

RADIO TEST REPORT

Report No.: SHATBL2209003W02

Applicant:

XROUND Inc

Address:

Rm. 4, 10F., No. 738, Zhongzheng Rd., ZhongheDist., New Taipei City 235

Product Name : HEAR Hearing-enhancement earbuds

Brand Name : XROUND

Model Name : XV-03

Series Model : N/A

FCC ID : 2A2ML-XV03

Test Standard : FCC Part 15.247

"Shanghai ATBL Technology Co., Ltd." hereby certifies that according to actual testing conditions. The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, ATBL shall not assume any responsibility. The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material. This report will be void without authorized signature or special seal for testing report. Do not copied without authorization.

Tel:+86(0)21-51298625 Web:www.atbl-lab.com Email:atbl@atbl-lab.com

Page 2 of 62

Report No.: SHATBL2209003W02

TEST RESULT CERTIFICATION

Applicant.....: XROUND Inc.

Rm. 4, 10F., No. 738, Zhongzheng Rd., ZhongheDist., New Taipei City Address.....

Manufacturer's Name..... XROUND Inc.

Rm. 4, 10F., No. 738, Zhongzheng Rd., Zhonghe Dist., New Taipei City Address....::

235

Product Description

Product Name....: **HEAR** Hearing-enhancement earbuds

Brand Name XROUND

Model Name....: XV-03

Series Model..... N/A

Test Standards.....: FCC Part 15.247

ANSI C63.10-2013 Test Procedure.....:

This device described above has been tested by ATBL, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ATBL, this document may be altered or revised by ATBL, personal only, and shall be noted in the revision of the document.

Date of receipt of test item..... 2022.09.01

Date (s) of performance of tests.: 2022.12.09~2022.12.17

Date of Issue...... 2022.12.19

Test Result....::

Report Prepared by:

(Jack Suo)

Report Approved by:

(Ghost.Li)

most

Authorized Signatory:

(Terry Yang)

Table of Contents

Page

1. SUMMARY OF TEST RESULTS...... 6 2. GENERAL INFORMATION.......7 2.1 GENERAL DESCRIPTION OF THE EUT7 2.2 DESCRIPTION OF THE TEST MODES9 2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS.......9 2.7 MEASUREMENT UNCERTAINTY13 3.EMC EMISSION TEST......16 3.1 CONDUCTED EMISSION MEASUREMENT......16 3.2 RADIATED EMISSION MEASUREMENT20 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION......41 4.3 TEST SETUP.......42 4.4 EUT OPERATION CONDITIONS42 4.5 TEST RESULTS43 5. NUMBER OF HOPPING CHANNEL 46 5.1 LIMIT46 5.2 TEST PROCEDURE46 5.3 TEST SETUP.......46 5.4 EUT OPERATION CONDITIONS47 5.5 TEST RESULTS......47 6.2 TEST PROCEDURE48 6.3 TEST SETUP.......48 6.5 TEST RESULTS......49

Page 4 of 62

Report No.: SHATBL2209003W02

Table of Contents	Page
7. HOPPING CHANNEL SEPARATION MEASUREMEN	5 [,]
7.1 LIMIT	5 [^]
7.2 TEST PROCEDURE	5 [^]
7.3 TEST SETUP	5 ⁴
7.4 EUT OPERATION CONDITIONS	
7.5 TEST RESULTS	
8. BANDWIDTH TEST	5
8.1 LIMIT	5
8.2 TEST PROCEDURE	
8.3 TEST SETUP	
8.4 EUT OPERATION CONDITIONS	
8.5 TEST RESULTS	56
9. OUTPUT POWER TEST	59
9.1 LIMIT	59
9.2 TEST PROCEDURE	59
9.3 TEST SETUP	
9.4 EUT OPERATION CONDITIONS	
9.5 TEST RESULTS	
10. ANTENNA REQUIREMENT	
10.1 STANDARD REQUIREMENT	
10.2 EUT ANTENNA	6 ²
11.APPENDIX-PHOTOS OF TEST SETUP	62

F3V

Fall

Kon Kon

Man Man

Kan Kan

Kon Kon

Kan Kan

K3V

F3W

73/V

F3V

Roll

Kale

Majo

K3V

35

300

S. W.

K3V

F3NV

KDV KDV

F3N

Kar

KBE

K3N

KISE KISE

K35

K3V

EST.

10

E BY

Man Man

Fall Fall

Kar Kar

Kale Kale

Kar

Kon

F3V

FBV FBV

Kal

Kal

F3V

FON

E3V

F3V

Kal

Marie

123

Report No.: SHATBL2209003W02

K3N

P. Sh

K35

F

Kall

F3N

En-

KISE KS

F3V

Kal

F3V

K

Mal

1

133

ŕ

E.

FBV FBV

K3V

Kar

Kale Kale

Page 5 of 62 KONE **Revision History**

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	2022-12-19	SHATBL2209003W02	ALL	Initial Issue

Kaji

Mar

Kal

K3V

Kan Kan

Kar Kar

Kan Kan

K350

Kal

K. B.

KBV

K3N

Page 6 of 62 Report No.: SHATBL2209003W02

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

	FCC Part15.247,Subpart C		
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	5× -
15.247(a)(1)&(b)(1)	Output Power	PASS	13
15.209	Radiated Spurious Emission	PASS	F- 1
15.247(d)	Conducted Spurious & Band Edge Emission	PASS	-7
15.247(a)(1)(iii)	Number of Hopping Frequency	PASS	- 1
1 <mark>5</mark> .247(a)(1)(iii)	Dwell Time	PASS	
15.24 <mark>7</mark> (a)(1)	Bandwidth	PASS	4
15.205	Restricted bands of operation	PASS	- 4
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	3V-

NOTE:

^{(1) &#}x27;N/A' denotes test is not applicable in this Test Report.

⁽²⁾All tests are according to ANSI C63.10-2013.

Page 7 of 62 Report No.: SHATBL2209003W02

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	HEAR Hearing-enhand	cement earbuds	
Trade Name	XROUND	F 35 5	
Model Name	XV-03	12 No 12	
Series Model	N/A	The state of the s	
Model Difference	N/A	20 / V.	
	The EUT is HEAR Hearing-enhancement earbuds		
	Operation Frequency:	2402~2480 MHz	
Product Description	Modulation Type:	GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)	
	Bluetooth Configuration:	BR+EDR	
	Bluetooth Version:	5.2	
	Number Of Channel:	79	
	Antenna Designation:	FPC	
	Antenna Gain (dBi):	0 dBi	
Channel List	Please refer to the N	lote 2.	
Adapter	N/A	25 5	
Battery	Model: I IR1254 Brand: France Rated 3.6V Charge Limit Voltage:4.2V Capacity: 65mAh		
Hardware version number	N/A	5 5	
Software version number	N/A	200	
Connecting I/O Port(s)	Please refer to the N	lote 1.	

Note:

 For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

Page 8 of 62

Report No.: SHATBL2209003W02

2

	100	Chan	nel List	F 2	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454	$\overline{}$	
26	2428	53	2455		

3. Table for Filed Antenna

Ant.	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
F1 4	XROUND	FPC	N/A	0dBi	BLE ANT

Page 9 of 62 Report No.: SHATBL2209003W02

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate/Modulation
Mode 1	TX CH00	1Mbps/GFSK
Mode 2	TX CH39	1Mbps/GFSK
Mode 3	TX CH78	1Mbps/GFSK
Mode 4	TX CH00	2 Mbps/π/4-DQPSK
Mode 5	TX CH39	2 Mbps/π/4-DQPSK
Mode 6	TX CH78	2 Mbps/π/4-DQPSK
Mode7	TX CH00	3 Mbps/8DPSK
Mode 8	TX CH39	3 Mbps/8DPSK
Mode 9	TX CH78	3 Mbps/8DPSK
Mode 10	Hopping	GFSK
Mode 11	Hopping	π/4-DQPSK
Mode 12	Hopping	8DPSK

Note:

For Conducted Emission

100	Test Case	1 (2)
Conducted Emission	Mode 13 : Keeping BT TX	La Co

2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

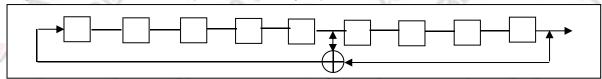
(1)Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

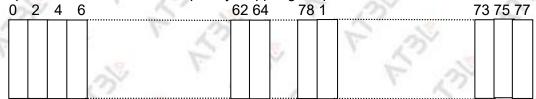
The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

⁽¹⁾ The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.


Page 10 of 62

Report No.: SHATBL2209003W02

(2)The Pseudo random sequence may be generated in a Non-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones.


Number of shift register stages:9

Length of pseudo-random sequence: 29-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Liner Feedback Shift Register for Generator of the PRBS sequence

An example of Pseudo random Frequency Hoppong Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

(3)Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

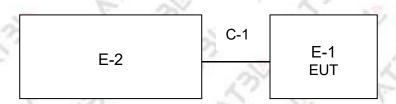
This device was tested with a Bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

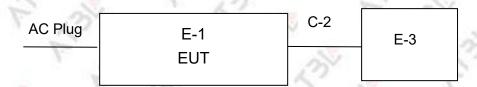
Page 11 of 62 Report No.: SHATBL2209003W02

2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

Test software Version	Test program: Bluetooth		
100	Power class:	Power class:	Power class:
(Power control software)	DH1 rate:4:27	DH3 rate:11:183	DH5 rate:15:339
Parameters(1/2/3Mbps)	2DH1 rate:20:54	2DH3 rate:26:367	2DH5 rate:30:679
	3DH1 rate:24:83	3DH3 rate:27:552	3DH5 rate:31:1021


1000	RF Function	Туре	Mode Or Modulation type	Ant Gain(dBi)	Antenna Type	Software For Testing
	5	N.	GFSK	0	FPC	Provided by the customer
	ВТ	BR+EDR	π/4-DQPSK	0		
	V	50	8DPSK	0	5	- T


Page 12 of 62

Report No.: SHATBL2209003W02

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Spurious Emission Test

Conduction Emission Test

Page 13 of 62 Report No.: SHATBL2209003W02

2.6LABORATORY INFORMATION

Company Name:	Shanghai ATBL Technology Co., Ltd.
Address:	Building 8,No.160 Basheng Road,Waigaoqiao Free Trade Zone,Pudong New Area,Shanghai
Telephone:	+86(0)21-51298625
The FCC Registration Number (FRN):	0031025281
A2LA Number:	6184.01
CNAS Number:	CNAS L14531

2.7 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

No. of Concession, Name of		7.25
No.	Item	Uncertainty
1	RF output power, conducted	±0.958dB
2	Conducted spurious emissions	±2.988dB
3	All emissions, radiated 30MHz-1GHz	±2.50dB
4	All emissions, radiated 1GHz-18GHz	±3.51dB
5	Occupied bandwidth	±2.320Hz
6	Power spectral density	±0.886dB

Page 14 of 62

Report No.: SHATBL2209003W02

2.8 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-2	Adapter	OPPO	VCA7JCCH	N/A	N/A
C-1	USB	N/A	20cm	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
C-2	Notebook	Lenovo	DESKTOP-USDEO09	00326-10000-00 <mark>0</mark> 00-AA636	N/A
E-3	USB Cable	N/A	100cm	N/A	N/A

Note:

(1) For detachable type I/O cable should be specified the length in cm in ${}^{\mathbb{F}}\mathsf{Length}\, {}_{\mathbb{F}}$ column.

Page 15 of 62

Report No.: SHATBL2209003W02

2.9 EQUIPMENTS LIST

2.9.1 Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Management number	Calibrated until
Test Receiver	R&S	ESCI	100469	SHATBL-E003	2023.09.27
Spectrum Analyzer	Agilent	N9020A	MY50200811	SHATBL-E017	2023.09.27
Bilog Antenna	SCHWARZBECK	VLUB 9168	01174	SHATBL-E008	2023.09.27
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	SHATBL-E009	2023.09.27
Pre-Amplifier (0.1M-3GHz)	JPT	JPA-10M1G35	2101010003500	SHATBL-E005	2023.09.27
Pre-Amplifier (1G-18GHz)	JPT	JPA0118-55-30 3A	1910001800055 000	SHATBL-E006	2023.09.27
Temperature & Humidity	DeLi	DeLi	N/A	SHATBL-E016	2023.09.27
Antenna/Turntable Controller	Brilliant	N/A	N/A	SHATBL-E007	N/A
Test SW	FALA	EMC-RI	(Ver.4A2)	SHATBL-E046	N/A

2.9.2 Conduction Test equipment

	Kind of Equipment	Manufacturer	Type No.	Serial No.	Management number	Calibration date
	Test Receiver	R&S	ESPI	101679	SHATBL-E012	2023.09.27
3	LISN	R&S	ENV216	101300	SHATBL-E013	2023.09.27
	LISN	R&S	ENV216	100333	SHATBL-E041	2023.09.27
	Temperature & Humidity	DeLi	DeLi	N/A	SHATBL-E015	2023.09.27
	Test SW	FALA	EZ-EMC(Ver.EM	IC-CON3A1.1)	SHATBL-E044	N/A

Page 16 of 62

Report No.: SHATBL2209003W02

2.9.3 RF Connected Test

Kind of Equipment	Manufactur Type No		Serial No.	equipment	Calibrated
Kind of Equipment	er	Type No.	Serial No.	number	until
MIMO Power	IO Power	DDD2006W	16I00054SN01 6	SHATBL-W006	2023.09.27
measurement test Set	DARE	RPR3006W	RPR6W-20001 005	SHATBL-W013	2023.09.27
Signal Analyzer	Agilent	N9020A	MY57300196	SHATBL-W004	2023.09.27
Signal Generator	Agilent	N5182B	MY46240556	SHATBL-W005	2023.09.27
Wireless Communications Test Set	R&S	CMW500	101331	SHATBL-W007	2023.09.27
Temperature & Humidity	Deli	deli	N/A	SHATBL-W011	2023.09.27
Attenuator	Agilent	8494B	DC-18G	SHATBL-W009	2023.09.27
Attenuator	Agilent	8496B	DC-18G	SHATBL-W010	2023.09.27
	NANUZ	MPD-DC/6-2	62315 G51	SHATBL-W015	2023.09.27
power splitter	MNK	S	62315 G52	SHATBL-W016	2023.09.27
Filter	Chengdu kangmaiwei	ZBSF-C2400 -2483.5-T3	N/A	SHATBL-W021	N/A
Constant temperature and humidity box	KSON	THS-B6C-15 0	615 <mark>9</mark> K	SHATBL-W019	2023.09.27
Test SW	FALA	LZ-RF(Ver.I	LzRF-03A3.1)	SHATBL-W020	N/A

3.EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

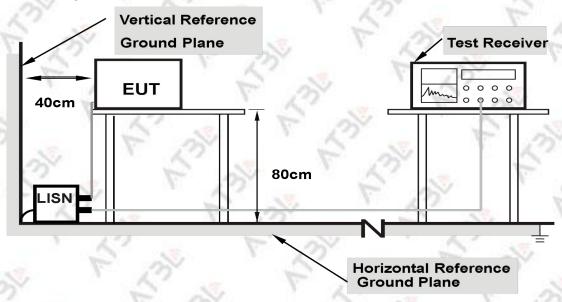
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

		Conducted Emiss	sion limit (dBuV)	
	FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5		66 - 56 *	56 - 46 *	
	0.50 -5.0	56.00	46.00	
V	5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

Page 17 of 62 Report No.: SHATBL2209003W02

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

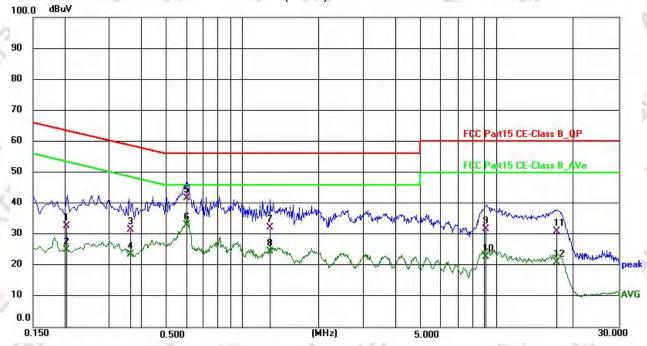
3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

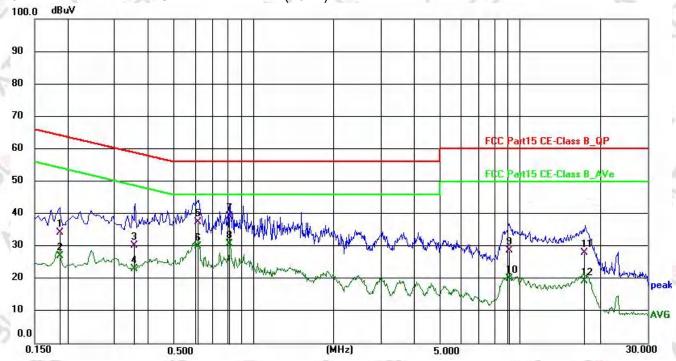

Report No.: SHATBL2209003W02 Page 18 of 62

3.1.5 TEST RESULT

Temperature:	22.3℃	Relative Humidity:	51%
Test Voltage:	AC 120V/60Hz	Phase:	L F 3
Test Mode:	Mode 13	1. 13.	5 F 3

No.	Frequenc y (MHz)	Reading (dBuV)	Correct Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.2033	22.02	10.75	32.77	63.47	-30.70	QP
2	0.2033	14.24	10.75	24.99	53.47	-28.48	AVG
3	0.3634	20.80	10.68	31.48	58.65	-27.17	QP
4	0.3634	12.75	10.68	23.43	48.65	-25.22	AVG
5	0.6066	31.11	10.68	41.79	56.00	-14.21	QP
6	0.6066	22.30	10.68	32.98	46.00	-13.02	AVG
7	1.2925	21.41	10.73	32.14	56.00	-23.86	QP
8	1.2925	13.71	10.73	24.44	46.00	-21.56	AVG
9	9.1006	21.12	10.65	31.77	60.00	-28.23	QP
10	9.1006	12.09	10.65	22.74	50.00	-27.26	AVG
11	17.2351	19.93	10.94	30.87	60.00	-29.13	QP
12	17.2351	10.07	10.94	21.01	50.00	-28.99	AVG

- All readings are Quasi-Peak and Average values.
 Margin = Result (Result = Reading + Factor) Limit.
 Factor=LISN factor+Cable loss+Limiter (10dB)


Page 19 of 62

Report No.: SHATBL2209003W02

Temperature:	22.3°C	Relative Humidity:	51%
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 13	F 35	1. 13.

			4 / 2		The state of the s	and the second second	7 / / /
No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1870	23.75	10.41	34.16	64.17	-30.01	QP
2	0.1870	16.49	10.41	26.90	54.17	-27.27	AVG
3	0.3528	19.98	10.31	30.29	58.90	-28.61	QP
4	0.3528	12.79	10.31	23.10	48.90	-25.80	AVG
5	0.6187	27.17	10.34	37.51	56.00	-18.49	QP
6	0.6187	19.57	10.34	29.91	46.00	-16.09	AVG
7	0.8122	28.84	10.35	39.19	56.00	-16.81	QP
8	0.8122	20.34	10.35	30.69	46.00	-15.31	AVG
9	9.1071	18.37	10.36	28.73	60.00	-31.27	QP
10	9.1071	9.68	10.36	20.04	50.00	-29.96	AVG
11	17.5092	17.08	10.82	27.90	60.00	-32.10	QP
12	17.5092	8.45	10.82	19.27	50.00	-30.73	AVG

- All readings are Quasi-Peak and Average values.
 Margin = Result (Result = Reading + Factor) Limit.
 Factor=LISN factor+Cable loss+Limiter (10dB)

Page 20 of 62 Report No.: SHATBL2209003W02

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(kHz)	300	
0.490~1.705	24000/F(kHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41		N A	7 - 1
	_ 400	AT S. Marie Co.	

Page 21 of 62

Report No.: SHATBL2209003W02

For Radiated Emission

Spectrum Parameter	Setting			
Attenuation	Auto			
Detector	Peak/QP/AV			
Start Frequency	9 kHz/150kHz(Peak/QP/AV)			
Stop Frequency	150kHz/30MHz(Peak/QP/AV)			
F 3	200Hz (From 9kHz to 0.15MHz)/			
RB / VB (emission in restricted	9kHz (From 0.15MHz to 30MHz);			
band)	200Hz (From 9kHz to 0.15MHz)/			
S F 3	9kHz (From 0.15MHz to 30MHz)			

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted band)	120 kHz / 300 kHz

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier harmonic(Peak/AV)		
RB / VB (emission in restricted	1MHz / 3MHz(Peak)		
band)	1 MHz/1/T MHz(AVG)		

For Restricted band

Spectrum Parameter	Setting
Detector	Peak/AV
Start/Stop Frequency	2310MHz to 2500MHz
DD (MD	1 MHz / 3 MHz(Peak)
RB / VB	1 MHz/1/T MHz(AVG)

Page 22 of 62 Report No.: SHATBL2209003W02

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

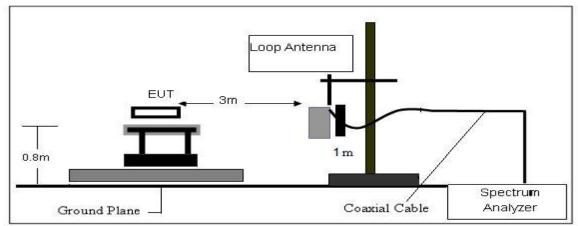
3.2.2 TEST PROCEDURE

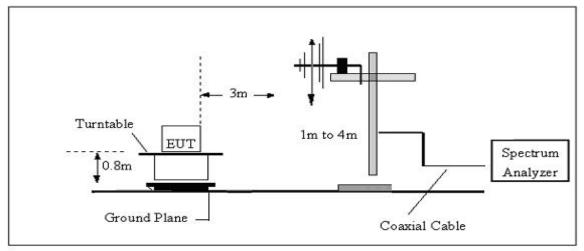
- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

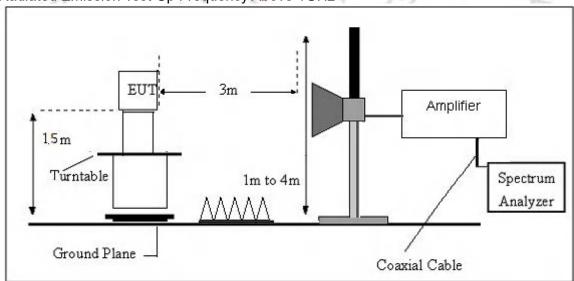
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.3 DEVIATION FROM TEST STANDARD


No deviation.


Page 23 of 62 Report No.: SHATBL2209003W02

3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS Please refer to section 3.1.4 of this report.

Page 24 of 62 Report No.: SHATBL2209003W02

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

3.2.7 TEST RESULTS

(9kHz-30MHz)

Temperature:	22.3℃	Relative Humidity:	51%
Test Voltage:	DC 3.7V	Test Mode:	TX Mode

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

Page 25 of 62

Report No.: SHATBL2209003W02

(30MHz-1000MHz)

Temperature:	22.3℃	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Horizontal
Test Mode:	TX Mode	E 2	S 1. 132

Remark:

4

5

6

195.821956

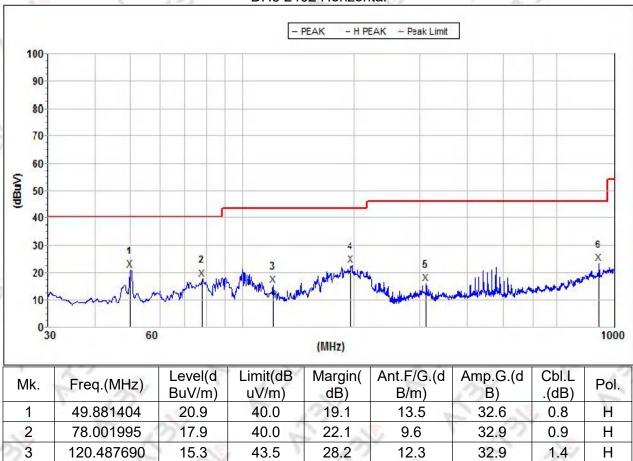
311.632553

904.894515

22.7

16.0

23.5


43.5

46.0

46.0

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

DH5 2402 Horizontal

20.8

30.0

22.5

10.1

12.9

19.7

2.3

2.7

3.7

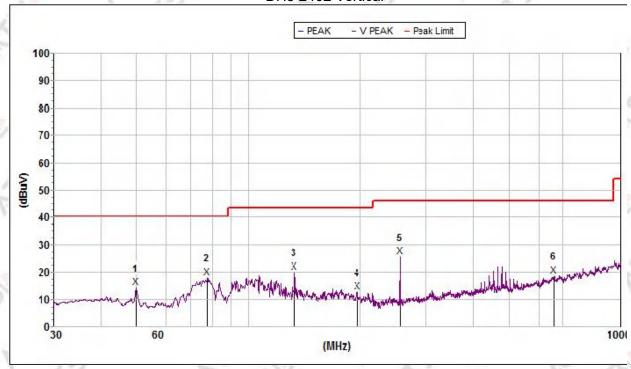
Н

H

32.8

32.7

31.6


Page 26 of 62

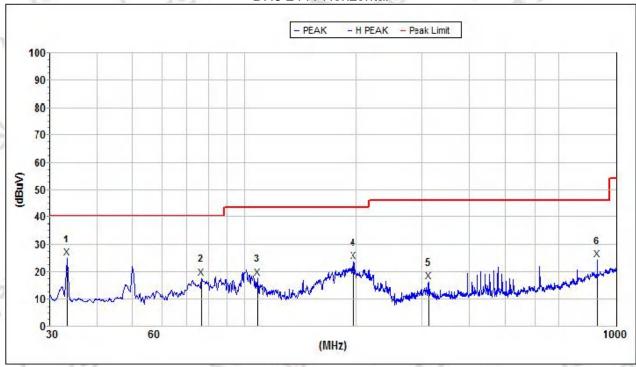
Report No.: SHATBL2209003W02

(30MHz-1000MHz)

Temperature:	22.3℃	Relative Humidity:	: 51%
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	TX Mode	8	N F 23

- Margin = Result (Result =Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
 DH5 2402 Vertical

Mk.	Freq.(MHz)	Level(d BuV/m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(dB/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
1	49.881404	14.5	40.0	25.5	13.5	32.6	0.8	V
2	77.456872	18.0	40.0	22.0	9.7	32.9	0.9	V
3	133.151089	20.1	43.5	23.4	13.0	32.9	1.4	V
4	196.165587	12.8	43.5	30.7	10.1	32.8	2.3	V
5	254.728354	25.8	46.0	20.2	11.7	32.8	2.6	V
6	663.472897	18.7	46.0	27.3	19.5	32.3	3.4	V


Page 27 of 62

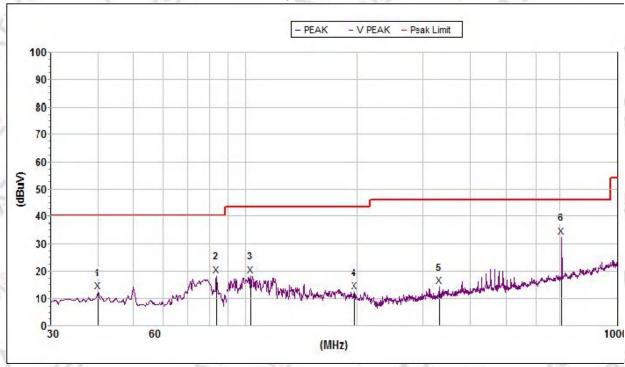
Report No.: SHATBL2209003W02

(30MHz-1000MHz)

Temperature:	22.3℃	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Horizontal
Test Mode:	TX Mode	E 2	S 1. 132

- Margin = Result (Result =Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
 DH5 2441 Horizontal

Mk.	Freq.(MHz)	Level(d BuV/m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(d B/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
1	33.386359	25.0	40.0	15.0	13.3	32.2	0.8	Н
2	76.512057	17.9	40.0	22.1	9.8	32.9	0.9	Н
3	108.456682	17.7	43.5	25.8	11.0	32.9	1.4	Н
4	196.165587	23.6	43.5	19.9	10.1	32.8	2.3	OH
5	312.179411	16.5	46.0	29.5	13.0	32.7	2.7	Н
6	884.502865	24.2	46.0	21.8	19.6	31.7	3.6	Hai


Page 28 of 62

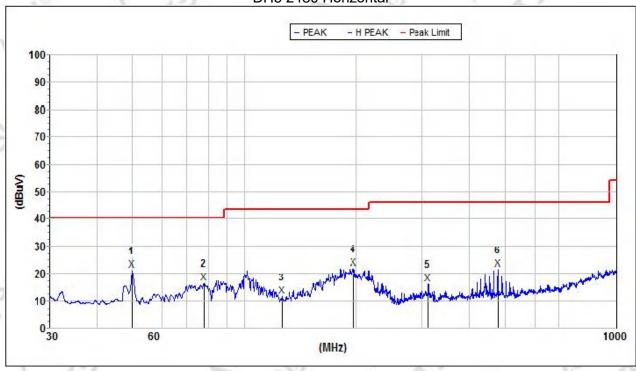
Report No.: SHATBL2209003W02

(30MHz-1000MHz)

Temperature:	22.3°C	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	TX Mode	3	S 7 730

- Margin = Result (Result =Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
 DH5 2441 Vertical

Mk.	Freq.(MHz)	Level(d BuV/m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(dB/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
1	40.134716	12.4	40.0	27.6	14.1	32.4	0.8	V
2	83.229823	18.3	40.0	21.7	9.3	32.9	1.0	V
3	103.080039	18.3	43.5	25.2	10.5	32.9	1.4	V
4	196.165587	12.4	43.5	31.1	10.1	32.8	2.3	V
5	331.354746	14.4	46.0	31.6	13.4	32.6	2.7	٧
6	707.939987	32.5	46.0	13.5	19.7	32.3	3.6	V



Report No.: SHATBL2209003W02

(30MHz-1000MHz)

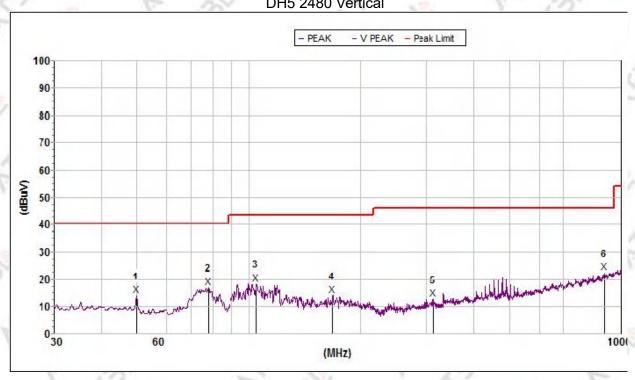
Temperature:	22.3℃	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Horizontal
Test Mode:	TX Mode	E 2	S 1. 132

- 9. Margin = Result (Result =Reading + Factor)–Limit
 10. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
 DH5 2480 Horizontal

Mk.	Freq.(MHz)	Level(d BuV/m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(d B/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
_1	49.881404	21.3	40.0	18.7	13.5	32.6	0.8	Н
2	78.001995	16.7	40.0	23.3	9.6	32.9	0.9	Н
3	125.886356	11.9	43.5	31.6	12.6	32.9	1.4	Н
4	196.165587	22.2	43.5	21.3	10.1	32.8	2.3	OH
5	311.632553	16.3	46.0	29.7	12.9	32.7	2.7	Н
6	479.685845	21.8	46.0	24.2	14.6	32.4	2.8	HZ

Page 30 of 62

Report No.: SHATBL2209003W02


(30MHz-1000MHz)

Temperature:	22.3 ℃	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	TX Mode	5	N F

- 11. Margin = Result (Result = Reading + Factor)–Limit

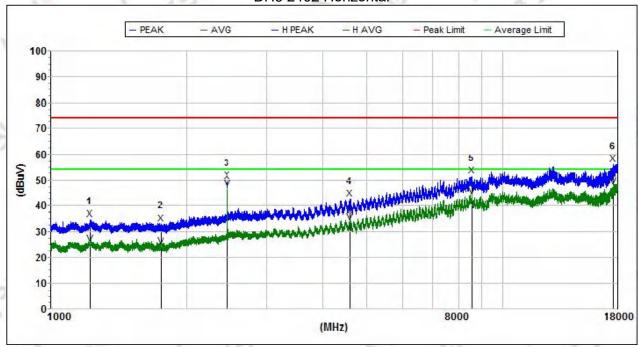
 12. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

 DH5 2480 Vertical

Mk.	Freq.(MHz)	Level(d BuV/m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(dB/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
1	49.881404	14.1	40.0	25.9	13.5	32.6	0.8	V
2	78.001995	17.0	40.0	23.0	9.6	32.9	0.9	V
3	104.536051	18.3	43.5	25.2	10.6	32.9	1.4	V
4	167.530266	14.2	43.5	29.3	13.4	32.9	1.7	V
5	312.179411	12.8	46.0	33.2	13.1	32.7	2.7	V
6	896.996522	22.4	46.0	23.6	21.6	31.6	3.6	V

Page 31 of 62

Report No.: SHATBL2209003W02


1000MHz-18000MHz

Temperature:	22.3℃	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Horizontal
Test Mode:	TX Mode	E 2	S 1. 132

Remark:

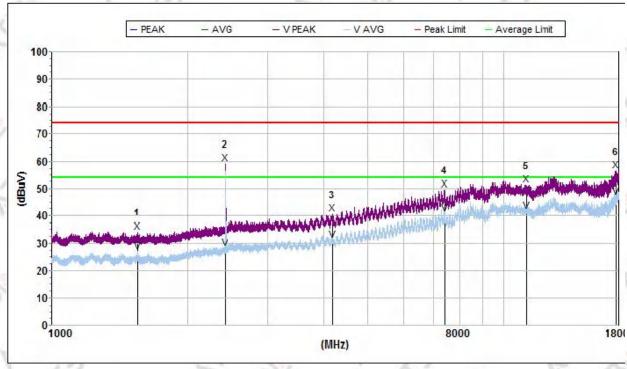
- 13. Margin = Result (Result = Reading + Factor) Limit
 14. Factor = Antenna factor + Cable attenuation factor (cable loss) Amplifier gain

DH5 2402 Horizontal

	ar area and							
Mk.	Freq.(MHz)	Level(dBuV/ m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(d B/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
Peak:	F 2	3	100	V .	©.	~ 25		
1	1217.100000	35.0	74.0	39.0	25.7	60.9	2.3	Н
2	1749.600000	33.1	74.0	40.9	25.1	61.3	2.6	Н
3	2459.500000	49.8	74.0	24.2	27.6	59.1	2.8	H
4	4584.000000	42.7	74.0	31.3	31.6	57.9	3.6	H
5	8529.750000	51.7	74.0	22.3	37.7	56.1	5.1	Н
6	17588.250000	56.3	74.0	17.7	39.8	58.0	6.9	н
Avg	1	33	Aug.	125		2 3	8	- 7
1	1217.100000	25.2	54.0	28.8	25.7	60.9	2.3	Н
2	1749.600000	24.5	54.0	29.5	25.1	61.3	2.6	Н
3	2459.500000	46.7	54.0	7.3	27.6	59.1	2.8	Н
4	4584.000000	33.9	54.0	20.1	31.6	57.9	3.6	/HY
5	8529.750000	43.9	54.0	10.1	37.7	56.1	5.1	H
6	17588.250000	47.6	54.0	6.4	39.8	58.0	6.9	Н

Page 32 of 62

Report No.: SHATBL2209003W02


(1000MHz-18000MHz)

Temperature:	22.3°C	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	TX Mode	1 1	V 135

- 15. Margin = Result (Result =Reading + Factor)–Limit

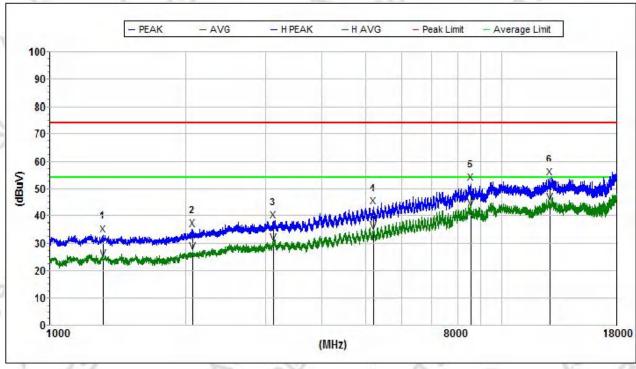
 16. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

 DH5 2402 Vertical

Mk.	Freq.(MHz)	Level (dBu V/m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(dB/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
Peak:	1 //	450	L	125		1	18	
1	1549.900000	34.1	74.0	39.9	25.3	61.3	2.5	V
2	2416.200000	59.3	74.0	14.7	27.4	59.4	2.8	V
3	4175.250000	40.9	74.0	33.1	31.0	58.2	3.4	V
4	7399.500000	49.6	74.0	24.4	36.5	57.5	4.6	V
5	11229.750000	51.3	74.0	22.7	39.0	61.1	5.7	V
6	17799.000000	56.5	74.0	17.5	41.1	57.8	7.0	V
Avg	75 25	6	- 1	1	2	10		
¥1	1549.900000	26.9	54.0	27.1	25.3	61.3	2.5	V
2	2416.200000	28.2	54.0	25.8	27.4	59.4	2.8	V
3	4175.250000	31.4	54.0	22.6	31.0	58.2	3.4	V
4	7399.500000	40.7	54.0	13.3	36.5	57.5	4.6	V
5	11229.750000	41.9	54.0	12.1	39.0	61.1	5.7	V
6	17799.000000	47.0	54.0	7.0	41.1	57.8	7.0	V

Page 33 of 62

Report No.: SHATBL2209003W02


(1000MHz-18000MHz)

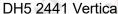
Temperature:	22.3℃	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Horizontal
Test Mode:	TX Mode	E 2	S 1. 132

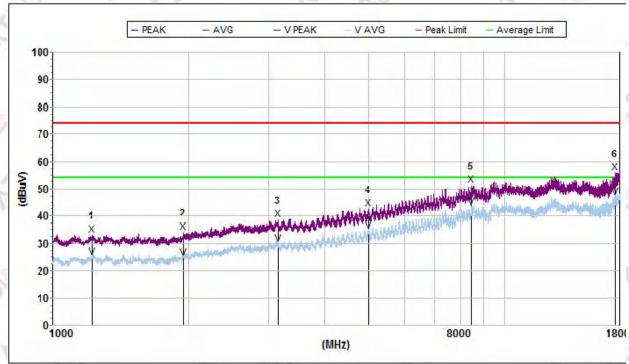
Remark:

- 17. Margin = Result (Result = Reading + Factor) Limit18. Factor = Antenna factor + Cable attenuation factor (cable loss) Amplifier gain

DH5 2441 Horizontal

Mk.	Freq.(MHz)	Level(dBuV/ m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(d B/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
Peak:		150	. 7	- /2		100	13	
1	1312.800000	33.1	74.0	40.9	25.8	61.1	2.3	Н
2	2068.450000	35.2	74.0	38.8	26.9	60.9	2.7	H
3	3121.600000	38.1	74.0	35.9	29.7	58.7	3.0	H
4	5203.250000	43.5	74.0	30.5	32.9	57.6	3.8	* H /
5	8531.000000	52.0	74.0	22.0	37.7	56.1	5.1	Н
6	12807.350000	54.0	74.0	20.0	39.5	57.9	6.1	H
Avg	V /	2	- 1	0 .	%	1 13		
1	1312.800000	24.4	54.0	29.6	25.8	61.1	2.3	Н
2	2068.450000	27.0	54.0	27.0	26.9	60.9	2.7	H
3	3121.600000	30.1	54.0	23.9	29.7	58.7	3.0	/H/
4	5203.250000	34.5	54.0	19.5	32.9	57.6	3.8)H
5	8531.000000	42.9	54.0	11.1	37.7	56.1	5.1	H
6	12807.350000	45.1	54.0	8.9	39.5	57.9	6.1	H


Report No.: SHATBL2209003W02

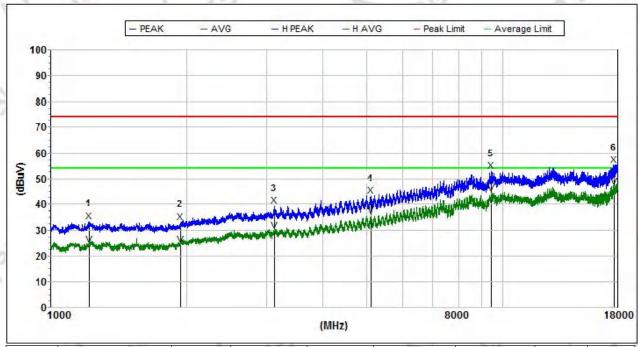

(1000MHz-18000MHz)

Temperature:	22.3℃	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	TX Mode	F 2	1 50

Remark:

19. Margin = Result (Result = Reading + Factor)—Limit
20. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
DH5 2441 Vertical

Mk.	Freq.(MHz)	Level(dBuV/ m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(dB/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
Peak		15	1.	135		1	1	
1	1221.850000	33.2	74.0	40.8	25.7	60.9	2.3	V
2	1945.200000	34.2	74.0	39.8	26.0	60.9	2.6	V
3	3150.500000	38.7	74.0	35.3	29.7	58.6	3.0	V
4	5002.650000	42.6	74.0	31.4	33.0	57.4	3.6	V
5	8438.350000	51.3	74.0	22.7	37.5	56.3	5.1	V
6	17575.000000	56.0	74.0	18.0	39.7	58.1	6.9	V
Avg	N 23) - O	7	5 22	ý.	1.63		
1	1221.850000	24.9	54.0	29.1	25.7	60.9	2.3	V
2	1945.200000	24.6	54.0	29.4	26.0	60.9	2.6	٧
3	3150.500000	29.8	54.0	24.2	29.7	58.6	3.0	V
4	5002.650000	34.8	54.0	19.2	33.0	57.4	3.6	V
5	8438.350000	43.4	54.0	10.6	37.5	56.3	5.1	V
6	17575.000000	47.1	54.0	6.9	39.7	58.1	6.9	V



Report No.: SHATBL2209003W02 Page 35 of 62

(1000MHz-18000MHz)

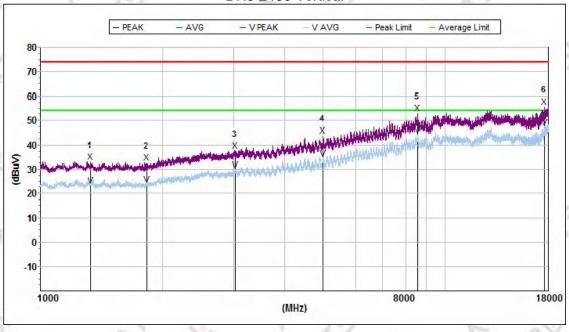
Temperature:	22.3°C	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Horizontal
Test Mode:	TX Mode	T 23	, E.

- 21. Margin = Result (Result =Reading + Factor)–Limit
 22. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain DH5 2480 Horizontal

Mk.	Freq.(MHz)	Level(dBuV/ m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(d B/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
Peak :	1 2	450		2	·	E.	2	
1.5	1211.650000	33.6	74.0	40.4	25.7	60.9	2.3	JH;
2	1940.950000	33.2	74.0	40.8	26.0	60.9	2.6	Н
3	3123.300000	39.5	74.0	34.5	29.7	58.7	3.0	Н
4	5108.900000	43.5	74.0	30.5	33.1	57.5	3.7	HA
5	9458.350000	52.9	74.0	21.1	38.6	59.6	5.4	Н
6	17681.250000	55.2	74.0	18.8	40.4	57.9	6.9	Н
Avg	3 8	20	, A	F 10	5	0 000	18	
1	1211.650000	24.3	54.0	29.7	25.7	60.9	2.3	Н
2	1940.950000	24.5	54.0	29.5	26.0	60.9	2.6	H
3	3123.300000	29.9	54.0	24.1	29.7	58.7	3.0	H
4	5108.900000	35.9	54.0	18.1	33.1	57.5	3.7	Н
5	9458.350000	44.3	54.0	9.7	38.6	59.6	5.4	H.
6	17681.250000	47.0	54.0	7.0	40.4	57.9	6.9	HW.

Page 36 of 62

Report No.: SHATBL2209003W02


(1000MHz-18000MHz)

Temperature:	22.3°C	Relative Humidity:	51%
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	TX Mode	2 3	S 1 730

Remark:

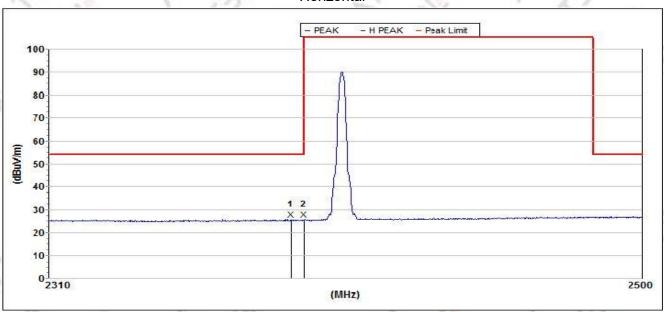
- 23. Margin = Result (Result = Reading + Factor)-Limit
- 24. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

DH5 2480 Vertical

Mk.	Freq.(MHz)	Level(dBuV/ m)	Limit(dB uV/m)	Margin(dB)	Ant.F/G.(dB/m)	Amp.G.(d B)	Cbl.L .(dB)	Pol.
Peak	7.7		Le .		1	V		1
1	1332.350000	32.9	74.0	41.1	25.8	61.2	2.3	V
2	1836.400000	32.6	74.0	41.4	25.3	61.2	2.6	V
3	3024.700000	37.7	74.0	36.3	29.5	58.8	3.0	V
4	4994.150000	43.7	74.0	30.3	32.9	57.4	3.6	V
5	8532.700000	53.1	74.0	20.9	37.7	56.1	5.1	V
6	17585.200000	55.5	74.0	18.5	39.8	58.1	6.9	V
Avg	- 2			20.	1	123		-2
1	1332.350000	23.5	54.0	30.5	25.8	61.2	2.3	V
2	1836.400000	23.8	54.0	30.2	25.3	61.2	2.6	V
3	3024.700000	29.7	54.0	24.3	29.5	58.8	3.0	V
4	4994.150000	34.4	54.0	19.6	32.9	57.4	3.6	V
5	8532.700000	44.0	54.0	10.0	37.7	56.1	5.1	V
6	17585.200000	47.2	54.0	6.8	39.8	58.1	6.9	V

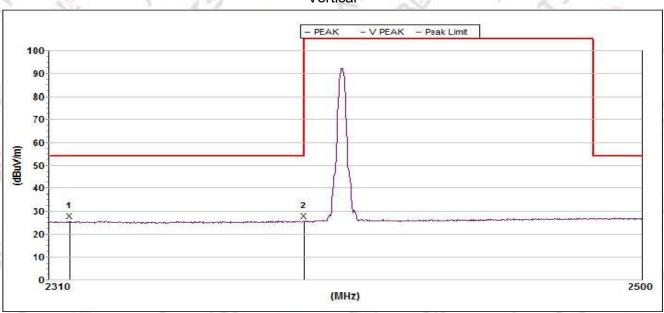
Note: 1.All TX Mode, the worst case is mode1,2&3, only show the worst case.

2.Other 18G-25G Emission detected are more than 20dB below the limit.


Page 37 of 62

Report No.: SHATBL2209003W02

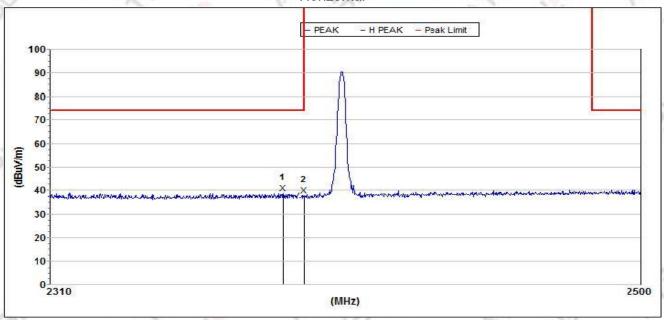
3.2.6 TEST RESULTS (BAND EDGE REQUIREMENTS)


DH5-Low

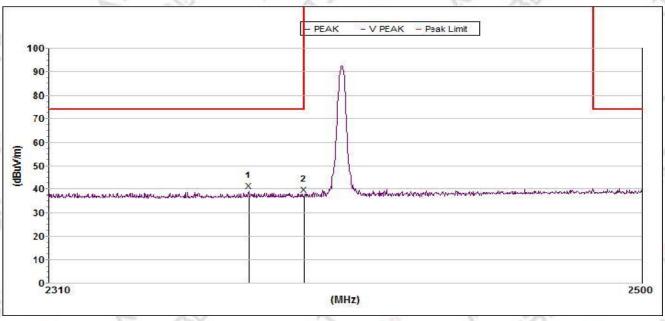
Horizontal

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Dal
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	Pol.
AVG	1 72	9142	700	27.		100		
1	2385.522338	25.8	54.0	28.2	27.3	59.6	2.8	H
2	2390.000000	25.6	54.0	28.4	27.3	59.6	2.8	H

Vertical


Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
- 3	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	P01.
AVG	4	-	1. 30			18		13
_1	2316.399491	25.6	54.0	28.4	27.2	59.9	2.8	V
2	2390.000000	25.6	54.0	28.4	27.3	59.6	2.8	V

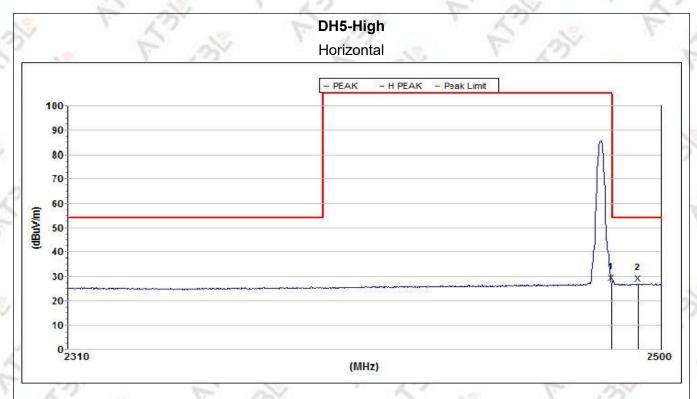
Page 38 of 62


Report No.: SHATBL2209003W02

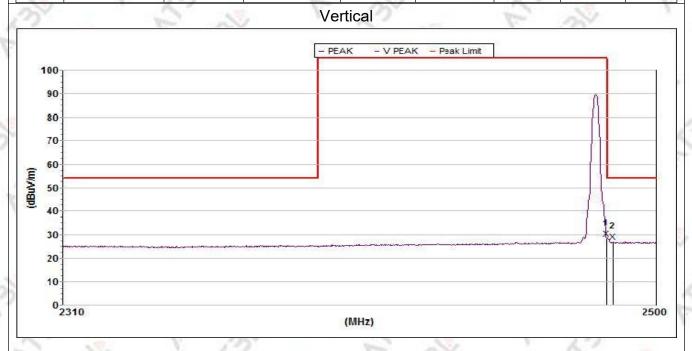
Horizontal

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	POI.
Peak	2	196	()	100	25	25	0	13
1	2383.072325	38.8	74.0	35.2	27.3	59.6	2.8	H
2	2390.000000	37.9	74.0	36.1	27.3	59.6	2.8	H

Vertical

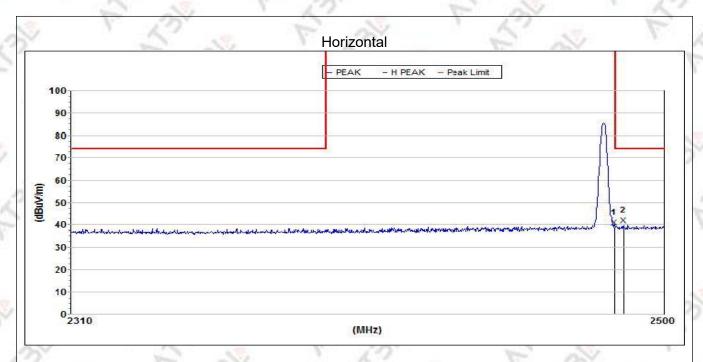


Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	P01.
Peak	7.5	1.11	20	70	1 m	ř.	, X	W
1	2372.359633	39.0	74.0	35.0	27.3	59.6	2.8	V
2	2390.000000	37.5	74.0	36.5	27.3	59.6	2.8	V

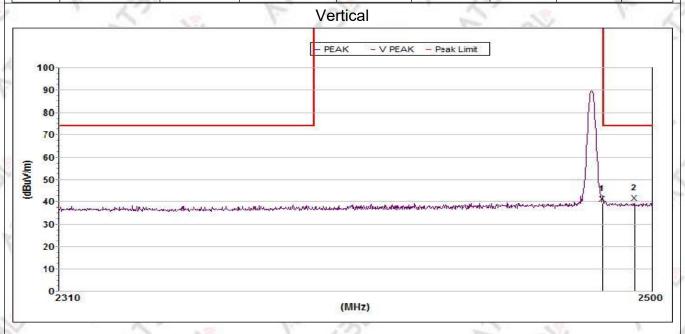


Page 39 of 62

Report No.: SHATBL2209003W02



Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	FUI.
AVG	F. 39	6.		7	No. 12	2	-	
1	2483.501000	27.2	54.0	26.8	27.7	58.9	2.8	H
2	2492.305154	26.9	54.0	27.1	27.7	58.8	2.8	H



Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	POI.
AVG	10	100	100	6	100	.0	1	- 30
1	2483.501000	28.4	54.0	25.6	27.7	58.9	2.8	V
2	2485.616153	27.0	54.0	27.0	27.7	58.9	2.8	V

Page 40 of 62 Report No.: SHATBL2209003W02

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	POI.
Peak		701 19	(2)	1-	200	20	2	42.
1	2483.501000	38.9	74.0	35.1	27.7	58.9	2.8	H
2	2486.402162	39.9	74.0	34.1	27.7	58.9	2.8	∖Ĥ

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(dB/m)	(dB)	(dB)	POI.
Peak	100	V 23	7	1		7	150	
1	2483.501000	39.2	74.0	34.8	27.7	58.9	2.8	V
2	2493.881651	39.5	74.0	34.5	27.7	58.8	2.8	V

Note: 1.All mode all have been tested, the worst case is DH5, only show the worst case.

2.Other 18G-25G Emission detected are more than 20dB below the limit.

Page 41 of 62 Report No.: SHATBL2209003W02

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting				
Detector	Peak				
Start/Stop Frequency	30 MHz to 10th carrier harmonic				
RB / VB (emission in restricted band)	100 kHz/300 kHz				
Trace-Mode:	Max hold				

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Start/Sto <mark>p</mark> Frequency	Lower Band Edge: 2395– 2405 MHz Upper Band Edge: 2477.5 – 2489.5 MHz		
RB / VB (emission in restricted band)	100 kHz/300 kHz		
Trace-Mode:	Max hold		

Spectrum Parameter	Setting				
Detector	Peak				
Start/Stop Frequency	Lower Band Edge: 2395– 2405 MHz Upper Band Edge: 2477.5 – 2489.5 MHz				
RB / VB (emission in restricted band)	100 kHz/300 kHz				
Trace-Mode:	Max hold				

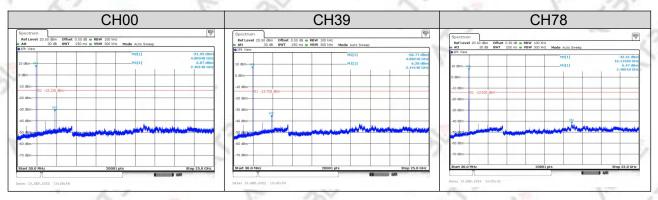
4.3 TEST SETUP

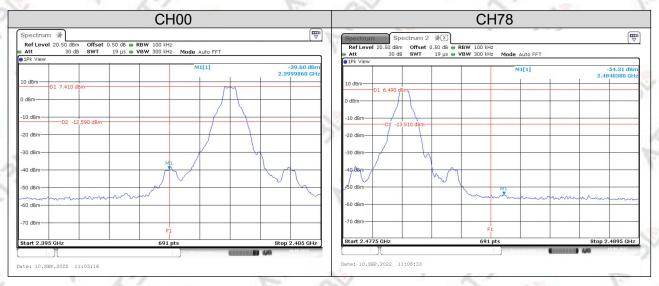
Page 42 of 62

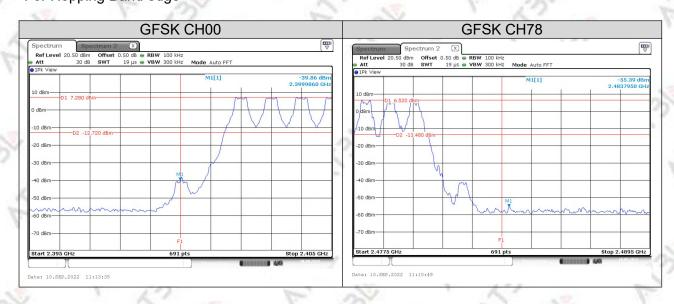
Report No.: SHATBL2209003W02

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Tune the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, the span is set to be greater than RBW.

4.4 EUT OPERATION CONDITIONS

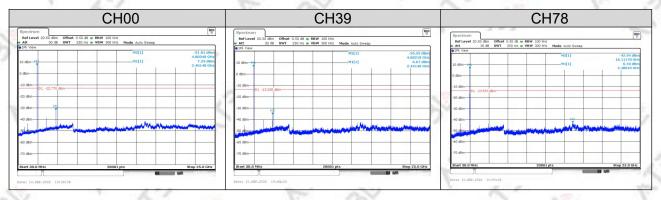

Please refer to section 3.1.4 of this report.

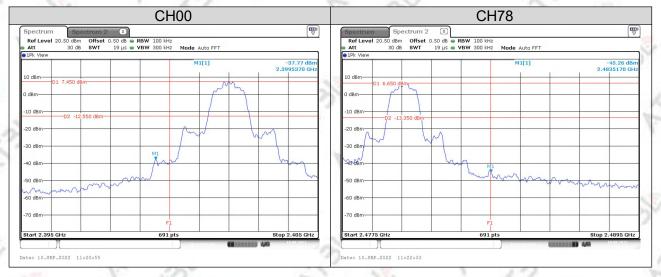

Page 43 of 62 Report No.: SHATBL2209003W02


4.5 TEST RESULTS

Temperature:	22.3℃	Relative Humidity:	51%
Test Mode:	GFSK(1Mbps)-00/39/78 CH	Test Voltage:	DC 5V

For Band edge(it's also the reference level for conducted spurious emission)

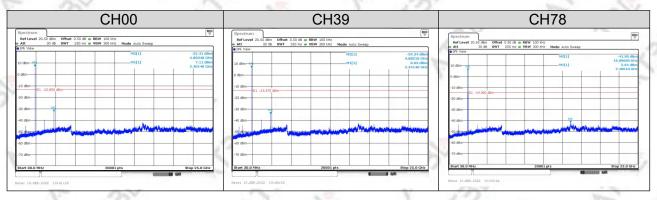


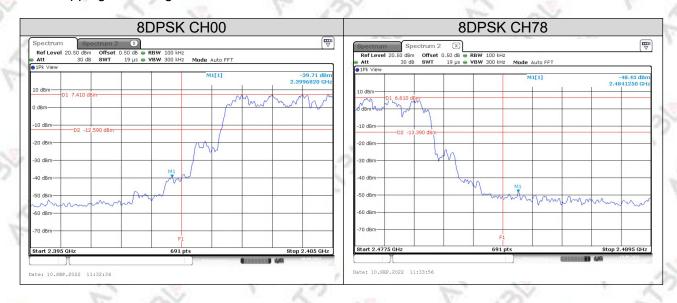


Page 44 of 62 Report No.: SHATBL2209003W02

Temperature:	22.3°C	Relative Humidity:	51%
LIEST IVIONE.	π/4-DQPSK(2Mbps)– 00/39/78 CH	Test Voltage:	DC 5V

For Band edge(it's also the reference level for conducted spurious emission)




Page 45 of 62 Report No.: SHATBL2209003W02

Temperature:	22.3℃	Relative Humidity:	51%
Test Mode:	8DPSK(3Mbps) -00/39/78 CH	Test Voltage:	DC 5V

For Band edge(it's also the reference level for conducted spurious emission)

Report No.: SHATBL2209003W02 Page 46 of 62

5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT

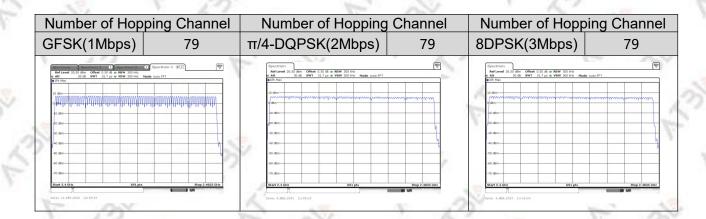
	FCC Pa	rt 15.247,Subp	art C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS

Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> Operating Frequency Range		
RB	300kHz		
VB	300kHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
 b. Spectrum Setting: RBW= 300kHz, VBW=300kHz, Sweep time = Auto.

5.3 TEST SETUP


Page 47 of 62 Report No.: SHATBL2209003W02

5.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

5.5 TEST RESULTS

Temperature:	22.3℃	Relative Humidity:	51%
Test Mode:	Hopping Mode 1M/2M/3M	Test Voltage:	DC 5V

Page 48 of 62 Report No.: SHATBL2209003W02

6. AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

	FCC	Part 15.247,Subpa	art C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

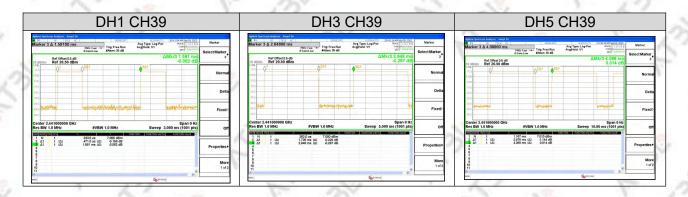
6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to
- e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds.

6.3 TEST SETUP

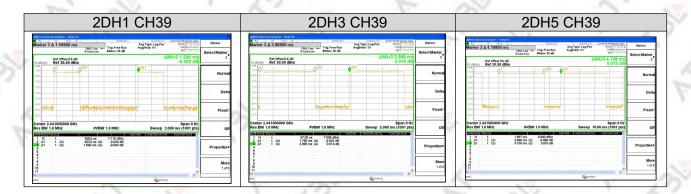
6.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.


Page 49 of 62

Report No.: SHATBL2209003W02

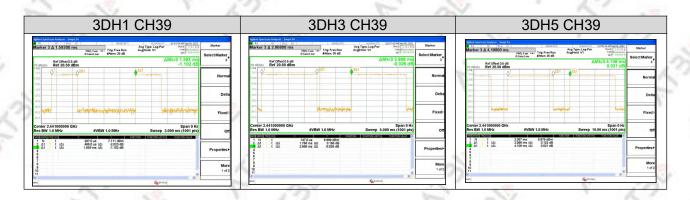
6.5 TEST RESULTS


	Temperature:	22.3℃	Relative Humidity:	51%
1	Test Mode:	GFSK(1Mbps)-DH1/DH3/DH5	Test Voltage:	DC 5V

Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
DH1	2441	0.471	0.151	0.4
DH3	2441	1.736	0.278	0.4
DH5	2441	2.976	0.315	0.4

Temperature:	22.3℃	Relative Humidity:	51%
Test Mode:	π/4-DQPSK(2Mbps)– 2DH1/2DH3/2DH5	Test Voltage:	DC 5V

Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
2DH1	2441	0.486	0.156	0.4
2DH3	2441	1.756	0.281	0.4
2DH5	2441	2.996	0.318	0.4



Page 50 of 62 Report No.: SHATBL2209003W02

Temperature:	22.3°C	Relative Humidity:	51%
Test Mode:	8DPSK(3Mbps)- 3DH1/3DH3/3DH5	Test Voltage:	DC 5V

Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
3DH1	2441	0.483	0.155	0.4
3DH3	2441	1.756	0.281	0.4
3DH5	2441	2.996	0.318	0.4

Page 51 of 62 Report No.: SHATBL2209003W02

7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> 20 dB Bandwidth or Channel Separation	
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation) 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) Peak	
VB		
Detector		
Trace	Max Hold	
Sweep Time	Auto	

7.2 TEST PROCEDURE

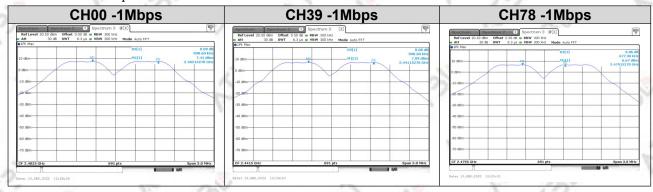
- a. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

Page 52 of 62

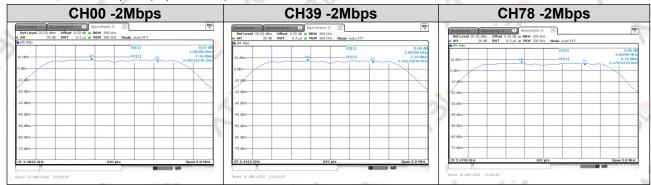

Report No.: SHATBL2209003W02

7.5 TEST RESULTS

	Temperature:	22.3℃	Relative Humidity:	51%
1	TOCT IVIDAD.	CH00 / CH39 / CH78 (GFSK(1Mbps) Mode)	Test Voltage:	DC 5V

Frequency	Mark1 Frequency (MHz)	Ch. Separation (MHz)	Limit (MHz)	Result
2402 MHz	2401.990	0.999	0.544	Complies
2441 MHz	2441.149	0.999	0.547	Complies
2480 MHz	2478.993	0.677	0.544	Complies

For GFSK: Ch. Separation Limits: >two-thirds 20dB bandwidth

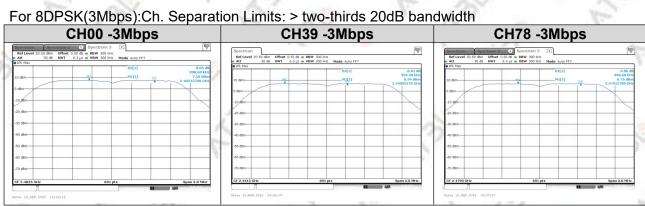


Page 53 of 62 Report No.: SHATBL2209003W02

Temperature:	22.3℃	Relative Humidity:	51%
I DOT IVIDAD.	CH00 / CH39 /CH78 (π/4-DQPSK(2Mbps) Mode)	Test Voltage:	DC 5V

-	Mark1	Ch	1	1
Frequency	Frequency (MHz)	Ch. Separation (MHz)	Limit (MHz)	Result
2402 MHz	2401.83570	1.003	0.831	Complies
2441 MHz	2440.9920	1.003	0.834	Complies
2480 MHz	2478.8357	1.003	0.831	Complies

For $\pi/4$ -DQPSK(2Mbps): Ch. Separation Limits: > two-thirds 20dB bandwidth



Report No.: SHATBL2209003W02 Page 54 of 62

Temperature:	22.3 ℃	Relative Humidity:	51%
Test Mode:	CH00 / CH39 /CH78 (8DPSK(3Mbps)Mode)	Test Voltage:	DC 5V

Frequency	Mark1 Frequency (MHz)	Ch. Separation (MHz)	Limit (MHz)	Result
2402 MHz	2402.8314	0.999	0.842	Complies
2441 MHz	2441.1483	0.994	0.842	Complies
2480 MHz	2479.1440	0.999	0.842	Complies

Page 55 of 62

Report No.: SHATBL2209003W02

8. BANDWIDTH TEST

8.1 LIMIT

	FCC	Part15 15.247,Subp	part C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)	Bandwidth	N/A	2400-2483.5	PASS

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation) 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) Peak	
VB		
Detector		
Trace	Max Hold	
Sweep Time Auto		

8.2 TEST PROCEDURE

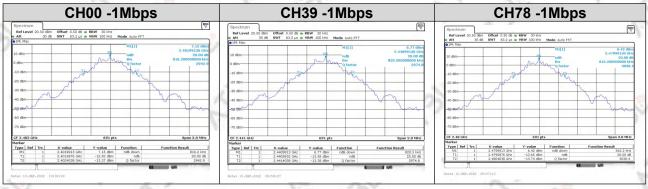
- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 30kHz, VBW=100kHz, Sweep time = Auto.

8.3 TEST SETUP

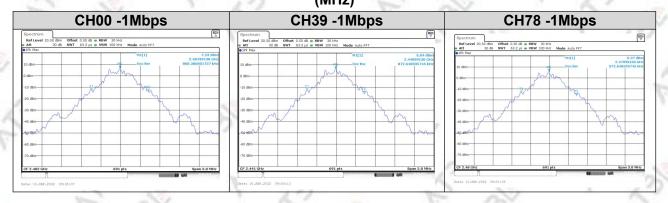
8.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

Page 56 of 62 Report No.: SHATBL2209003W02


8.5 TEST RESULTS

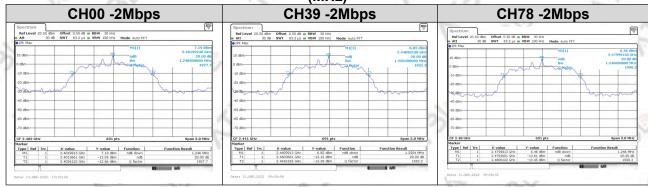
Temperature:	22.3℃	Relative Humidity:	51%
Test Mode:	GFSK(1Mbps) CH00 / CH39 /CH78	Test Voltage:	DC 5V


Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2402 MHz	0.816	0.868	PASS
2441 MHz	0.821	0.873	PASS
248 <mark>0</mark> MHz	0.816	0.873	PASS

20dB Bandwidth

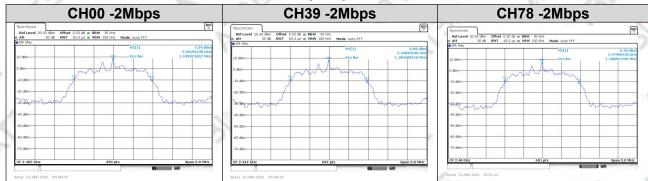
(MHz)

99% Bandwidth (MHz)



Page 57 of 62 Report No.: SHATBL2209003W02

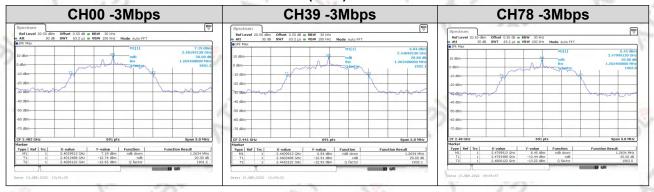
Temperature:	22.3℃	Relative Humidity:	51%
Test Mode:	π/4-DQPSK(2Mbps) CH00 / CH39 / CH78	Test Voltage:	DC 5V


Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2402 MHz	1.246	1.194	PASS
2441 MHz	1.250	1.190	PASS
2480 MHz	1.246	1.181	PASS

20dB Bandwidth (MHz)

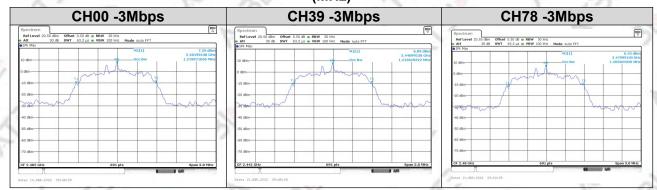
99% Bandwidth

(MHz)


Page 58 of 62 Report No.: SHATBL2209003W02

Temperature:	22.3°C	Relative Humidity:	51%
Test Mode:	8DPSK(3Mbps) CH00 / CH39 / CH78	Test Voltage:	DC 5V

Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2402 MHz	1.263	1.220	PASS
2441 MHz	1.263	1.216	PASS
2480 MHz	1.263	1.203	PASS 🧖


20dB Bandwidth

(MHz)

99% Bandwidth

(MHz)

Page 59 of 62 Report No.: SHATBL2209003W02

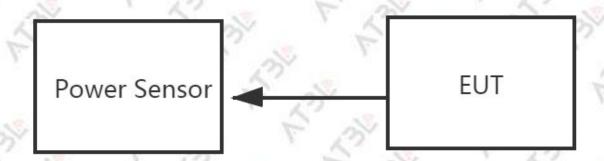
9. OUTPUT POWER TEST

9.1 LIMIT

		FCC Part 15.247		
Section	Test Item	Limit	Frequency Range (MHz)	Result
6 3	y ·	1 W or 0.125W	- 25	0
15.247 (a)(1)&(b)(1)	Output Power	if channel separation > 2/3 ban dwidhprovided the systems operate with an output power no greater than125 mW(20.97dBm)	2400-2483.5	PASS

9.2 TEST PROCEDURE

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:


- a) Use the following spectrum analyzer settings:
- 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 2) RBW > 20 dB bandwidth of the emission being measured.
- 3) VBW ≥ RBW.
- 4) Sweep: Auto.
- 5) Detector function: Peak.
- 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuator and cables.
- e) A plot of the test results and setup description shall be included in the test report.

NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector.

9.3 TEST SETUP

9.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

Page 60 of 62

Report No.: SHATBL2209003W02

9.5 TEST RESULTS

Temperature:	22.3℃	Relative Humidity: 51%
Test Voltage:	DC 5V	- P. W. L. C.

Mode	Channel Frequency Number (MHz)		Peak Power	Average Power	Limit
		(dBm)	(dBm)	(dBm)	
GFSK(1M)	0	2402	-0.11	-0.17	30.00
	39	2441	-0.52	-0.56	30.00
	78	2480	-1.30	-1.33	30.00

Note:the channel separation >20dB bandwidth

Mode	Channel Frequency Number (MHz)		Peak Power	Average Power	Limit
		(dBm)	(dBm)	(dBm)	
π/4-DQPSK (2M)	0	2402	1.81	-0.54	20.97
	39	2441	1.33	-1.62	20.97
	78	2480	0.57	-1.95	20.97

Note:the channel separation >2/3 20dB bandwidth

Mode	Channel	Frequency	Peak Power	Average Power	Limit
	Number (MHz)	(dBm)	(dBm)	(dBm)	
8-DPSK(3M)	0	2402	2.35	-0.55	20.97
	39	2441	1.88	-1.06	20.97
	78	2480	1.17	-1.77	20.97

Note: the channel separation >2/3 20dB bandwidth

Page 61 of 62 Report No.: SHATBL2209003W02

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is FPC. It comply with the standard requirement.

Page 62 of 62 Report No.: SHATBL2209003W02

11.APPENDIX-PHOTOS OF TEST SETUP

*****END OF THE REPORT***