

EST REPORT

Product HD SCANTOOL

Trade mark **NEWCHIP**

Model/Type reference HDT301,HDT301L,HDT311L

Serial Number N/A

Report Number EED32N80936703 FCC ID 2A2KM-HDT301

Date of Issue Nov. 24, 2021

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

Shenzhen New Chip Intelligence Co.,LTD Suite 801-6, Building B3, Zone B, Baoneng Science and Technology Park, Longgang District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Reviewed by:

Aaron Ma

Mark Chen David Wang

Date:

Nov. 24, 2021

David Wang

Check No.:5925240921

Page 2 of 50 Report No.: EED32N80936703

Content

1 COVER PAGE			1
2 CONTENT			
3 VERSION			3
4 TEST SUMMARY			4
5 GENERAL INFORMATION			5
5.1 CLIENT INFORMATION	IFIDENCE LEVELS, K=2)		5 7 7 8 8
6 EQUIPMENT LIST			9
7 TEST RESULTS AND MEASUREMENT D	ATA		12
7.1 ANTENNA REQUIREMENT 7.2 AC POWER LINE CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT POWER 7.4 DTS BANDWIDTH 7.5 MAXIMUM POWER SPECTRAL DENSITY 7.6 BAND EDGE MEASUREMENTS AND CONDUCTED OF THE PROPERTY OF THE PROPE	SSSSSSS	SION	
8 APPENDIX A			47
9 PHOTOGRAPHS OF TEST SETUP			48
10 PHOTOGRAPHS OF EUT CONSTRUCTI	ONAL DETAILS		50

Report No.: EED32N80936703

3 Version

Version No.	Date	Description		
00	Nov. 24, 2021		Original	
	0	12		/3
- ((60)	(67)	(0)

Report No. : EED32N80936703 Page 4 of 50

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band edge measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model/Type reference:HDT301,HDT301L,HDT311L

Only the model HDT301 was tested, confirm that any of our production units bearing the following model numbers are identical in circuitry and electrical, mechanical and physical construction; the only differences are the model name and the color of appearance for trading purpose.

General Information

5.1 Client Information

Applicant:	Shenzhen New Chip Intelligence Co.,LTD	
Address of Applicant:	Suite 801-6,Building B3,Zone B,Baoneng Science and Technology Park,Longgang District,Shenzhen	/3
Manufacturer:	Shenzhen New Chip Intelligence Co.,LTD	(2)
Address of Manufacturer:	Suite 801-6,Building B3,Zone B,Baoneng Science and Technology Park,Longgang District,Shenzhen	
Factory:	Shenzhen New Chip Intelligence Co.,LTD	
Address of Factory:	Suite 801-6,Building B3,Zone B,Baoneng Science and Technology Park,Longgang District,Shenzhen	

5.2 General Description of EUT

Product Name:	HD SCANTOOL					
Model/Type reference:	HDT301,HDT301L	.,HDT311L				
Test Model No:	HDT301	(60)	(6,7)			
Trade mark:	NEWCHIP					
Product Type:	☐ Mobile ⊠ F	ortable				
Operation Frequency:	/ 41	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz				
Modulation Type: IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,QPS						
Number of Channel:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels					
Channel Separation:	5MHz		(0,			
Antenna Type:	Monopole Antenna	1				
Antenna Gain:	3.48dBi					
Power Supply:	AC ADAPTER	AC Adapter:100~240V-50/60Hz OUTPUT:5.0V=2.5A 12.5W Battery DC 3.7V, 22.57Wh 6100n				
Test Voltage:	AC 120V	'				
Sample Received Date:	Sep.27, 2021		_0_			
Sample tested Date:	Sep.27, 2021 to Oct.27, 2021					

Report No.: EED32N80936703 Page 6 of 50

123		100		100		195	
Operation	Frequency ea	ch of chann	el (802.11b/g/n	HT20)	•)	(2))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz	")	(6,1)
Operation	Frequency ea	ch of chann	el (802.11n HT	40)			
Channe	Frequ	ency	Channel	Frequenc	cy Ch	annel	Frequency
3	2422	MHz	6	2437MH	z	9	2452MHz
4	2427	MHz	7	2442MH	z		
5	2432	MHz	8	2447MH	z		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/g/n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The highest channel	2462MHz

802.11n (HT40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The highest channel	2452MHz

Report No.: EED32N80936703 Page 7 of 50

5.3 Test Configuration

EUT Test Software Settings:		
Software:	SP_META	
EUT Power Grade:	Default	
Llee test coffware to get the low	not fraguency, the middle fraguency and the highest fraguency keep	0.000

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b 1Mbps		
802.11g	6Mbps	
802.11n(HT20)	6.5Mbps	
802.11n(HT40)	13.5Mbps	

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(HT20) and 13.5Mbps for 802.11n(HT40)..

5.4 Test Environment

C	Operating Environment:								
F	Radiated Spurious Emissions:								
Т	Геmperature:	22~25.0 °C							
H	Humidity:	50~56 % RH							
P	Atmospheric Pressure:	1010mbar			-0-				
C	Conducted Emissions:								
U T	Temperature:	22~25.0 °C	6		6.		6.		
H	Humidity:	50~56 % RH							
A	Atmospheric Pressure:	1010mbar							
F	RF Conducted:								
Т	Геmperature:	22~25.0 °C		(6,2)		(6,2)			
F	Humidity:	50~56 % RH							
A	Atmospheric Pressure:	1010mbar							

Report No. : EED32N80936703 Page 8 of 50

5.5 Description of Support Units

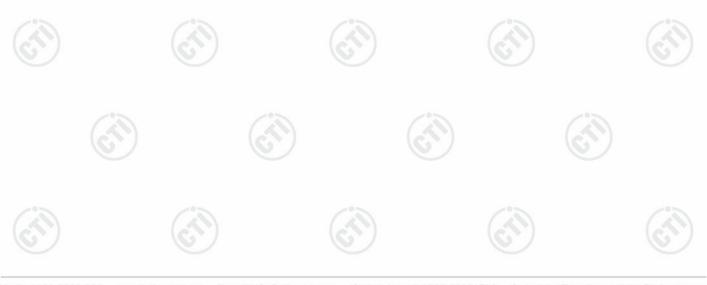
The EUT has been tested with associated equipment below.

1	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	СТІ	CE&FCC

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd


Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

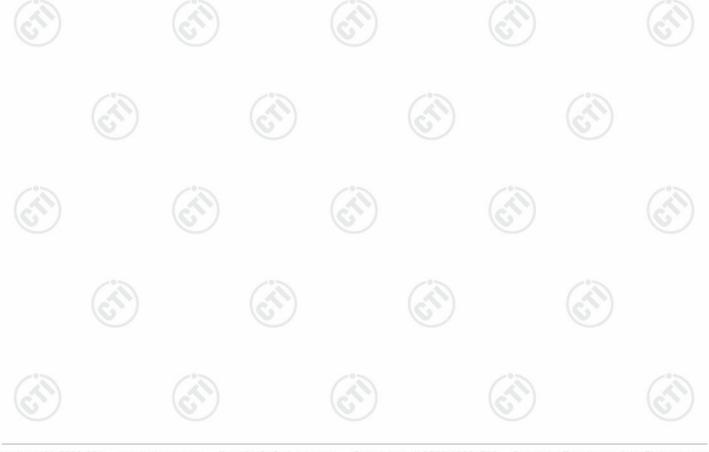
5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nower conducted	0.46dB (30MHz-1GHz)	
	RF power, conducted	0.55dB (1GHz-18GHz)	
6.0	(0,	3.3dB (9kHz-30MHz)	
3	Dedicted Courieus emission test	4.3dB (30MHz-1GHz) 4.5dB (1GHz-18GHz)	
3	Radiated Spurious emission test		
		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

6 Equipment List

Conducted disturbance Test									
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022				
Temperature/ Humidity Indicator	Defu	TH128	1	(J)-	(L)				
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022				
Barometer	changchun	DYM3	1188						

		RF test sy	stem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022
High-pass filter	Sinoscite	FL3CX03WG18NM12- 0398-002			
High-pass filter	MICRO-TRONICS	SPA-F-63029-4	(° -	/*	
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			
band rejection filter	Sinoscite	FL5CX01CA09CL12- 0395-001		<u>((1)</u>	-(C)
band rejection filter	Sinoscite	FL5CX01CA08CL12- 0393-001			
band rejection filter	Sinoscite	FL5CX02CA04CL12- 0396-002		0	
band rejection filter	Sinoscite	FL5CX02CA03CL12- 0394-001	(0,7)	(6))
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-28-2020	12-27-2021



Page 10 of 50 Report No.: EED32N80936703

	(30)			100	
	3M Sem	ni/full-anechoic Cham	ber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	-(3)	05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024
Receiver	R&S	ESCI7	100938-003	10-16-2020 10-15-2021	10-15-2021 10-14-2022
Multi device Controller	maturo	NCD/070/10711112			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022
Communication test set	Agilent	Agilent E5515C		03-01-2019	02-28-2022
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	/:>	
Cable line	Fulai(3M)	SF106	5217/6A	+	
band rejection filter	Sinoscite	FL5CX01CA08CL12- 0393-001			

Page 11 of 50 Report No.: EED32N80936703

1 181		201	/ ///		185
		3M full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Communication Antenna	Schwarzbeck	CLSA 0110L	1014		<u> </u>
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Communication test set	R&S	CMW500	102898	12-31-2020	12-30-2021
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3	(-17)	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	(3)	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	(0,77)	(6
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		(C)
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		- 6
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	6	6

Report No. : EED32N80936703 Page 12 of 50

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

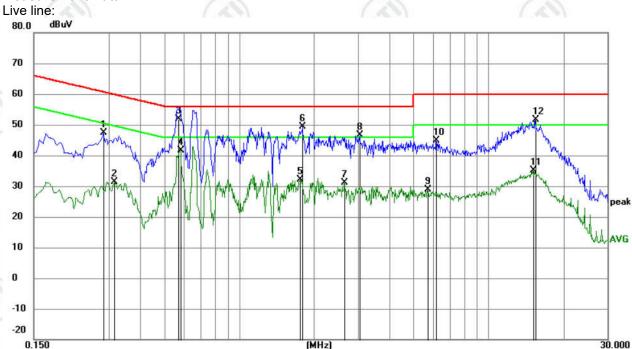
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is Monopole Antenna. The best case gain of the antenna is 3.48dBi.

Report No.: EED32N80936703 Page 13 of 50


7.2 AC Power Line Conducted Emissions

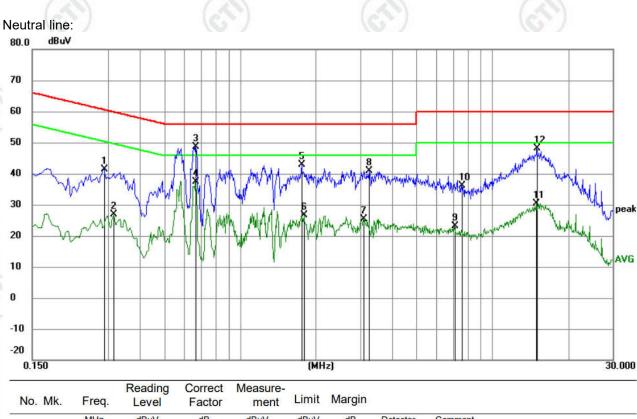
	Test Requirement:	47 CFR Part 15C Section 15.2	07	(6,)					
	Test Method:	ANSI C63.10: 2013	01						
	Test Frequency Range:								
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	veen time=auto						
9	Limit:	7.5	Limit (c	HBuV)	10				
S		Frequency range (MHz)	Quasi-peak	Average					
2		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
		* Decreases with the logarithm		705					
	Test Setup:	Shielding Room	AE	Test Receiver					
		AC Mains LISN1	Ground Reference Plane	ins	/				
	Test Procedure:	1) The mains terminal disturbation. 2) The EUT was connected Impedance Stabilization Neimpedance. The power of connected to a second LIS plane in the same way as multiple socket outlet strips single LISN provided the rad 3) The tabletop EUT was planground reference plane. An placed on the horizontal ground reference plane. An eutrical ground reference reference plane. The LISN unit under test and bond mounted on top of the ground the closest points of the L and associated equipment of the interface cab and all of the interface cab and control or top of the maximuland all of the interface cab and control or top of the maximuland all of the interface cab and control or top of the maximuland all of the interface cab and control or top of the maximuland all of the interface cab and control or top of the cab.	to AC power source etwork) which provide cables of all other N 2, which was bonded in the LISN 1 for the was used to connect atting of the LISN was reced upon a non-metal and for floor-standing a cound reference plane. In a vertical ground reference plane was bonded 1 was placed 0.8 m ded to a ground reference plane. The ISN 1 and the EUT. It was at least 0.8 m from emission, the relationed in the source of the plane was the changed in the source of the provided in	through a LISN 1 (is a 50Ω/50μH + 5Ω linunits of the EUT vertical to the ground reference unit being measured multiple power cables not exceeded. Allic table 0.8m above rrangement, the EUT ference plane. The real and reference plane. The real from the horizontal ground from the boundary of ference plane for List is distance was betwoeld all other units of the list of the LISN 2. The positions of equipments of the positions of equipments.	Line near were ence d. A to a the was ar of The bund f the SNs ween EUT				
	Test Mode:	All modes were tested, only the worst case lowest channel of 1Mbps for 802.11b was recorded in the report.							
	Test Results:	Pass	ороги.						
	. oot i toodito.	1. 220		_0°					

Measurement Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2850	37.32	10.13	47.45	60.67	-13.22	peak	
2		0.3165	21.29	10.13	31.42	49.80	-18.38	AVG	
3	*	0.5730	41.92	10.08	52.00	56.00	-4.00	QP	
4		0.5820	31.65	10.07	41.72	46.00	-4.28	AVG	
5		1.7610	22.28	9.88	32.16	46.00	-13.84	AVG	
6		1.7970	39.48	9.88	49.36	56.00	-6.64	peak	
7		2.6430	21.13	9.88	31.01	46.00	-14.99	AVG	
8		3.0570	36.74	9.88	46.62	56.00	-9.38	peak	
9		5.7120	18.97	9.89	28.86	50.00	-21.14	AVG	
10		6.1845	35.04	9.90	44.94	60.00	-15.06	peak	
11		15.1350	25.09	10.09	35.18	50.00	-14.82	AVG	
12		15.4365	41.62	10.10	51.72	60.00	-8.28	peak	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.2895	31.37	10.13	41.50	60.54	-19.04	peak		
2		0.3165	16.63	10.13	26.76	49.80	-23.04	AVG		
3	*	0.6675	38.71	10.03	48.74	56.00	-7.26	peak		
4		0.6675	27.31	10.03	37.34	46.00	-8.66	AVG		
5		1.7610	33.03	9.88	42.91	56.00	-13.09	peak		
6		1.7970	16.78	9.88	26.66	46.00	-19.34	AVG		
7		3.0885	15.55	9.88	25.43	46.00	-20.57	AVG		
8		3.2415	30.95	9.88	40.83	56.00	-15.17	peak		
9		7.0890	13.12	9.92	23.04	50.00	-26.96	AVG		
10		7.5570	26.13	9.93	36.06	60.00	-23.94	peak		
11		14.9775	20.38	10.09	30.47	50.00	-19.53	AVG		
12		15.0135	38.01	10.09	48.10	60.00	-11.90	peak		

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)						
Test Method:	ANSI C63.10 2013						
Test Setup:							
	Control Control Control Control Power Supply Power Supply Table RF test System System Instrument						
Test Procedure:	1. PKPM1 Peak power meter measurement The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector. 2. Method AVGPM-G Average power measurement Method AVGPM-G is a measurement using a gated RF average power meter. Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.						
Limit:	30dBm						
Test Mode:	Refer to clause 5.3						
Test Results:	Refer to Appendix A						

Report No.: EED32N80936703 Page 17 of 50

7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)						
Test Method:	ANSI C63.10 2013						
Test Setup:							
	Control Control Control Power Supply Power Supply Table RF test System Instrument Instrument						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. 						
Limit:	≥ 500 kHz						
Test Mode:	Refer to clause 5.3						
Test Results:	Refer to Appendix A						

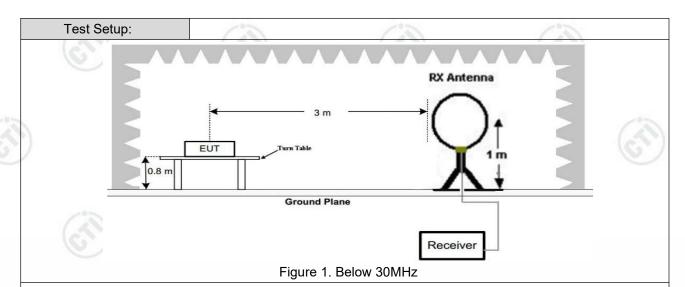
7.5 Maximum Power Spectral Density

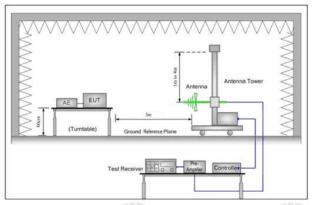
ter frequency. aximum amplitude level
-05

7.6 Band Edge Measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Computer Power Supply Power Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW = 100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A




7.7 Radiated Spurious Emission & Restricted bands


Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	6	
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)	-5%
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak
	Above 4CH		Peak	1MHz	3MHz	Peak
	Above 1GHz	->)	Peak	1MHz	10kHz	Average
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m)
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-/%	300
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(()	30
	1.705MHz-30MHz		30	-		30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz	6)	200	46.0	Quasi-peak	3
	960MHz-1GHz	/	500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level rad	20c equip	lB above the oment under t	maximum est. This p	permitted av	erage emission

Report No.: EED32N80936703 Page 21 of 50

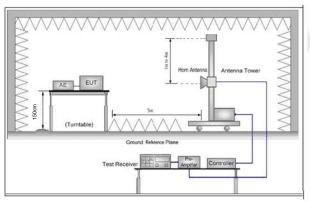


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

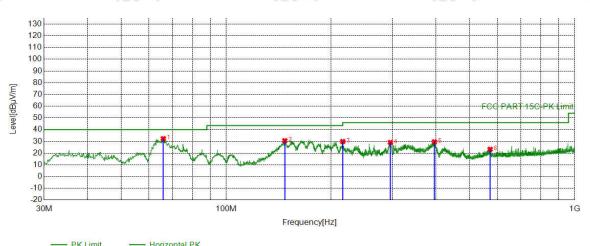
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation

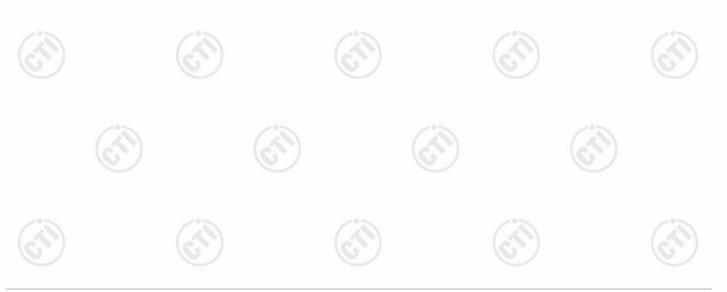
Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

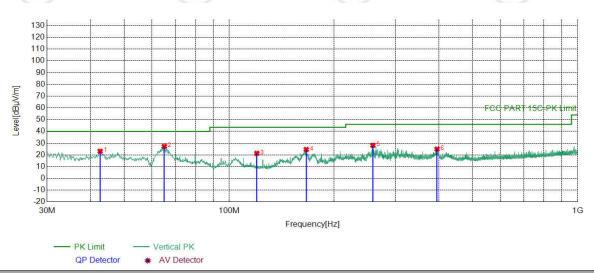
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

	 measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified
	Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Refer to clause 5.3
Test Results:	Pass

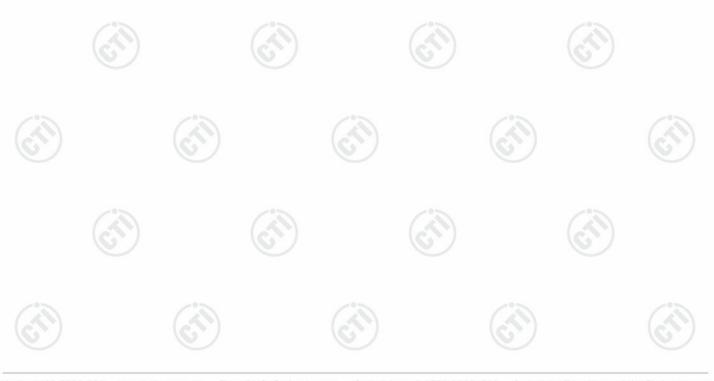



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 1Mbps for 802.11b was recorded in the report.


PK Limit	Horizontal PK
QP Detector	AV Detector

Suspecte	Suspected List													
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark					
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Folarity	Remark					
1	65.9906	-19.87	52.22	32.35	40.00	7.65	PASS	Horizontal	PK					
2	147.2847	-21.75	52.37	30.62	43.50	12.88	PASS	Horizontal	PK					
3	215.9676	-17.42	47.33	29.91	43.50	13.59	PASS	Horizontal	PK					
4	296.0006	-15.55	44.66	29.11	46.00	16.89	PASS	Horizontal	PK					
5	395.9206	-13.04	42.66	29.62	46.00	16.38	PASS	Horizontal	PK					
6	572.1872	-9.25	32.53	23.28	46.00	22.72	PASS	Horizontal	PK					



Suspecte	Suspected List												
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark				
110	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Folality	Kemark				
1	42.6113	-17.57	40.73	23.16	40.00	16.84	PASS	Vertical	PK				
2	65.1175	-19.67	46.92	27.25	40.00	12.75	PASS	Vertical	PK				
3	120.0250	-20.08	41.41	21.33	43.50	22.17	PASS	Vertical	PK				
4	166.3956	-20.71	45.30	24.59	43.50	18.91	PASS	Vertical	PK				
5	258.4578	-16.39	44.52	28.13	46.00	17.87	PASS	Vertical	PK				
6	395.0475	-13.06	38.01	24.95	46.00	21.05	PASS	Vertical	PK				

Page 25 of 50 Report No.: EED32N80936703

Radiated Spurious Emission above 1GHz:

Mode	:		802.11 b Trai	nsmitting		Channe	el:	2412MH	Z
NO	Freq. [MHz]	Facto	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1213.0213	0.83	43.34	44.17	74.00	29.83	PASS	Н	PK
2	1907.8908	4.07	41.43	45.50	74.00	28.50	PASS	Н	PK
3	4824.1216	-16.22	2 65.87	49.65	74.00	24.35	PASS	Н	PK
4	7235.2824	-11.79	57.17	45.38	74.00	28.62	PASS	Н	PK
5	10428.4952	-6.34	52.27	45.93	74.00	28.07	PASS	Н	PK
6	14230.7487	-0.83	50.62	49.79	74.00	24.21	PASS	Н	PK
7	1337.6338	1.18	43.14	44.32	74.00	29.68	PASS	V	PK
8	1868.4868	3.79	42.18	45.97	74.00	28.03	PASS	V	PK
9	4824.1216	-16.22	67.81	51.59	74.00	22.41	PASS	V	PK
10	7236.2824	-11.79	61.78	49.99	74.00	24.01	PASS	V	PK
11	9739.4493	-7.58	52.80	45.22	74.00	28.78	PASS	V	PK
12	13671.7114	-1.73	51.00	49.27	74.00	24.73	PASS	V	PK

I	Mode	:		802.11 b Trar	nsmitting		Channe	el:	2437MH:	Z
-	NO	Freq. [MHz]	Facto	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1354.8355	1.24	43.05	44.29	74.00	29.71	PASS	Н	PK
	2	1999.0999	4.55	41.68	46.23	74.00	27.77	PASS	Н	PK
	3	4874.1249	-16.21	69.55	53.34	74.00	20.66	PASS	Н	PK
Ī	4	7310.2874	-11.67	56.19	44.52	74.00	29.48	PASS	Н	PK
	5	9210.4140	-7.89	52.76	44.87	74.00	29.13	PASS	Н	PK
	6	12586.6391	-4.21	52.72	48.51	74.00	25.49	PASS	Н	PK
Ī	7	1265.0265	0.97	43.63	44.60	74.00	29.40	PASS	V	PK
Ī	8	1894.2894	3.99	42.08	46.07	74.00	27.93	PASS	V	PK
Ī	9	4874.1249	-16.21	71.89	55.68	74.00	18.32	PASS	V	PK
à	10	4875.1250	-16.21	59.93	43.72	54.00	10.28	PASS	V	AV
6	11	7310.2874	-11.67	61.86	50.19	74.00	23.81	PASS	V	PK
	12	9727.4485	-7.62	52.80	45.18	74.00	28.82	PASS	V	PK
	13	13127.6752	-3.52	51.42	47.90	74.00	26.10	PASS	V	PK

Page 26 of 50 Report No.: EED32N80936703

								" D. J.	
Mod	e:		802.11 b Tran	smitting		Channe	el:	2462MH	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1248.6249	0.93	44.87	45.80	74.00	28.20	PASS	Н	PK
2	1690.6691	2.88	41.90	44.78	74.00	29.22	PASS	Н	PK
3	4924.1283	-16.11	70.48	54.37	74.00	19.63	PASS	Н	PK
4	4928.1285	-16.09	53.71	37.62	54.00	16.38	PASS	Н	AV
5	7388.2926	-11.53	57.25	45.72	74.00	28.28	PASS	Н	PK
6	10370.4914	-6.33	53.21	46.88	74.00	27.12	PASS	Н	PK
7	13740.7160	-1.71	51.30	49.59	74.00	24.41	PASS	Н	PK
8	1264.2264	0.97	43.05	44.02	74.00	29.98	PASS	V	PK
9	1763.2763	3.16	42.66	45.82	74.00	28.18	PASS	V	PK
10	4923.1282	-16.11	71.98	55.87	74.00	18.13	PASS	V	PK
11	4925.1283	-16.10	63.11	47.01	54.00	6.99	PASS	V	AV
12	7385.2924	-11.54	61.91	50.37	74.00	23.63	PASS	V	PK
13	10157.4772	-7.07	53.74	46.67	74.00	27.33	PASS	V	PK
14	13734.7156	-1.72	50.58	48.86	74.00	25.14	PASS	V	PK

Mode	: :		802.11 g Tran	smitting		Channe	el:	2412MH:	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1282.4282	1.01	43.09	44.10	74.00	29.90	PASS	Н	PK
2	1778.2778	3.21	42.24	45.45	74.00	28.55	PASS	Н	PK
3	4826.1217	-16.22	60.05	43.83	74.00	30.17	PASS	Н	PK
4	6850.2567	-12.12	56.09	43.97	74.00	30.03	PASS	Н	PK
5	10401.4934	-6.28	52.06	45.78	74.00	28.22	PASS	Н	PK
6	13781.7188	-1.66	51.06	49.40	74.00	24.60	PASS	Н	PK
7	1282.8283	1.02	43.48	44.50	74.00	29.50	PASS	V	PK
8	1616.6617	2.40	43.11	45.51	74.00	28.49	PASS	V	PK
9	4827.1218	-16.22	60.28	44.06	74.00	29.94	PASS	V	PK
10	7235.2824	-11.79	58.41	46.62	74.00	27.38	PASS	V	PK
11	10415.4944	-6.31	52.44	46.13	74.00	27.87	PASS	V	PK
12	14388.7593	1.03	48.81	49.84	74.00	24.16	PASS	V	PK

Report No.: EED32N80936703 Page 27 of 50

		20%		100		20%			0 -	
	Mode	:	8	02.11 g Tran	smitting		Channe	el:	2437MH	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1293.0293	1.04	43.10	44.14	74.00	29.86	PASS	Н	PK
	2	1765.4765	3.16	41.80	44.96	74.00	29.04	PASS	Н	PK
	3	4873.1249	-16.21	59.22	43.01	74.00	30.99	PASS	Н	PK
	4	7194.2796	-11.83	55.13	43.30	74.00	30.70	PASS	Н	PK
Ī	5	9221.4148	-7.89	52.91	45.02	74.00	28.98	PASS	Н	PK
Ī	6	12480.6320	-4.80	52.73	47.93	74.00	26.07	PASS	Н	PK
Ī	7	1161.8162	0.82	43.32	44.14	74.00	29.86	PASS	V	PK
Ī	8	1821.6822	3.44	42.00	45.44	74.00	28.56	PASS	V	PK
Ī	9	4868.1245	-16.21	60.69	44.48	74.00	29.52	PASS	V	PK
Ī	10	7316.2878	-11.66	55.65	43.99	74.00	30.01	PASS	V	PK
3	11	9204.4136	-7.88	52.25	44.37	74.00	29.63	PASS	V	PK
V	12	11803.5869	-6.10	52.84	46.74	74.00	27.26	PASS	V	PK

Mode	»:		802.11 g Tran	smitting		Channe	el:	2462MH:	Z
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1206.6207	0.82	43.65	44.47	74.00	29.53	PASS	Н	PK
2	1789.6790	3.24	42.39	45.63	74.00	28.37	PASS	Н	PK
3	4929.1286	-16.09	60.27	44.18	74.00	29.82	PASS	Н	PK
4	7566.3044	-11.18	53.87	42.69	74.00	31.31	PASS	Н	PK
5	10232.4822	-6.91	53.34	46.43	74.00	27.57	PASS	Н	PK
6	13682.7122	-1.75	50.79	49.04	74.00	24.96	PASS	Н	PK
7	1368.6369	1.29	42.99	44.28	74.00	29.72	PASS	V	PK
8	1765.8766	3.16	41.80	44.96	74.00	29.04	PASS	V	PK
9	4923.1282	-16.11	62.44	46.33	74.00	27.67	PASS	V	PK
10	7382.2922	-11.54	57.10	45.56	74.00	28.44	PASS	V	PK
11	10324.4883	-6.42	52.27	45.85	74.00	28.15	PASS	V	PK
12	13217.6812	-3.17	52.31	49.14	74.00	24.86	PASS	V	PK

Report No.: EED32N80936703 Page 28 of 50

		20%		100		20%			0 %	
	Mode	:		802.11 n(HT2	0) Transmitt	ing	Channe	el:	2412MH	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1304.8305	1.08	43.40	44.48	74.00	29.52	PASS	Н	PK
	2	1914.6915	4.11	42.02	46.13	74.00	27.87	PASS	Н	PK
	3	4821.1214	-16.22	57.49	41.27	74.00	32.73	PASS	Н	PK
	4	7023.2682	-11.76	55.37	43.61	74.00	30.39	PASS	Н	PK
	5	9864.4576	-7.18	52.45	45.27	74.00	28.73	PASS	Н	PK
	6	12462.6308	-4.78	52.39	47.61	74.00	26.39	PASS	Н	PK
	7	1310.4310	1.09	43.64	44.73	74.00	29.27	PASS	V	PK
	8	1658.2658	2.67	42.27	44.94	74.00	29.06	PASS	V	PK
	9	4823.1215	-16.22	58.30	42.08	74.00	31.92	PASS	V	PK
	10	7047.2698	-11.71	54.72	43.01	74.00	30.99	PASS	V	PK
100	11	9232.4155	-7.90	52.77	44.87	74.00	29.13	PASS	V	PK
	12	13207.6805	-3.14	51.05	47.91	74.00	26.09	PASS	V	PK

Mode	:		802.11 n(HT2	0) Transmitti	ng	Channe	el:	2437MH	Z
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1395.2395	1.37	42.51	43.88	74.00	30.12	PASS	Н	PK
2	1880.8881	3.89	41.85	45.74	74.00	28.26	PASS	Н	PK
3	4873.1249	-16.21	57.65	41.44	74.00	32.56	PASS	Н	PK
4	7564.3043	-11.17	54.28	43.11	74.00	30.89	PASS	Н	PK
5	10722.5148	-6.42	52.97	46.55	74.00	27.45	PASS	Н	PK
6	13703.7136	-1.76	50.82	49.06	74.00	24.94	PASS	Н	PK
7	1294.4294	1.05	44.07	45.12	74.00	28.88	PASS	V	PK
8	1663.2663	2.70	42.21	44.91	74.00	29.09	PASS	V	PK
9	4872.1248	-16.21	59.61	43.40	74.00	30.60	PASS	V	PK
10	7653.3102	-11.12	54.13	43.01	74.00	30.99	PASS	V	PK
11	11874.5916	-5.90	53.18	47.28	74.00	26.72	PASS	V	PK
12	14405.7604	1.14	48.97	50.11	74.00	23.89	PASS	V	PK

Page 29 of 50 Report No.: EED32N80936703

		20%		11.00			2000		- 1	0.00	
	Mode	:		802.11 r	(HT2	0) Transmitti	ng	Channe	el:	2462MH	Z
	NO	Freq. [MHz]	Factor	r Read	_	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1267.4267	0.98	43.	66	44.64	74.00	29.36	PASS	Н	PK
9	2	1776.0776	3.20	42.	17	45.37	74.00	28.63	PASS	Н	PK
	3	4923.1282	-16.11	58.	80	42.69	74.00	31.31	PASS	Н	PK
	4	7792.3195	-11.35	55.	20	43.85	74.00	30.15	PASS	Н	PK
	5	11191.5461	-6.41	53.	37	46.96	74.00	27.04	PASS	Н	PK
	6	14397.7599	1.18	48.	91	50.09	74.00	23.91	PASS	Н	PK
	7	1438.4438	1.42	43.	26	44.68	74.00	29.32	PASS	V	PK
	8	1783.8784	3.23	42.	89	46.12	74.00	27.88	PASS	V	PK
	9	4917.1278	-16.13	60.	62	44.49	74.00	29.51	PASS	V	PK
	10	7486.2991	-11.15	54.	47	43.32	74.00	30.68	PASS	V	PK
	11	11007.5338	-6.16	52.	71	46.55	74.00	27.45	PASS	V	PK
١	12	13721.7148	-1.74	50.	13	48.39	74.00	25.61	PASS	V	PK
-	10		7.70					7.707			1.10

Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	2422MH	Z
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1224.0224	0.86	43.71	44.57	74.00	29.43	PASS	Н	PK
2	1736.8737	3.07	42.49	45.56	74.00	28.44	PASS	Н	PK
3	5022.1348	-15.79	57.22	41.43	74.00	32.57	PASS	Н	PK
4	7001.2668	-11.82	54.47	42.65	74.00	31.35	PASS	Н	PK
5	10225.4817	-6.96	52.43	45.47	74.00	28.53	PASS	Н	PK
6	13719.7146	-1.74	50.45	48.71	74.00	25.29	PASS	Н	PK
7	1267.6268	0.98	43.35	44.33	74.00	29.67	PASS	V	PK
8	1812.0812	3.37	42.98	46.35	74.00	27.65	PASS	V	PK
9	5031.1354	-15.78	57.28	41.50	74.00	32.50	PASS	V	PK
10	7014.2676	-11.79	55.03	43.24	74.00	30.76	PASS	V	PK
11	10277.4852	-6.61	52.16	45.55	74.00	28.45	PASS	V	PK
12	15431.8288	0.44	49.74	50.18	74.00	23.82	PASS	V	PK

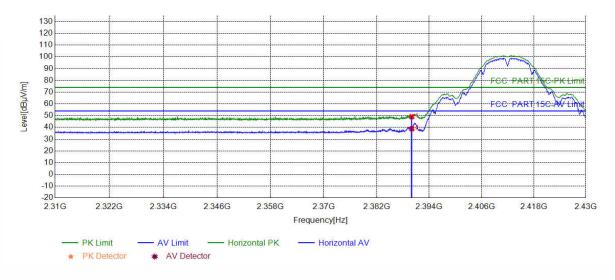
Report No.: EED32N80936703 Page 30 of 50

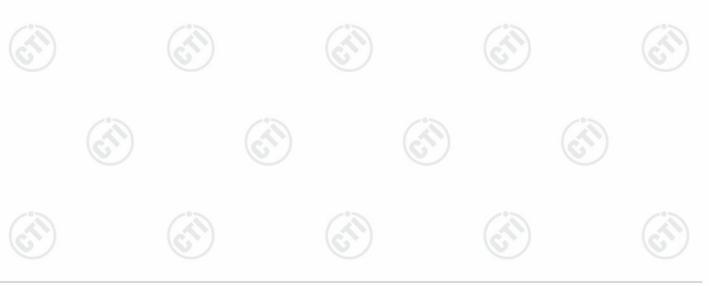
Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	2437MH	<u> </u>
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1297.0297	1.05	43.52	44.57	74.00	29.43	PASS	Н	PK
2	1811.2811	3.36	42.61	45.97	74.00	28.03	PASS	Н	PK
3	5010.1340	-15.81	56.91	41.10	74.00	32.90	PASS	Н	PK
4	7574.3050	-11.19	54.98	43.79	74.00	30.21	PASS	Н	PK
5	10395.4930	-6.29	52.87	46.58	74.00	27.42	PASS	Н	PK
6	13912.7275	-1.90	50.80	48.90	74.00	25.10	PASS	Н	PK
7	1349.6350	1.22	43.21	44.43	74.00	29.57	PASS	V	PK
8	1839.4839	3.58	42.26	45.84	74.00	28.16	PASS	V	PK
9	5008.1339	-15.81	58.18	42.37	74.00	31.63	PASS	V	PK
10	7543.3029	-11.15	54.33	43.18	74.00	30.82	PASS	V	PK
11	10386.4924	-6.30	53.34	47.04	74.00	26.96	PASS	V	PK
12	14480.7654	0.07	50.55	50.62	74.00	23.38	PASS	V	PK

Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	2452MH	Z
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1400.0400	1.39	43.15	44.54	74.00	29.46	PASS	Н	PK
2	1782.2782	3.22	42.00	45.22	74.00	28.78	PASS	Н	PK
3	5018.1345	-15.79	57.31	41.52	74.00	32.48	PASS	Н	PK
4	7498.2999	-11.10	54.27	43.17	74.00	30.83	PASS	Н	PK
5	10788.5192	-6.26	52.98	46.72	74.00	27.28	PASS	Н	PK
6	16036.8691	0.21	50.82	51.03	74.00	22.97	PASS	Н	PK
7	1247.0247	0.92	43.48	44.40	74.00	29.60	PASS	V	PK
8	1857.0857	3.71	42.47	46.18	74.00	27.82	PASS	V	PK
9	5016.1344	-15.80	57.70	41.90	74.00	32.10	PASS	V	PK
10	7136.2758	-11.67	55.06	43.39	74.00	30.61	PASS	V	PK
11	10415.4944	-6.31	52.86	46.55	74.00	27.45	PASS	V	PK
12	13743.7162	-1.71	51.35	49.64	74.00	24.36	PASS	V	PK

Remark:

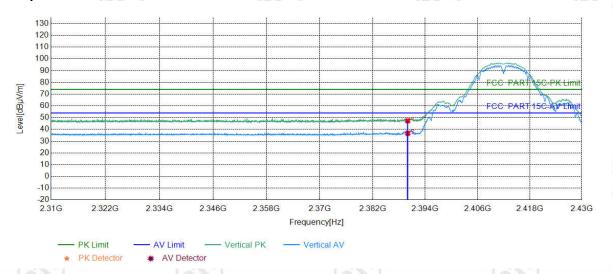
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Factor
 - Factor=Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



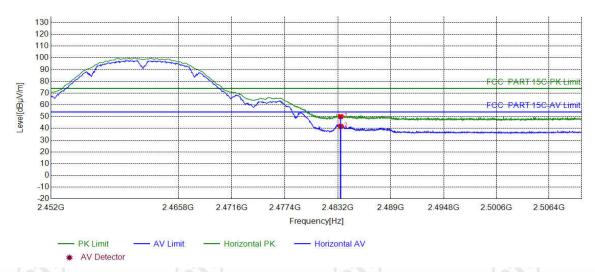

Restricted bands:

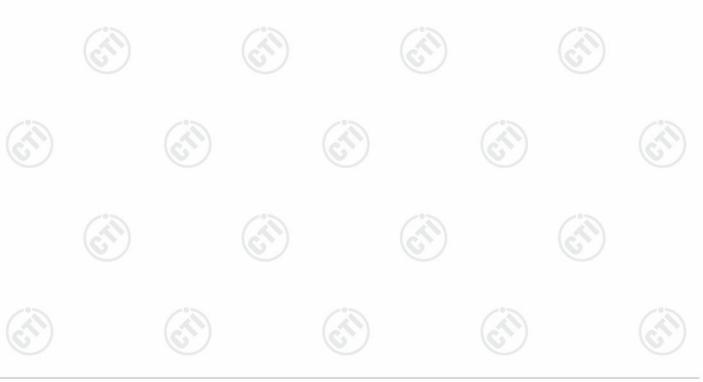
Test plot as follows:

Mode:	802.11 b Transmitting	Channel:	2412
Remark:	(25)	(0.50)	()

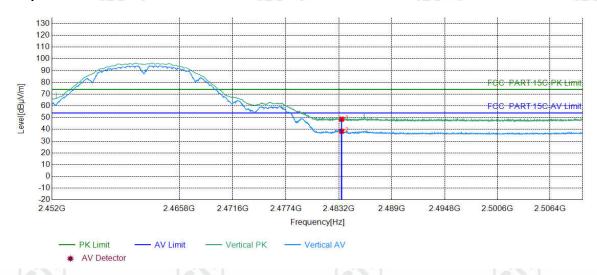

3	Suspe	cted List								
>	NO	Freq.	Factor	Reading	Level	Limit	Margin	Dogult	Dolority	Domark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
	1	2390.0000	5.77	43.30	49.07	74.00	24.93	PASS	Horizontal	PK
	2	2390.0000	5.77	33.09	38.86	54.00	15.14	PASS	Horizontal	AV

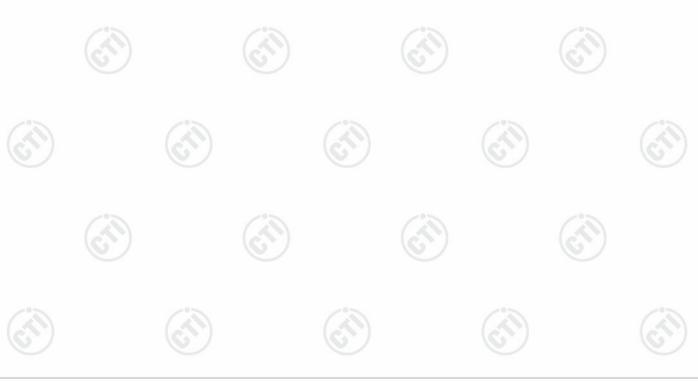
Mode:	802.11 b Transmitting	Channel:	2412
Remark:			


Suspec	ted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	IXCIIIAIK
1	2390.0000	5.77	41.58	47.35	74.00	26.65	PASS	Vertical	PK
2	2390.0000	5.77	30.94	36.71	54.00	17.29	PASS	Vertical	AV

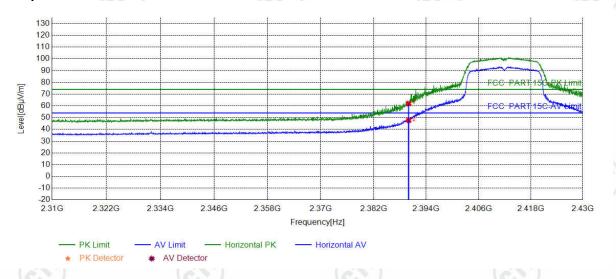


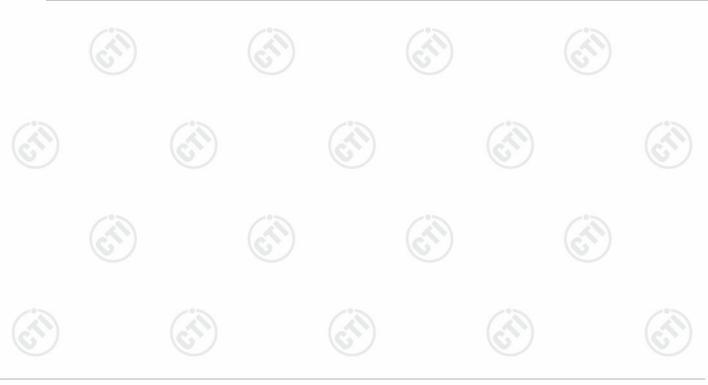
Mode:	802.11 b Transmitting	Channel:	2462
Remark:			


Suspec	ted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folarity	INCIIIAIN
1	2483.5000	6.57	43.56	50.13	74.00	23.87	PASS	Horizontal	PK
2	2483.5000	6.57	35.13	41.70	54.00	12.30	PASS	Horizontal	AV

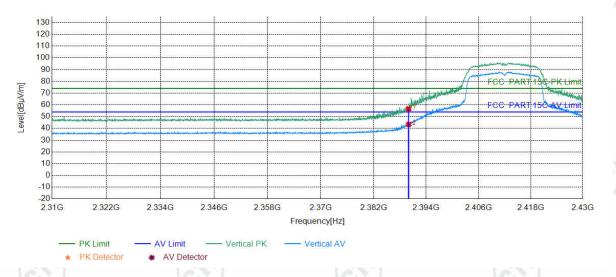


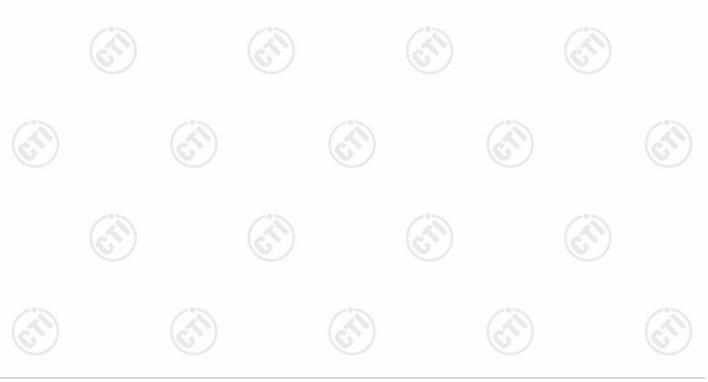
Mode:	802.11 b Transmitting	Channel:	2462
Remark:			


	Suspec	ted List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
3	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folality	IXCIIIAIK
	1	2483.5000	6.57	42.15	48.72	74.00	25.28	PASS	Vertical	PK
	2	2483.5000	6.57	31.84	38.41	54.00	15.59	PASS	Vertical	AV

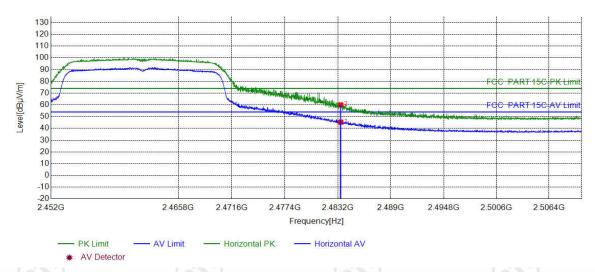


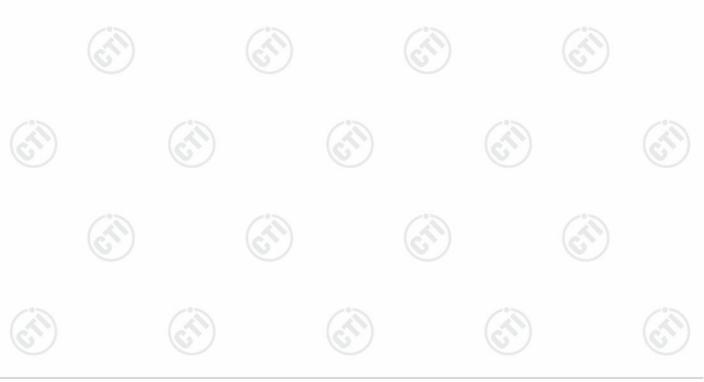
Mode:	802.11 g Transmitting	Channel:	2412
Remark:			


Suspe	Suspected List									
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark	
INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Polarity	Remark	
1	2390.0000	5.77	56.21	61.98	74.00	12.02	PASS	Horizontal	PK	
2	2390.0000	5.77	41.91	47.68	54.00	6.32	PASS	Horizontal	AV	



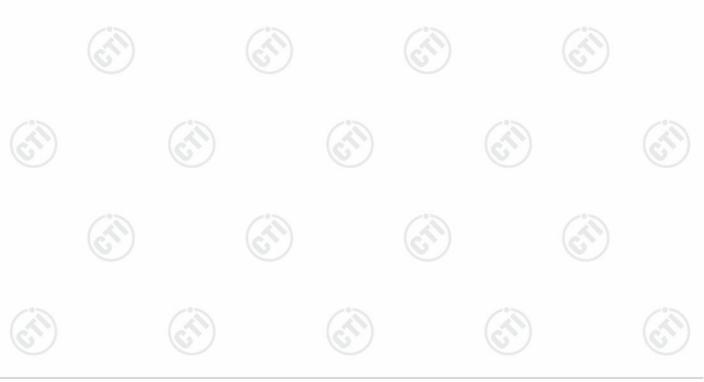
Mode:	802.11 g Transmitting	Channel:	2412
Remark:			


Suspec	ted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	IXCIIIAIK
1	2390.0000	5.77	50.89	56.66	74.00	17.34	PASS	Vertical	PK
2	2390.0000	5.77	37.65	43.42	54.00	10.58	PASS	Vertical	AV

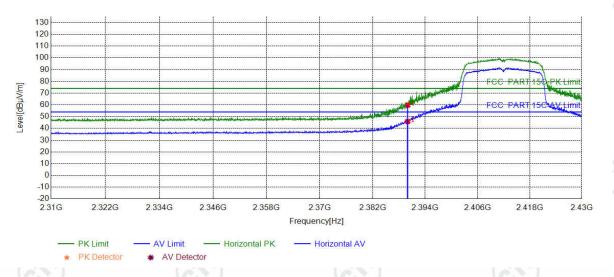


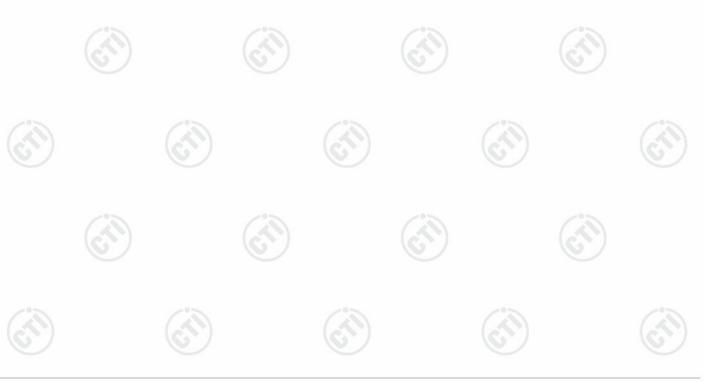
Mode:	802.11 g Transmitting	Channel:	2462
Remark:			

	Suspec	ted List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
9	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	INCIIIAIN
	1	2483.5000	6.57	38.77	45.34	54.00	8.66	PASS	Horizontal	AV
	2	2483.5000	6.57	53.59	60.16	74.00	13.84	PASS	Horizontal	PK



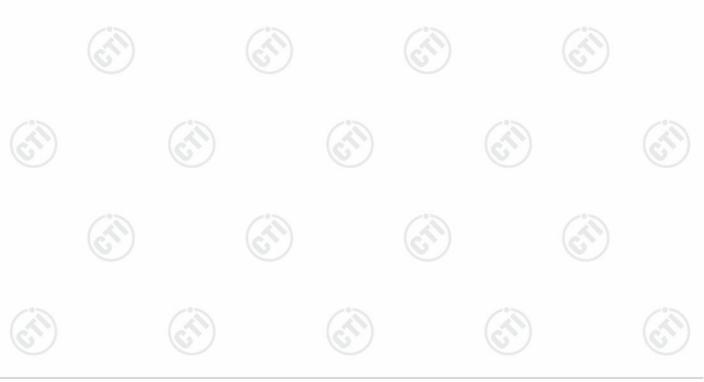
Mode:	802.11 g Transmitting	Channel:	2462
Remark:			


	Suspected List									
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
3	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	Memark
	1	2483.5000	6.57	49.12	55.69	74.00	18.31	PASS	Vertical	PK
	2	2483.5000	6.57	35.53	42.10	54.00	11.90	PASS	Vertical	AV

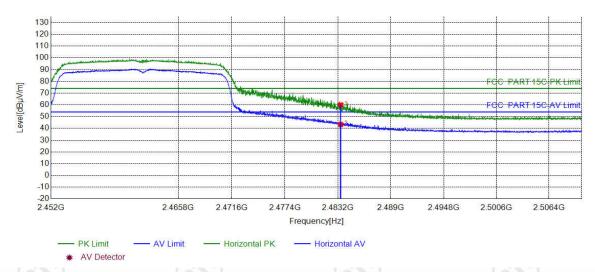


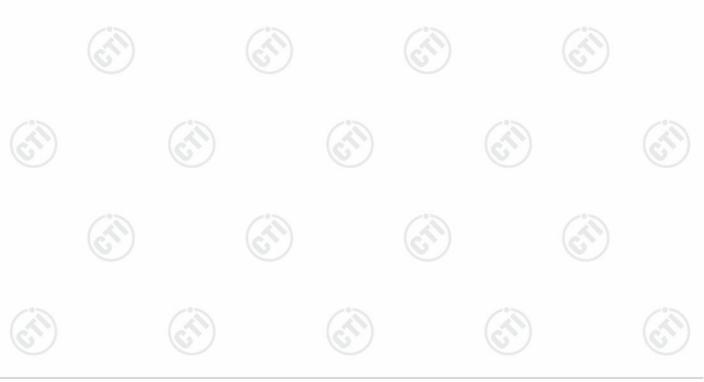
Mode:	802.11 n(HT20) Transmitting	Channel:	2412
Remark:			


Suspec	ted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folality	Remain
1	2390.0000	5.77	53.98	59.75	74.00	14.25	PASS	Horizontal	PK
2	2390.0000	5.77	40.13	45.90	54.00	8.10	PASS	Horizontal	AV

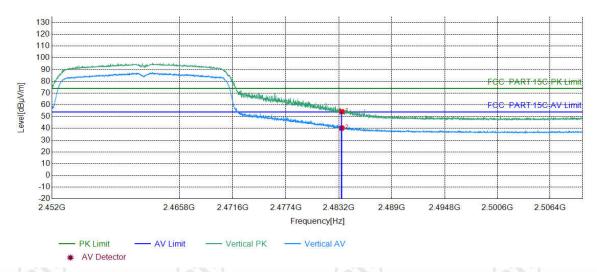


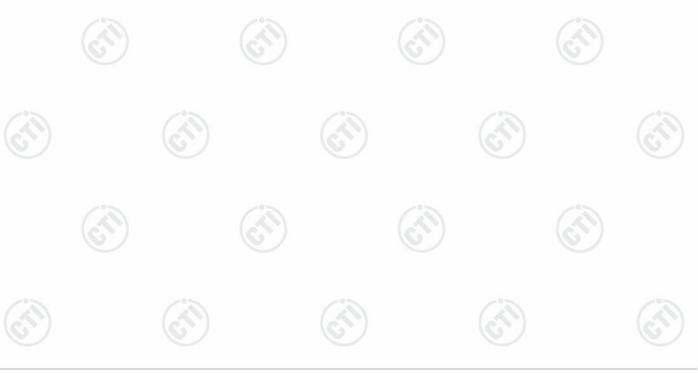
Mode:	802.11 n(HT20) Transmitting	Channel:	2412
Remark:			


Suspec	ted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	IXCIIIAIK
1	2390.0000	5.77	50.22	55.99	74.00	18.01	PASS	Vertical	PK
2	2390.0000	5.77	35.00	40.77	54.00	13.23	PASS	Vertical	AV

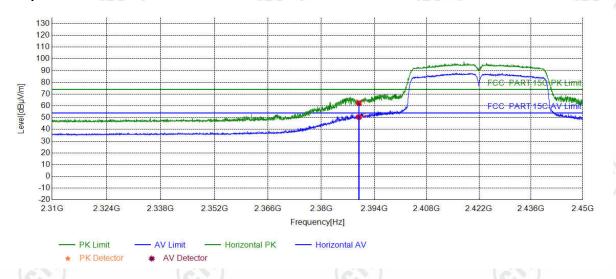


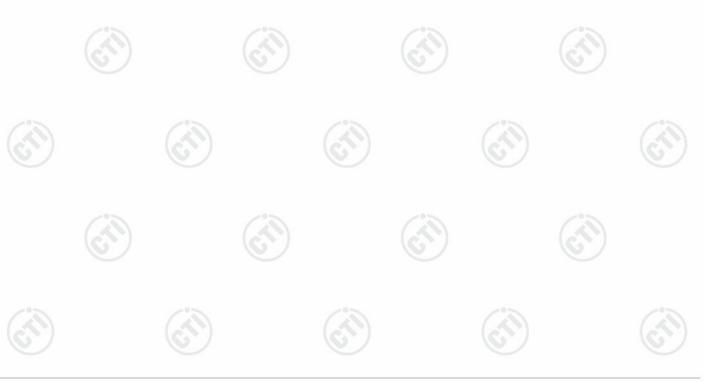
Mode:	802.11 n(HT20) Transmitting	Channel:	2462
Remark:			


	Suspe	cted List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
9	INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	INGIIIAIN
	1	2483.5000	6.57	53.48	60.05	74.00	13.95	PASS	Horizontal	PK
	2	2483.5000	6.57	36.78	43.35	54.00	10.65	PASS	Horizontal	AV

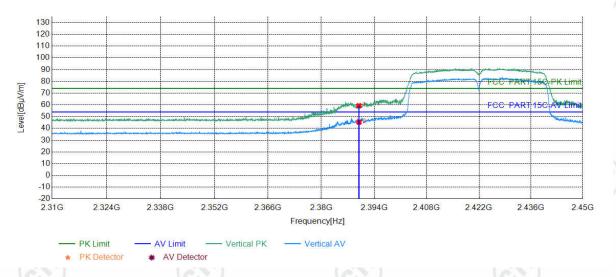


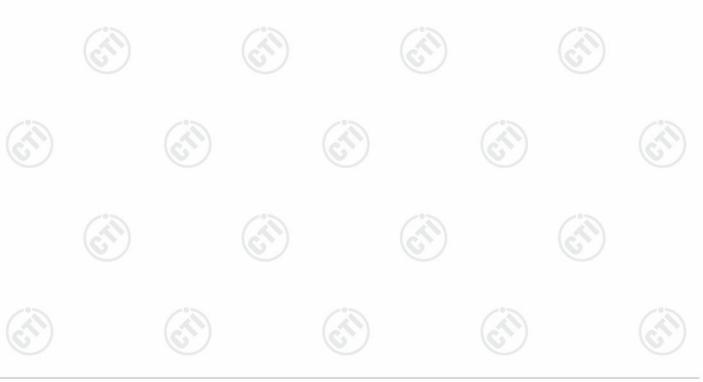
Mode:	802.11 n(HT20) Transmitting	Channel:	2462
Remark:			


Suspec	ted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	IXCIIIAIK
1	2483.5000	6.57	47.74	54.31	74.00	19.69	PASS	Vertical	PK
2	2483.5000	6.57	33.72	40.29	54.00	13.71	PASS	Vertical	AV

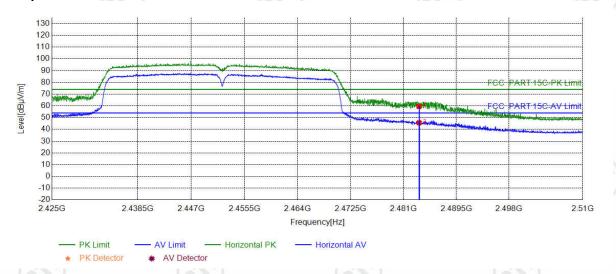


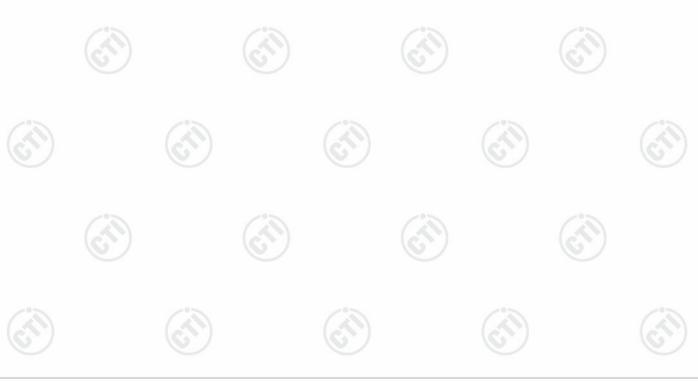
Mode:	802.11 n(HT40) Transmitting	Channel:	2422
Remark:			


Suspe	cted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Polatily	Remark
1	2390.0000	5.77	56.68	62.45	74.00	11.55	PASS	Horizontal	PK
2	2390.0000	5.77	44.75	50.52	54.00	3.48	PASS	Horizontal	AV

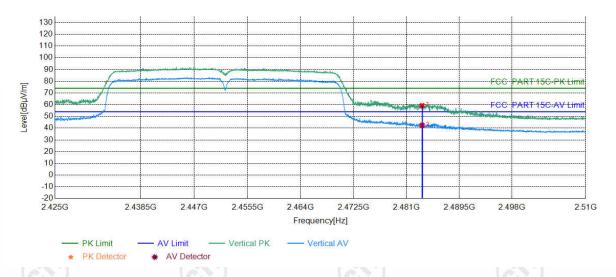


Mode:	802.11 n(HT40) Transmitting	Channel:	2422
Remark:			


Suspe	cted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folality	Remark
1	2390.0000	5.77	53.55	59.32	74.00	14.68	PASS	Vertical	PK
2	2390.0000	5.77	39.58	45.35	54.00	8.65	PASS	Vertical	AV



Mode:	802.11 n(HT40) Transmitting	Channel:	2452
Remark:			


Suspe	cted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
IVO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Polarity	Remark
1	2483.5000	6.57	53.01	59.58	74.00	14.42	PASS	Horizontal	PK
2	2483.5000	6.57	39.08	45.65	54.00	8.35	PASS	Horizontal	AV

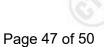
Mode:	802.11 n(HT40) Transmitting	Channel:	2452
Remark:			

Suspected List										
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
3		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]			
	1	2483.5000	6.57	52.60	59.17	74.00	14.83	PASS	Vertical	PK
	2	2483.5000	6.57	35.90	42.47	54.00	11.53	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor


Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

8 Appendix A

