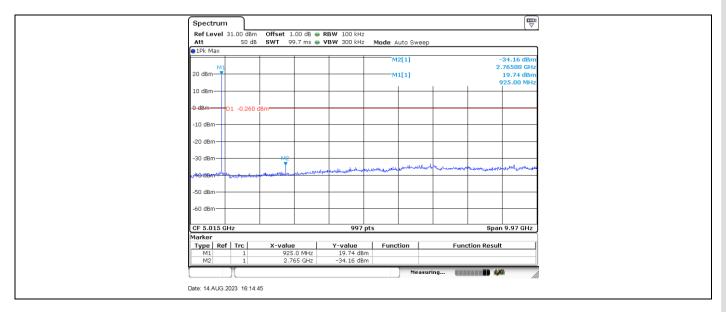
Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency.

Limit


According to §15.247 (d), Spurious RF conducted emissions limit as below:

Frequency Range MHz	Limit (dBc)
30-10000	-20



Spurious RF conducted emissions

Test Mode	Antenna	Channel (MHz)	Freq. Range (MHz)	Result (dBm)	Limit (dBm)	Verdict
		905.250	30~10000	-34.40	<=0.24	PASS
LORA	ANT 1	913.700	30~10000	-33.13	<=-0.11	PASS
		921.500	30~10000	-34.16	<=-0.26	PASS

9.7 Band edge

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency.
- 6. Set to the maximum power setting and enable the EUT hopping mode, repeat the test.

Limit

According to §15.247 (d), Band edge limit as below:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

Frequency Range MHz	Limit (dBc)
 902-928	-20

Band edge testing

Test Mode	Antenna	Ch. Name	Channel (MHz)	Ref. Level (dBm)	Result (dBm)	Limit (dBm)	Verdict
LODA	A n+1	Low	905.250	20.42	-37.65	<=0.42	PASS
LORA	RA Ant1	High	921.500	20.58	-39.56	<=0.58	PASS

9.8 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. Use the following spectrum analyzer settings According to C63.10:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for f ≥1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
 - power control level for the tested mode of operation.
- 7. Repeat above procedures until all frequencies measured were complete.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).
- 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Spurious radiated emissions for transmitter

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under § 15.247(b)(3), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§ 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

Frequency	Field Strength	Field Strength	Detector	Measurement distance
MHz	μV/m	dBμV/m		meters
0.009-0.490	2400/F(kHz)	48.5-13.8	AV	300
0.490-1.705	24000/F(kHz)	33.8-23.0	QP	30
1.705-30	30	29.5	QP	30
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

Note 1: Limit $3m(dB\mu V/m)$ =Limit $300m(dB\mu V/m)$ +40Log(300m/3m) (Below 30MHz) Note 2: Limit $3m(dB\mu V/m)$ =Limit $30m(dB\mu V/m)$ +40Log(30m/3m) (Below 30MHz)

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Low channel 905.250MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Бапи	MHz	dBuV/m		dBμV/m		dBuV/m	(dB)	
	59.692778	23.85	Н	40.00	QP	16.15	16.97	Pass
	100.378889	21.67	Н	43.50	QP	21.83	16.31	Pass
	349.507222	27.48	Н	46.00	QP	18.52	20.73	Pass
	902.000000	36.25	Н	46.00	QP	9.75	29.26	Pass
	928.000000	35.83	Н	46.00	QP	10.17	29.46	Pass
30-	Other Frequencies		Н		QP			Pass
1000MHz	51.070556	22.77	V	40.00	QP	17.23	18.03	Pass
	98.223333	22.08	V	43.50	QP	21.42	16.06	Pass
	351.986111	28.24	V	46.00	QP	17.76	20.67	Pass
	902.000000	36.88	V	46.00	QP	9.12	29.26	Pass
	928.000000	36.32	V	46.00	QP	9.68	29.46	Pass
	Other Frequencies		V		QP			Pass

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Бапо	MHz	dBuV/m		dBμV/m		dBuV/m	(dB)	
	1810.000000	42.32	Н	74.00	PK	31.68	-7.67	Pass
	2559.500000	41.52	Н	74.00	PK	32.48	-3.75	Pass
	3150.500000	45.62	Н	74.00	PK	28.38	-0.18	Pass
	4019.500000	47.16	Н	74.00	PK	26.84	2.94	Pass
	Other		Н		PK			Pass
1000-	Frequencies		[1]		FK			газэ
10000MHz	2054.500000	40.62	V	74.00	PK	33.38	-5.66	Pass
	2674.500000	42.55	V	74.00	PK	31.45	-3.17	Pass
	3371.500000	45.72	V	74.00	PK	28.28	0.16	Pass
	3996.000000	47.93	V	74.00	PK	26.07	2.90	Pass
	Other Frequencies		V		PK			Pass

Middle channel 913.700MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBμV/m		dBuV/m	(dB)	
	56.243889	23.42	Н	40.00	QP	16.58	17.54	Pass
	102.803889	22.79	Н	43.50	QP	20.71	16.42	Pass
	257.195556	23.44	Н	46.00	QP	22.56	17.87	Pass
	902.000000	36.31	Н	46.00	QP	9.69	29.24	Pass
	928.000000	36.46	Н	46.00	QP	9.54	29.46	Pass
30-	Other Frequencies		Н		QP	-		Pass
1000MHz	54.034444	23.70	V	40.00	QP	16.30	17.87	Pass
	105.228889	22.54	V	43.50	QP	20.96	16.31	Pass
	196.031667	23.44	V	43.50	QP	20.06	16.71	Pass
	902.000000	37.02	V	46.00	QP	8.98	29.22	Pass
	928.000000	36.32	V	46.00	QP	9.68	29.46	Pass
	Other Frequencies		V		QP			Pass

	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
	MHz	dBuV/m		dBμV/m		dBuV/m	(dB)	
	1856.500000	39.00	Н	74.00	PK	35.00	-7.29	Pass
	2060.000000	41.43	Н	74.00	PK	32.57	-5.69	Pass
	2644.000000	42.93	Н	74.00	PK	31.07	-3.18	Pass
1000-	3162.000000	45.41	Н	74.00	PK	28.59	-0.18	Pass
1000- 10000MHz	Other Frequencies		н		PK			Pass
	2499.000000	42.13	V	74.00	PK	31.87	-4.26	Pass
	2926.500000	45.15	V	74.00	PK	28.85	-2.30	Pass
	3429.000000	45.31	V	74.00	PK	28.69	0.21	Pass
	3847.000000	47.73	V	74.00	PK	26.27	2.79	Pass
	Other Frequencies		V		PK			Pass

High channel 921.500MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBμV/m		dBuV/m	(dB)	
	197.001667	24.12	Н	43.50	QP	19.38	16.72	Pass
	350.854444	28.28	Н	46.00	QP	17.72	20.72	Pass
	612.323333	34.82	Н	46.00	QP	11.18	25.81	Pass
	902.000000	36.46	Н	46.00	QP	9.54	29.23	Pass
	928.000000	36.60	Н	46.00	QP	9.40	29.46	Pass
30-	Other Frequencies		н		QP			Pass
1000MHz	96.714444	22.39	V	43.50	QP	21.11	15.80	Pass
	195.762222	24.40	V	43.50	QP	19.10	16.67	Pass
	488.648333	31.92	V	46.00	QP	14.08	23.07	Pass
	902.000000	37.15	V	46.00	QP	8.85	29.23	Pass
	928.000000	37.06	V	46.00	QP	8.94	29.46	Pass
	Other Frequencies		V		QP			Pass

	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
	MHz	dBuV/m		dBμV/m		dBuV/m	(dB)	
	2272.500000	40.93	Н	74.00	PK	33.07	-5.47	Pass
	2567.000000	42.51	Н	74.00	PK	31.49	-3.71	Pass
	3155.000000	45.84	Н	74.00	PK	28.16	-0.18	Pass
1000-	4013.500000	47.66	Н	74.00	PK	26.34	2.93	Pass
1000- 10000MHz	Other Frequencies		н		PK			Pass
	2077.500000	40.86	V	74.00	PK	33.14	-5.65	Pass
	2912.500000	44.73	V	74.00	PK	29.27	-2.46	Pass
	3601.500000	46.28	V	74.00	PK	27.72	1.33	Pass
	4954.500000	50.33	V	74.00	PK	23.67	5.78	Pass
	Other Frequencies		V		PK			Pass

Remark:

- (1) "*" means the emission(s) not within the restrict bands of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Data of measurement within frequency ranges 9kHz-30MHz are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.
- (4) Corrected Amplitude = Reading level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

List of Test Instruments

Radiated Emission 1# Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 7	68-4-74-19-001	102176	2024-5-20
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14-006	100398	2024-8-6
3m Semi-anechoic chamber	TDK	SAC-3 #1	68-4-90-14-001		2024-5-28
Test software	Rohde & Schwarz	EMC32	68-4-90-14-001- A10	Version10.35.02	N/A

Radiated Emission 2# Test

Naulateu Lillission Z#	1 001	1	ı		
DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	2024-5-20
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	68-4-80-19-003	284	2024-3-5
Wave Guide Antenna	ETS	3117	68-4-80-19-001	00218954	2024-4-26
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19-001	100745	2024-5-19
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14-002	100432	2024-8-1
Attenuator	Mini-circuits	UNAT-6+	68-4-81-21-002	15542	2024-5-19
3m Semi-anechoic chamber	TDK	SAC-3 #2	68-4-90-19-006		2024-5-28
Test software	Rohde & Schwarz	EMC32	68-4-90-19-006- A01	Version10.35.0 2	N/A

Conducted RF Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14-004	101030	2024-5-19
RF Switch Module	Rohde & Schwarz	OSP120/OSP -B157W	68-4-93-14-003	101226/100929	2024-5-20
Power Splitter	Weinschel	1580	68-4-85-14-001	SC319	2024-5-20
Test software	Tonscend	System for BT/WIFI	68-4-74-14-006- A13	Version 2.6.77.0518	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.70dB			
Uncertainty for Radiated Emission in new 3m chamber (68-4-90-19-006) 30MHz-1000MHz	Horizontal: 4.63dB; Vertical: 4.78dB;			
Uncertainty for Radiated Emission in new 3m chamber (68-4-90-19-006) 1000MHz-18000MHz	Horizontal: 5.38dB; Vertical: 5.38dB;			
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.31dB Frequency test involved: 0.6×10 ⁻⁸ or 1%			

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2021, clause 4.4.3 and 4.5.1.

---The End---