

TEST REPORT

Product HD SCANTOOL

Trade mark **NEWCHIP**

Model/Type reference HDT301,HDT301L,HDT311L

Serial Number N/A

Report Number EED32N80936702 FCC ID 2A2KM-HDT301

Date of Issue Nov. 24, 2021

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Shenzhen New Chip Intelligence Co.,LTD Suite 801-6, Building B3, Zone B, Baoneng Science and Technology Park, Longgang District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Reviewed by:

Aaron Ma

David Wang

Date:

Nov. 24, 2021

David Wang

Check No.:5925240921

www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No.: EED32N80936702

Page 2 of 33

Content

1 CONTENT		
2 VERSION		
3 TEST SUMMARY		
4 GENERAL INFORMATION		5
4.1 CLIENT INFORMATION	RD	
5 EQUIPMENT LIST		9
6 TEST RESULTS AND MEASUREMENT DATA		11
6.1 ANTENNA REQUIREMENT	US EMISSION	
7 APPENDIX A		
PHOTOGRAPHS OF TEST SETUP		31
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		33

Report No.: EED32N80936702

2 Version

Version No.	Date	16	Description	
00	Nov. 24, 2021		Original	
	0	12		/3
- ((60)	(27)	(0)

Report No.: EED32N80936702 Page 4 of 33

3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model/Type reference:HDT301,HDT301L,HDT311L

Only the model HDT301 was tested, confirm that any of our production units bearing the following model numbers are identical in circuitry and electrical, mechanical and physical construction; the only differences are the model name and the color of appearance for trading purpose.

General Information

4.1 Client Information

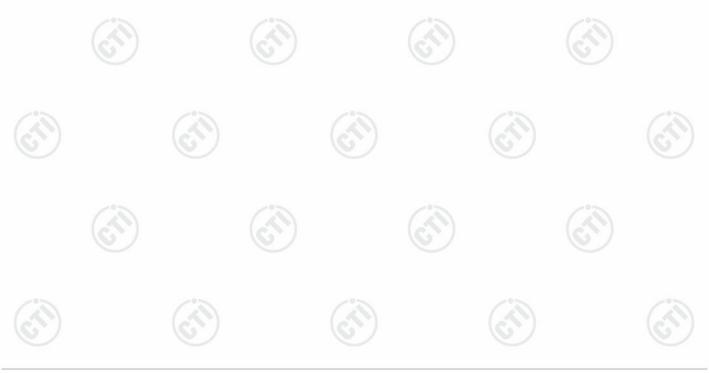
Applicant:	Shenzhen New Chip Intelligence Co.,LTD	
Address of Applicant:	Suite 801-6,Building B3,Zone B,Baoneng Science and Technology Park,Longgang District,Shenzhen	~
Manufacturer:	Shenzhen New Chip Intelligence Co.,LTD	(2)
Address of Manufacturer:	Suite 801-6,Building B3,Zone B,Baoneng Science and Technology Park,Longgang District,Shenzhen	
Factory:	Shenzhen New Chip Intelligence Co.,LTD	
Address of Factory:	Suite 801-6,Building B3,Zone B,Baoneng Science and Technology Park,Longgang District,Shenzhen	

4.2 General Description of EUT

Product Name:	HD SCAN	NTOOL			
Model No.(EUT):	HDT301				
Trade mark:	NEWCHI	P	(0,)		(67)
EUT Supports Radios application:	2402MHz	z to 2480MHz			
Power Supply:		ter:100~240V-50/60Hz 0.6A :5.0V=2.5A 12.5W	Max		
6.	Battery	DC 3.7V, 22.57Wh 6100m/	∖h	(0)	
Sample Received Date:	Sep.27, 2	2021			
Sample tested Date:	Sep.27, 2	2021 to Oct.27, 2021		·	524

4.3 Product Specification subjective to this standard

-	• 1 6		
Operation Frequency:	2402MHz~2480MHz	(6.)	(0)
Modulation Technique:	DSSS		
Modulation Type:	GFSK		
Number of Channel:	40		
Test Power Grade:	Default		
Software Version:	SP_META		
Antenna Type and Gain:	Type: Monopole Antenna Gain: 3.48dBi	· -	
Test Voltage:	AC 120V	(25)	(6/17)



Page 6 of 33 Report No.: EED32N80936702

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

Report No.: EED32N80936702 Page 7 of 33

4.4 Test Configuration

EUT Test Software	Settings:			
Software:	SP_MET	A (manufacturer dec	lare)	-01
EUT Power Grade:		Class2 (Power level is built-in set parameters and cannot be changed an selected)		
Use test software to transmitting of the El	•	ncy, the middle frequ	ency and the highest	frequency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	CH0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	CH39	2480

4.5 Test Environment

	Operating Environment	t:					
	Radiated Spurious Emi	ssions:					
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH				(3)	
	Atmospheric Pressure:	1010mbar		(0,)		(0,)	
	RF Conducted:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH	/°>		(3)		(:)
(°)	Atmospheric Pressure:	1010mbar	(87)		(67)		(87)
	Conducted Emissions:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH					
	Atmospheric Pressure:	1010mbar					

Report No.: EED32N80936702 Page 8 of 33

4.6 Description of Support Units

The EUT has been tested with associated equipment below.

	ociated nent name	Manufacture	model	S/N serial number	Supplied by	Certification
ΑE	Notebook	DELL	DELL 3490	D245DX2	CTI	CE&FCC

4.7 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
	(25)	3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3		4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32N80936702 Page 9 of 33

5 Equipment List

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022		
Temperature/ Humidity Indicator	Defu	TH128	1	(O)			
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022		
Barometer	changchun	DYM3	1188				

		RF test s	ystem			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(2)	((i)	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			<u> </u>	
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3				

	3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022			
Loop Antenna	Schwarzbeck	warzbeck FMZB 1519B 1519B-076		04-15-2021	04-14-2024			
Receiver	R&S	ESCI7	100938-003	10-16-2020 10-14-2021	10-15-2021 10-13-2022			
Multi device Controller	maturo	NCD/070/10711 112		(<u> </u>			
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022			
Cable line	Fulai(7M)	SF106	5219/6A					
Cable line	Fulai(6M)	SF106	5220/6A					
Cable line	Fulai(3M)	SF106	5216/6A	_ ° > -	/05			
Cable line	Fulai(3M)	SF106	5217/6A		(\ \ \ \			

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No.: EED32N80936702

	ه بر ز	3M full-anechoi	ic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022	
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022	
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	(<u> </u>	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003			
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	(c/1)	(c	
Cable line	Times	EMC104-NMNM- 1000	SN160710			
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001			
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(<u> </u>	
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		9/	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001			

Report No.: EED32N80936702 Page 11 of 33

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is Monopole Antenna. The best case gain of the antenna is 3.48dBi.

Report No.: EED32N80936702 Page 12 of 33

6.2 AC Power Line Conducted Emission

Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz	(1)		/°>
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Swe	eep time=auto		(2)
Limit:	E (MIL)	Limit (6	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm of	the frequency.		
Tost Catum				

Test Setup:

Test Procedure:

- The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of

Report No.: EED32N80936702 Page 13 of 33

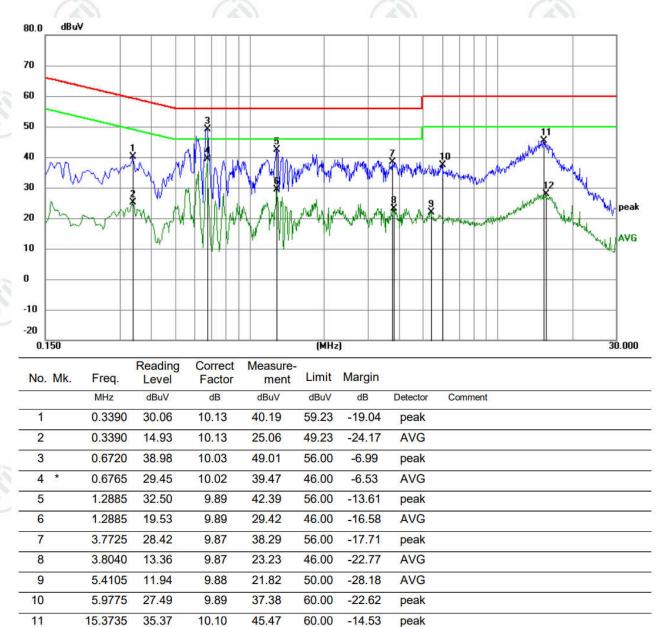
	equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.
Test Results:	Pass

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected

Neutral line:


12

15.6660

17.79

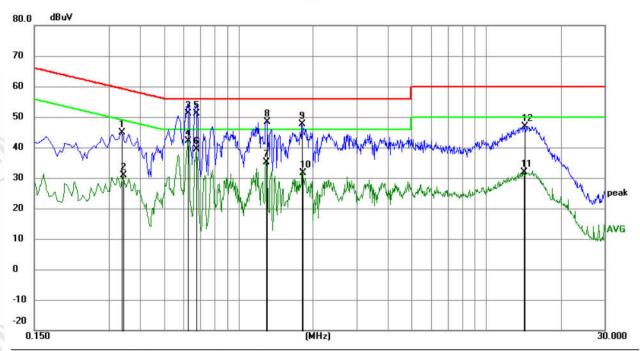
10.11

27.90

50.00

-22.10

AVG



Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Live line:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	0.3390	34.87	10.13	45.00	59.23	-14.23	peak	
	0.3435	20.87	10.13	31.00	49.12	-18.12	AVG	
	0.6269	41.03	10.05	51.08	56.00	-4.92	QP	
*	0.6269	32.02	10.05	42.07	46.00	-3.93	AVG	
	0.6719	41.00	10.03	51.03	56.00	-4.97	QP	
	0.6764	29.47	10.02	39.49	46.00	-6.51	AVG	
	1.2925	25.20	9.89	35.09	46.00	-10.91	AVG	
	1.3064	38.45	9.89	48.34	56.00	-7.66	peak	
	1.8059	37.71	9.88	47.59	56.00	-8.41	peak	
	1.8104	21.75	9.88	31.63	46.00	-14.37	AVG	
	14.1852	21.85	10.07	31.92	50.00	-18.08	AVG	
	14.2575	36.81	10.07	46.88	60.00	-13.12	peak	
		MHz 0.3390 0.3435 0.6269 * 0.6269 0.6719 0.6764 1.2925 1.3064 1.8059 1.8104	Mk. Freq. Level MHz dBuV 0.3390 34.87 0.3435 20.87 0.6269 41.03 * 0.6269 32.02 0.6719 41.00 0.6764 29.47 1.2925 25.20 1.3064 38.45 1.8059 37.71 1.8104 21.75 14.1852 21.85	Mk. Freq. Level Factor MHz dBuV dB 0.3390 34.87 10.13 0.3435 20.87 10.13 0.6269 41.03 10.05 * 0.6269 32.02 10.05 0.6719 41.00 10.03 0.6764 29.47 10.02 1.2925 25.20 9.89 1.3064 38.45 9.89 1.8059 37.71 9.88 1.8104 21.75 9.88 14.1852 21.85 10.07	Mk. Freq. Level Factor dBuV ment MHz dBuV dB dBuV 0.3390 34.87 10.13 45.00 0.3435 20.87 10.13 31.00 0.6269 41.03 10.05 51.08 * 0.6269 32.02 10.05 42.07 0.6719 41.00 10.03 51.03 0.6764 29.47 10.02 39.49 1.2925 25.20 9.89 35.09 1.3064 38.45 9.89 48.34 1.8059 37.71 9.88 47.59 1.8104 21.75 9.88 31.63 14.1852 21.85 10.07 31.92	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV dBuV 0.3390 34.87 10.13 45.00 59.23 0.3435 20.87 10.13 31.00 49.12 0.6269 41.03 10.05 51.08 56.00 * 0.6269 32.02 10.05 42.07 46.00 0.6719 41.00 10.03 51.03 56.00 0.6764 29.47 10.02 39.49 46.00 1.2925 25.20 9.89 35.09 46.00 1.3064 38.45 9.89 48.34 56.00 1.8059 37.71 9.88 47.59 56.00 1.8104 21.75 9.88 31.63 46.00 14.1852 21.85 10.07 31.92 50.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB dBuV dBuV dB 0.3390 34.87 10.13 45.00 59.23 -14.23 0.3435 20.87 10.13 31.00 49.12 -18.12 0.6269 41.03 10.05 51.08 56.00 -4.92 * 0.6269 32.02 10.05 42.07 46.00 -3.93 0.6719 41.00 10.03 51.03 56.00 -4.97 0.6764 29.47 10.02 39.49 46.00 -6.51 1.2925 25.20 9.89 35.09 46.00 -10.91 1.3064 38.45 9.89 48.34 56.00 -7.66 1.8059 37.71 9.88 47.59 56.00 -8.41 1.8104 21.75 9.88 31.63 46.00 -14.37 14.1852 21.85	Mk. Freq. Level Factor ment Limit Margin 0.3436 dBuV dB dBuV dBuV dB Detector 0.3390 34.87 10.13 45.00 59.23 -14.23 peak 0.3435 20.87 10.13 31.00 49.12 -18.12 AVG 0.6269 41.03 10.05 51.08 56.00 -4.92 QP * 0.6269 32.02 10.05 42.07 46.00 -3.93 AVG 0.6719 41.00 10.03 51.03 56.00 -4.97 QP 0.6764 29.47 10.02 39.49 46.00 -6.51 AVG 1.2925 25.20 9.89 35.09 46.00 -10.91 AVG 1.3064 38.45 9.89 48.34 56.00 -7.66 peak 1.8059 37.71 9.88 47.59 56.00 -8.41 peak 1.8104 21.75

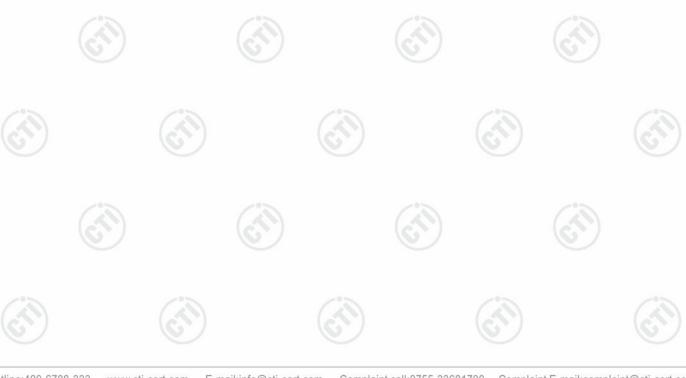
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: EED32N80936702 Page 15 of 33

6.3 Maximum Conducted Output Power

Те	st Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Те	st Method:	ANSI C63.10 2013	
Те	st Setup:	Control Computer Power Supply Power Table EUT Control Power System Attenuator Instrument Table	(FI)
		Remark: Offset=Cable loss+ attenuation factor.	
Те	st Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	
Lin	nit:	30dBm	
Те	st Mode:	Refer to clause 5.3	(3)
Те	st Results:	Refer to Appendix A	(0,)



Report No.: EED32N80936702 Page 16 of 33

6.4 DTS Bandwidth

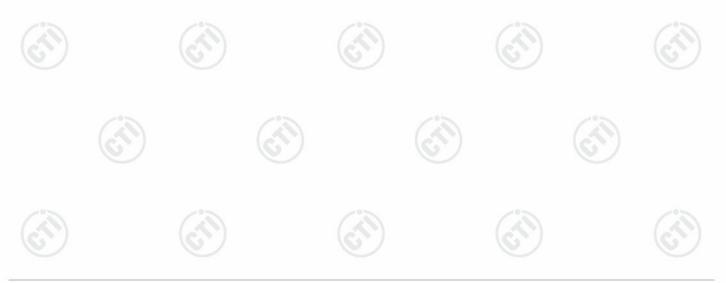
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Power Power Supply Attenuator Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

6.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
•	,	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Power Supply Power TEMPERATURE CABNET	RF test - System Instrument
	Remark: Offset=Cable loss+ attenua	ation factor.
Test Procedure:	within the RBW.	S bandwidth.
Limit:	≤8.00dBm/3kHz	
Test Mode:	Refer to clause 5.3	-05
Test Results:	Refer to Appendix A	

6.6 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Control Control Control Power Supply Power Foot Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A



6.7 Radiated Spurious Emission & Restricted bands

1600	(G) /		(6)		10.	<i>)</i>		
Test Requirement:		47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MH	lz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MH	lz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	lz	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak		
	Above 1GHz		Peak	1MHz	3MHz	Peak		
			Peak	1MHz	10kHz	Average		
Limit:	Frequency	Field str (microvolt		Limit (dBuV/m)	Remark	Measuremen distance (m		
	/ / / / / / / / / / / / / / / / / / / /		400/F(kHz)	-	-/*>	300		
			1000/F(kHz)	-	(A)	30		
			30	-		30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz	6	200	46.0	Quasi-peak	3		
	960MHz-1GHz		500	54.0	Quasi-peak	3		
	Above 1GHz		500	54.0	Average	3		
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20c equip	IB above the oment under t	maximum est. This p	permitted ave	erage emission		

Report No.: EED32N80936702 Page 20 of 33

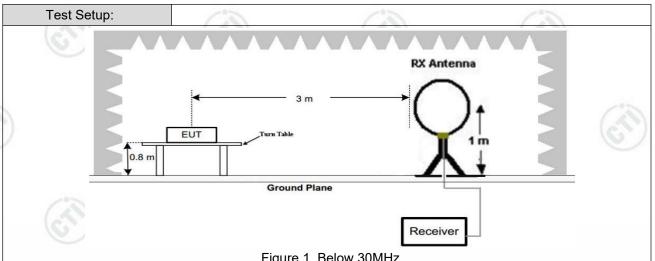
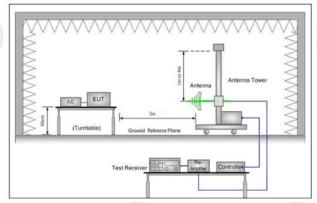



Figure 1. Below 30MHz

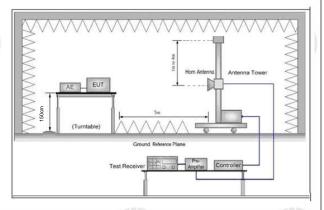


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest

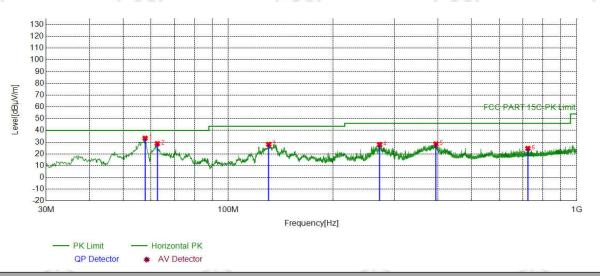
Note: For the radiated emission test above 1GHz:

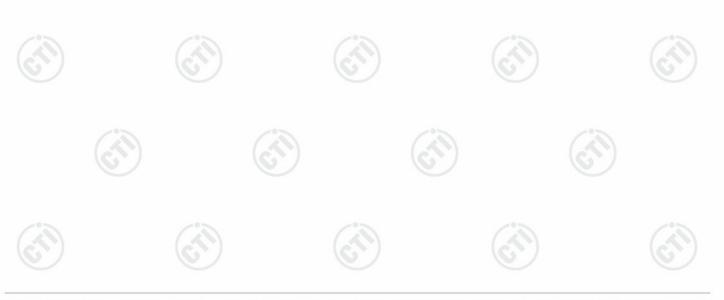
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

Page 21 of 33 Report No.: EED32N80936702

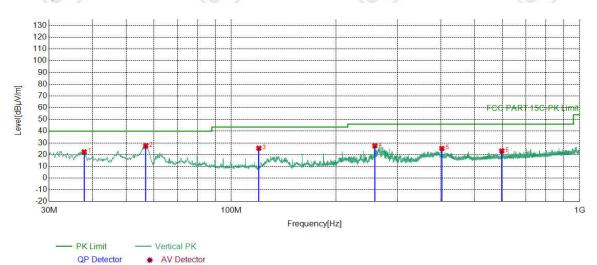
	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Refer to clause 5.3
Test Results:	Pass
Tool Nosults.	1 400





Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK was recorded in the report.



Su	specte	d List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	110	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	lolarity	IXCIIIAIK
	1	57.7448	-18.19	51.52	33.33	40.00	6.67	PASS	Horizontal	PK
	2	62.5953	-19.09	47.79	28.70	40.00	11.30	PASS	Horizontal	PK
	3	130.6961	-21.60	49.74	28.14	43.50	15.36	PASS	Horizontal	PK
	4	271.9422	-16.11	43.96	27.85	46.00	18.15	PASS	Horizontal	PK
	5	394.7565	-13.07	41.49	28.42	46.00	17.58	PASS	Horizontal	PK
	6	724.5895	-7.38	32.05	24.67	46.00	21.33	PASS	Horizontal	PK

Suspected List										
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark	
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	1 toodit	rolanty	rtomant	
1	37.8578	-18.70	41.03	22.33	40.00	17.67	PASS	Vertical	PK	
2	56.8717	-18.08	45.64	27.56	40.00	12.44	PASS	Vertical	PK	
3	120.0250	-20.08	45.57	25.49	43.50	18.01	PASS	Vertical	PK	
4	258.4578	-16.39	43.88	27.49	46.00	18.51	PASS	Vertical	PK	
5	402.4202	-12.88	38.18	25.30	46.00	20.70	PASS	Vertical	PK	
6	597.7978	-8.69	31.85	23.16	46.00	22.84	PASS	Vertical	PK	

Radiated Spurious Emission above 1GHz:

Mode	:		BLE GFSK Tra	nsmitting		Channel:		2402 MHz	7
NO	Freq. [MHz]	Factor [dB]	r Reading [dBμV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1253.0253	0.94	42.96	43.90	74.00	30.10	Pass	Н	PK
2	1777.6778	3.20	42.06	45.26	74.00	28.74	Pass	Н	PK
3	5056.1371	-15.74	56.77	41.03	74.00	32.97	Pass	Н	PK
4	7541.3028	-11.14	54.49	43.35	74.00	30.65	Pass	Н	PK
5	10333.4889	-6.40	52.15	45.75	74.00	28.25	Pass	Н	PK
6	14403.7603	1.17	49.77	50.94	74.00	23.06	Pass	Н	PK
7	1293.8294	1.04	43.03	44.07	74.00	29.93	Pass	V	PK
8	2030.1030	4.65	42.55	47.20	74.00	26.80	Pass	V	PK
9	4630.1087	-16.66	56.10	39.44	74.00	34.56	Pass	V	PK
10	7970.3314	-11.49	56.11	44.62	74.00	29.38	Pass	V	PK
11	11865.5910	-5.93	53.77	47.84	74.00	26.16	Pass	V	PK
12	14958.7973	-0.50	51.97	51.47	74.00	22.53	Pass	V	PK

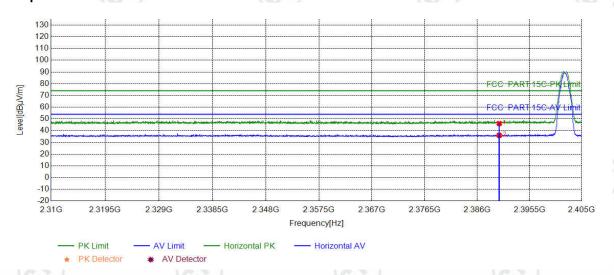
	Mode:			BLE GFSK Trai	nsmitting		Channel:		2440 MHz	2
	NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1149.2149	0.83	43.55	44.38	74.00	29.62	Pass	Н	PK
	2	1606.6607	2.33	42.47	44.80	74.00	29.20	Pass	Н	PK
Ī	3	5003.1335	-15.82	56.91	41.09	74.00	32.91	Pass	Н	PK
Ī	4	7151.2768	-11.71	54.49	42.78	74.00	31.22	Pass	Н	PK
	5	9234.4156	-7.90	53.08	45.18	74.00	28.82	Pass	Н	PK
	6	13150.6767	-3.39	51.77	48.38	74.00	25.62	Pass	Н	PK
	7	1278.0278	1.00	42.85	43.85	74.00	30.15	Pass	V	PK
Ī	8	1739.0739	3.07	42.05	45.12	74.00	28.88	Pass	V	PK
Ī	9	5014.1343	-15.80	57.29	41.49	74.00	32.51	Pass	V	PK
3	10	7560.3040	-11.17	54.11	42.94	74.00	31.06	Pass	V	PK
6	11	11179.5453	-6.38	52.25	45.87	74.00	28.13	Pass	V	PK
	12	13111.6741	-3.61	51.75	48.14	74.00	25.86	Pass	V	PK

Report No.: EED32N80936702 Page 25 of 33

	10%		20%		205		-	0	
Mode	:	1	BLE GFSK Transmitting			Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1249.4249	0.93	43.24	44.17	74.00	29.83	Pass	Н	PK
2	1923.2923	4.15	41.53	45.68	74.00	28.32	Pass	Н	PK
3	5007.1338	-15.81	56.99	41.18	74.00	32.82	Pass	Н	PK
4	7623.3082	-11.18	54.98	43.80	74.00	30.20	Pass	Н	PK
5	10291.4861	-6.52	52.02	45.50	74.00	28.50	Pass	Н	PK
6	12494.6330	-4.82	53.08	48.26	74.00	25.74	Pass	Н	PK
7	1262.6263	0.96	42.78	43.74	74.00	30.26	Pass	V	PK
8	1778.4778	3.21	42.34	45.55	74.00	28.45	Pass	V	PK
9	4947.1298	-16.02	55.36	39.34	74.00	34.66	Pass	V	PK
10	7640.3094	-11.15	54.78	43.63	74.00	30.37	Pass	V	PK
11	11240.5494	-6.51	52.77	46.26	74.00	27.74	Pass	V	PK
12	14339.7560	0.22	50.22	50.44	74.00	23.56	Pass	V	PK

Remark:

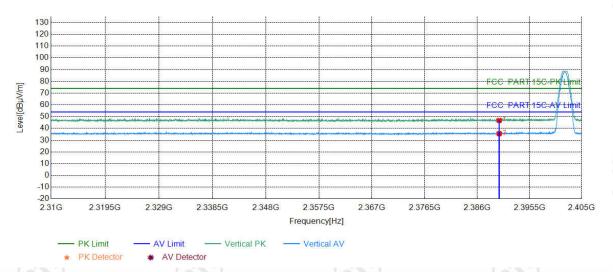
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Factor
 - Factor=Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



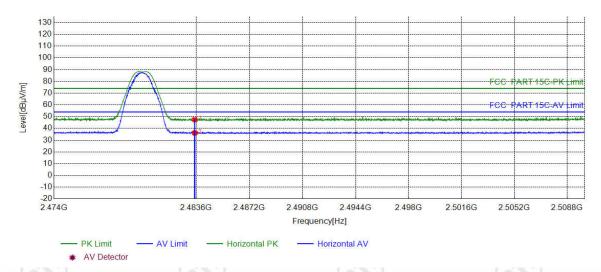
Restricted bands:

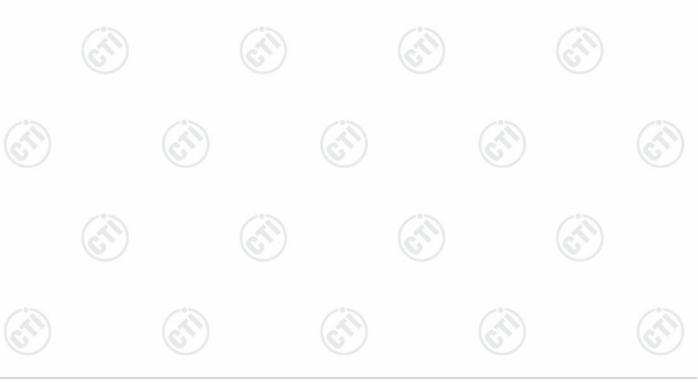
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:			

Suspected List											
7	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark	
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	lolanty	Remark	
	1	2390.0000	5.77	40.32	46.09	74.00	27.91	PASS	Horizontal	PK	
	2	2390.0000	5.77	30.24	36.01	54.00	17.99	PASS	Horizontal	AV	

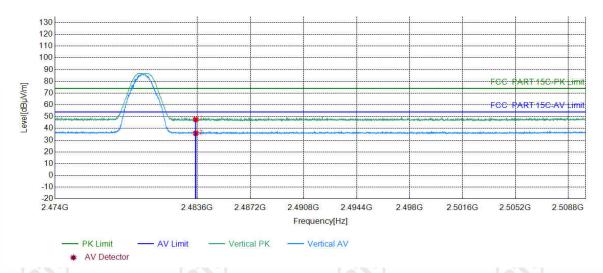


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:			


	Suspec	ted List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
3	INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Polarity	Remark
	1	2390.0000	5.77	40.97	46.74	74.00	27.26	PASS	Vertical	PK
	2	2390.0000	5.77	29.77	35.54	54.00	18.46	PASS	Vertical	AV



Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:			


Suspected List										
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
3	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Folarity	INCIIIAIN
	1	2483.5000	6.57	40.92	47.49	74.00	26.51	PASS	Horizontal	PK
	2	2483.5000	6.57	29.58	36.15	54.00	17.85	PASS	Horizontal	AV

Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:				

	Suspect	Suspected List										
3	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark		
		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	rtosuit	l	Roman		
	1	2483.5000	6.57	41.00	47.57	74.00	26.43	PASS	Vertical	PK		
	2	2483.5000	6.57	29.24	35.81	54.00	18.19	PASS	Vertical	AV		

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Factor

Factor=Antenna Factor + Cable Factor - Preamplifier Factor

Appendix A

Refer to Appendix: Bluetooth LE of EED32N80936702.

