
# Project No.: ZKT-2106152630E Page 51 of 73

#### Test plots GFSK Low Channel





#### **GFSK Middle Channel**

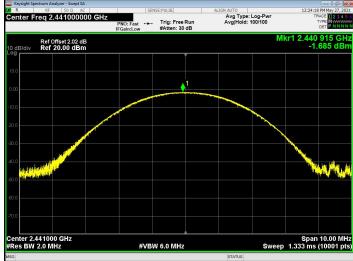




**GFSK High Channel** 

| X R                 | RF 50 Ω AC                          |        |                         | SEN | SE:PULSE                        | AL | LIGN AUTO              |         |                              | PM May 27, 2                         |
|---------------------|-------------------------------------|--------|-------------------------|-----|---------------------------------|----|------------------------|---------|------------------------------|--------------------------------------|
| Center Fi           | req 2.4800000                       | 00 GHz | PNO: Fast<br>IFGain:Low | -•- | Trig: Free Run<br>#Atten: 30 dB |    | Avg Type:<br>Avg Hold: | 100/100 |                              | ACE 1 2 3 4<br>TYPE MWWW<br>DET PNNN |
| 0 dB/div            | Ref Offset 2.04 di<br>Ref 20.00 dBn | 3      |                         |     |                                 |    |                        | M       | kr1 2.480<br>-0.             | 190 GI<br>163 dE                     |
| -og                 | 20100 4201                          |        |                         |     | Ţ                               |    |                        |         | 7085                         |                                      |
| 5.000               |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
| 10.0                |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
| 0.00                |                                     |        |                         |     | •                               | 1  |                        |         |                              |                                      |
| 0.00                |                                     |        |                         |     |                                 |    | -                      |         |                              |                                      |
| 10.0                |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
|                     |                                     | /      |                         |     |                                 |    |                        | The     |                              |                                      |
| 20.0                |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
|                     |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
| 30.0                |                                     |        |                         |     |                                 |    |                        |         | 1                            |                                      |
| 40.0                |                                     |        |                         |     |                                 |    |                        |         | · 🔨                          |                                      |
| 40.0<br>Nordersla   | the set of the set of               |        |                         |     |                                 |    |                        |         | The second                   | hada the                             |
| 50.0 <b>1001/90</b> | - Colorian                          |        |                         |     |                                 |    |                        |         | <sup>U</sup> N <sub>44</sub> | and the second states                |
|                     |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
| 50.0                |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
|                     |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
| 70.0                |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
|                     |                                     |        |                         |     |                                 |    |                        |         |                              |                                      |
|                     | 80000 GHz                           |        |                         |     |                                 |    |                        |         | Span                         | 10.00 M                              |
| Res BW              | 2.0 MHz                             |        | #                       | VBV | 6.0 MHz                         |    |                        | Sweep   | 1.333 ms                     | (10001 p                             |
| ISG                 |                                     |        |                         |     |                                 |    | STATUS                 |         |                              |                                      |



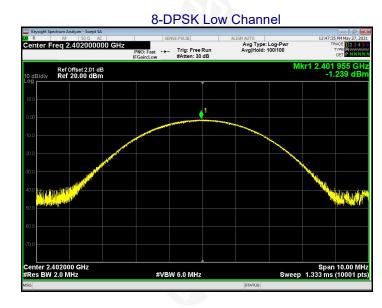





#### π/4-DQPSK Low Channel




π/4-DQPSK Middle Channel

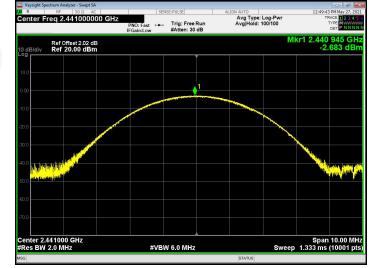




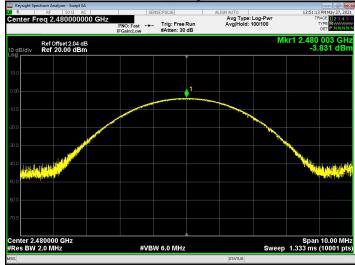



# π/4-DQPSK High Channel










#### 8-DPSK Middle Channel



# 8-DPSK High Channel







#### 9. HOPPING CHANNEL SEPARATION

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                       |
|-------------------|----------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013                                                                                         |
| Receiver setup:   | RBW=100KHz, VBW=300KHz, detector=Peak                                                                    |
| Limit:            | GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater) |

#### 9.1 Test Setup

| UT     | SPECTRUM |
|--------|----------|
| 10/002 | ANALYZER |

#### 9.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port

to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

# 9.3 DEVIATION FROM STANDARD

No deviation.

#### 9.4 Test Result

| Modulation | Test Channel | Separation (MHz) | Limit(MHz) | Result |
|------------|--------------|------------------|------------|--------|
| GFSK       | Low          | 0.998            | 0.703      | PASS   |
| GFSK       | Middle       | 1.002            | 0.701      | PASS   |
| GFSK       | High         | 1.002            | 0.699      | PASS   |
| π/4-DQPSK  | Low          | 1.002            | 0.916      | PASS   |
| π/4-DQPSK  | Middle       | 1.000            | 0.917      | PASS   |
| π/4-DQPSK  | High         | 1.002            | 0.913      | PASS   |
| 8-DPSK     | Low          | 1.000            | 0.896      | PASS   |
| 8-DPSK     | Middle       | 0.998            | 0.891      | PASS   |
| 8-DPSK     | High         | 1.002            | 0.883      | PASS   |







# Project No.: ZKT-2106152630E Page 57 of 73

# Test plots







#### GFSK Middle Channel





**GFSK High Channel** 



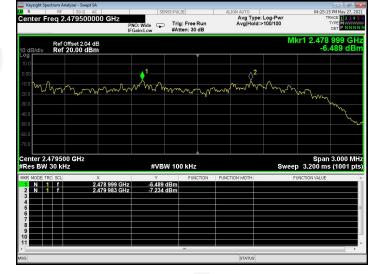






#### π/4-DQPSK Low Channel




π/4-DQPSK Middle Channel

|                                                         | 41500000 GHz  | SENSE:PUI    | g: Free Run | Avg Ty<br>Avg Hol | d:>100/100      | 04:25:57 PM May 27,<br>TRACE 1 2 3<br>TYPE N MM |
|---------------------------------------------------------|---------------|--------------|-------------|-------------------|-----------------|-------------------------------------------------|
|                                                         |               | FGain:Low #A | tten: 30 dB |                   |                 | DET PNN                                         |
|                                                         | set 2.02 dB   |              |             |                   | Mk              | r1 2.441 158 G                                  |
| dB/div Ref 20                                           | 0.00 dBm      |              | •           |                   |                 | -7.479 dl                                       |
| 1.0                                                     |               |              |             |                   |                 |                                                 |
| 00                                                      |               | 1            |             |                   | <mark>∕2</mark> |                                                 |
| mon                                                     | A-            | mmm          | \           | and how           | mymm            | non m                                           |
| .0                                                      | Mar and 1.    | No           | · Mullin    | Conc me et        | A MAA nut       | mond of                                         |
| .0                                                      |               |              |             |                   |                 |                                                 |
| .0                                                      |               |              |             |                   |                 |                                                 |
|                                                         |               |              |             |                   |                 |                                                 |
| .0                                                      |               |              |             |                   |                 |                                                 |
|                                                         |               |              |             |                   |                 |                                                 |
| enter 2.441500                                          | 011-          |              |             |                   |                 | 0                                               |
| siller 2.44 1000                                        | GHZ           | #VBW 10      | 0 kHz       |                   | Sweep           | Span 3.000 M<br>3.200 ms (1001                  |
| es BW 30 kHz                                            |               |              |             |                   |                 |                                                 |
|                                                         | X             | Y            | FUNCTION    | FUNCTION WIDTH    | FU              | NCTION VALUE                                    |
| R MODE TRC SCL                                          | 2.441 158 GHz | -7.479 dBm   | FUNCTION    | FUNCTION WIDTH    | FU              | NCTION VALUE                                    |
| R MODE TRC SCL<br>N 1 f<br>N 1 f                        |               | -7.479 dBm   | FUNCTION    | FUNCTION WIDTH    | FU              | NCTION VALUE                                    |
| R MODE TRC SCL                                          | 2.441 158 GHz | -7.479 dBm   | FUNCTION    | FUNCTION WIDTH    | FU              | NCTION VALUE                                    |
| R MODE TRC SCL                                          | 2.441 158 GHz | -7.479 dBm   | FUNCTION    | FUNCTION WIDTH    | FU              | NCTION VALUE                                    |
| R MODE TRC SCL<br>N 1 f<br>N 1 f                        | 2.441 158 GHz | -7.479 dBm   | FUNCTION    | FUNCTION WIDTH    | FU              | NCTION VALUE                                    |
| R MODE TRC SCL<br>N 1 F<br>2 N 1 F<br>5 S<br>5 S<br>8 S | 2.441 158 GHz | -7.479 dBm   | FUNCTION    | FUNCTION WIDTH    | FU              | NCTION VALUE                                    |
|                                                         | 2.441 158 GHz | -7.479 dBm   | FUNCTION    | FUNCTION WIDTH    | FU              | NCTION VALUE                                    |



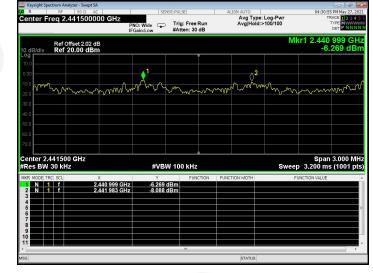


## π/4-DQPSK High Channel



8-DPSK Low Channel

| R                              | trum Analyzer - Swep<br>RF 50 Ω<br>eq 2.402500 | AC<br>0000 GHz<br>PNC | SENSE:PUI       | SE<br>g: Free Run<br>tten: 30 dB       | ALIGN AUTO<br>Avg Tyj<br>Avg Hol | be: Log-Pwr<br>d:>100/100 | 04:31:36 PM May 27, 2<br>TRACE 2 3 4<br>TYPE MWWW<br>DET P N N N |
|--------------------------------|------------------------------------------------|-----------------------|-----------------|----------------------------------------|----------------------------------|---------------------------|------------------------------------------------------------------|
| 10 dB/div                      | Ref Offset 2.0<br>Ref 20.00 d                  | dB                    |                 |                                        |                                  | M                         | (r1 2.402 005 GI<br>-5.418 dB                                    |
| 10.0                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~        | ,<br>mm Mn M          | Mum Mum M       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | m                                | m 2                       | mmm                                                              |
| -30.0                          | ~                                              |                       |                 |                                        |                                  |                           |                                                                  |
| 70.0<br>Center 2.4<br>Res BW 3 | 02500 GHz<br>30 kHz                            |                       | #VBW 10         | 0 kHz                                  |                                  | Sweep                     | Span 3.000 M<br>5 3.200 ms (1001 p                               |
|                                |                                                | ×<br>2.402 005 GHz    | Y<br>-5.418 dBm | FUNCTION                               | FUNCTION WIDTH                   | FI                        | UNCTION VALUE                                                    |
| 2 N 1<br>3                     | f                                              | 2.403 145 GHz         | -7.076 dBm      |                                        |                                  |                           |                                                                  |
| 5                              |                                                |                       |                 |                                        |                                  |                           |                                                                  |
| 7 8                            |                                                |                       |                 |                                        |                                  |                           |                                                                  |
| 9                              |                                                |                       |                 |                                        |                                  |                           |                                                                  |
|                                |                                                |                       |                 | ш                                      |                                  |                           |                                                                  |
|                                |                                                |                       |                 |                                        | STATUS                           |                           |                                                                  |










# 8-DPSK Middle Channel





8-DPSK High Channel

|                              | eq 2.479500                     | PI                                  |                               | g: Free Run<br>tten: 30 dB | Avg Type: Log-<br>Avg Hold:>100/1 | OV TRACE 2 3<br>00 TYPE MWW<br>DET P NN |
|------------------------------|---------------------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------------|-----------------------------------------|
| I0 dB/div                    | Ref Offset 2.04<br>Ref 20.00 dB | dB<br>3m                            |                               | ,                          |                                   | Mkr1 2.479 002 G<br>-8.317 dE           |
|                              |                                 | 10                                  | 1                             |                            | 2                                 |                                         |
| 20.0<br>20.0<br>30.0<br>40.0 | wann                            | ~~~~\/i`\/                          | in all a free                 | mm                         | mmm                               | how we have                             |
| 50.0<br>50.0<br>70.0         |                                 |                                     |                               |                            |                                   |                                         |
| enter 2.4                    | 79500 GHz                       |                                     | #VBW 10                       | 0 kHz                      |                                   | Span 3.000 N<br>Sweep 3.200 ms (1001    |
| Res BW 3                     | 30 kHz                          |                                     |                               |                            |                                   | Gweep 3.200 ms (1001                    |
| Res BW 3                     | SCL                             | X<br>2.479 002 GHz<br>2.479 998 GHz | Y<br>-8.317 dBm<br>-9.979 dBm | FUNCTION                   | FUNCTION WIDTH                    | FUNCTION VALUE                          |
| Res BW 3                     | SCL                             | 2.479 002 GHz                       | ۲<br>-8.317 dBm               |                            | FUNCTION WIDTH                    |                                         |





# **10.NUMBER OF HOPPING FREQUENCY**

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)(iii)                                  |
|-------------------|--------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013                                                         |
| Receiver setup:   | RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |
| Limit:            | 15 channels                                                              |

#### 10.1 Test Setup

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

#### 10.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

#### 10.3 DEVIATION FROM STANDARD

No deviation.







# Project No.: ZKT-2106152630E Page 64 of 73

#### π/4-DQPSK

|                                                                                           |                                                  | Trig: Free Run<br>#Atten: 30 dB | Avg Hold: 2000/2000 | TYPE M<br>DET P               |
|-------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------|---------------------|-------------------------------|
| Ref Offset 2.01 dE                                                                        |                                                  |                                 | Mk                  | r1 2.401 503 0<br>-8.008      |
|                                                                                           |                                                  | Ť                               |                     |                               |
|                                                                                           |                                                  |                                 |                     |                               |
| 10.0 $MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM$                                               | warmwarphary                                     | hand warder                     | Mannanna            | Margangang                    |
| -20.0                                                                                     |                                                  |                                 |                     |                               |
| -30.0                                                                                     |                                                  |                                 |                     |                               |
| -40.0                                                                                     |                                                  |                                 |                     |                               |
| -50.0                                                                                     |                                                  |                                 |                     |                               |
| -60.0                                                                                     |                                                  |                                 |                     |                               |
|                                                                                           |                                                  |                                 |                     |                               |
| Start 2.40000 GHz<br>#Res BW 100 kHz                                                      | #VBW 3                                           | 300 kHz                         | Swe                 | Stop 2.4835<br>p 8.000 ms (10 |
|                                                                                           | X Y                                              |                                 |                     | FUNCTION VALUE                |
| MKR MODE TRC SCL                                                                          |                                                  |                                 |                     |                               |
| 1 N 1 f 2.40                                                                              | 01 503 0 GHz -8.008 dB                           |                                 |                     |                               |
| 1 N 1 f 2.40                                                                              | 01 503 0 GHz -8.008 dB<br>30 243 5 GHz -6.994 dB |                                 |                     |                               |
| 1 N 1 f 2.40<br>2 N 1 f 2.48<br>3 4<br>5 5                                                |                                                  |                                 |                     |                               |
| 1 N 1 f 2.40   2 N 1 f 2.48   3 - - - -   4 - - - -   5 - - - -   6 - - - -   7 - - - - - |                                                  |                                 |                     |                               |
| 1 N 1 f 2.40<br>2 N 1 f 2.48<br>3<br>4<br>5<br>6                                          |                                                  |                                 |                     |                               |

#### 8-DPSK

| Keysight Spectrum Analyzer - Swept SA<br>R RF 50 Ω AC<br>Center Freq 2.441750000 GHz |                                           | LSE<br>g: Free Run<br>tten: 30 dB | ALIGN AUTO<br>Avg Type: L<br>Avg Hold: 20 | .og-Pwr<br>000/2000 | 12:40:59 PM May 27, 2021<br>TRACE 1 2 3 4 5<br>TYPE M |
|--------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|---------------------|-------------------------------------------------------|
| Ref Offset 2.01 dB<br>10 dB/div Ref 20.00 dBm                                        |                                           | Ť                                 |                                           | Mkr1                | 2.401 419 5 GHz<br>-10.631 dBm                        |
| 100<br>000<br>100<br>000<br>000<br>00                                                | en an | ᡃ᠋ᢩᠮᡅᡧᢊᠰᡧ                         | ᡪᡟ᠋ᡰᢦᢧ᠇ᠰᡧ᠕ᡀᠺᢩᡁ                            | vuliterite og       | MAAMAAMAA                                             |
| 40.0<br>60.0<br>70.0                                                                 |                                           |                                   |                                           |                     | ht                                                    |
| Start 2.40000 GHz<br>#Res BW 100 kHz                                                 | #VBW 30                                   | 0 kHz                             |                                           | Sweep               | Stop 2.48350 GHz<br>8.000 ms (1001 pts)               |
| MRR MODEL TRC SCL X<br>1 N 1 f 2.401 419 5 GH<br>2 N 1 f 2.480 327 0 GH<br>3         |                                           | FUNCTION                          | FUNCTION WIDTH                            | FUI                 | NCTION VALUE                                          |
| 6<br>7<br>8<br>9                                                                     |                                           |                                   |                                           |                     |                                                       |
| 10                                                                                   |                                           |                                   | STATUS                                    |                     | ,                                                     |



#### 11. DWELL TIME

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)(iii)     |
|-------------------|---------------------------------------------|
| Test Method:      | ANSI C63.10:2013                            |
| Receiver setup:   | RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak |
| Limit:            | 0.4 Second                                  |

#### 11.1 Test Setup

| UT | SPECTRUM |
|----|----------|
|    | ANALYZER |

#### 11.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0Hz;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

**11.3 DEVIATION FROM STANDARD** 

No deviation.







#### 11.4 Test Result

#### GFSK mode:

| Frequency | Packet | Dwell time(ms) | Limit(ms) | Result |
|-----------|--------|----------------|-----------|--------|
| 2441MHz   | DH1    | 124.48         | 400       | Pass   |
| 2441MHz   | DH3    | 263.04         | 400       | Pass   |
| 2441MHz   | DH5    | 308.48         | 400       | Pass   |

#### Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: 2441MHz as blow

DH1 time slot=0.389(ms)\*(1600/ (2\*79))\*31.6=124.48ms DH3 time slot=1.644(ms)\*(1600/ (4\*79))\*31.6=263.04ms

DH5 time slot=2.892(ms)\*(1600/ (6\*79))\*31.6=308.48ms

#### π/4-DQPSK mode:

| Frequency | Packet | Dwell time(ms) | Limit(ms) | Result |
|-----------|--------|----------------|-----------|--------|
| 2441MHz   | 2DH1   | 127.68         | 400       | Pass   |
| 2441MHz   | 2DH3   | 263.84         | 400       | Pass   |
| 2441MHz   | 2DH5   | 308.80         | 400       | Pass   |

#### Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: 2441MHz as blow DH1 time slot=0.399(ms)\*(1600/ (2\*79))\*31.6=127.68ms DH3 time slot=1.649(ms)\*(1600/ (4\*79))\*31.6=263.84ms DH5 time slot=2.895(ms)\*(1600/ (6\*79))\*31.6=308.80ms

#### 8-DPSK mode:

| Frequency | Packet | Dwell time(ms) | Limit(ms) | Result |
|-----------|--------|----------------|-----------|--------|
| 2441MHz   | 3DH1   | 127.36         | 400       | Pass   |
| 2441MHz   | 3DH3   | 263.20         | 400       | Pass   |
| 2441MHz   | 3DH5   | 309.33         | 400       | Pass   |

#### Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: 2441MHz as blow DH1 time slot=0.398(ms)\*(1600/ (2\*79))\*31.6=127.36ms DH3 time slot=1.645(ms)\*(1600/ (4\*79))\*31.6=263.20ms DH5 time slot=2.900(ms)\*(1600/ (6\*79))\*31.6=309.33ms





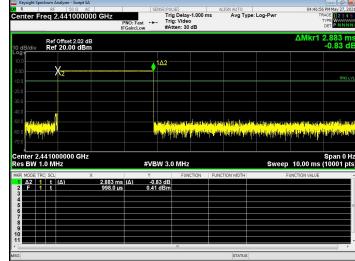





Test Plots

# GFSK DH1




# GFSK DH3

| X R                                                      |                              |                      |                   |                                                 |                                                                                                                | 1                        |                        |                                                |
|----------------------------------------------------------|------------------------------|----------------------|-------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|------------------------------------------------|
|                                                          |                              |                      | PNO: Fast Tr      | rig Delay-1.000 n<br>rig: Video<br>Atten: 30 dB | ALIGN AUTO<br>ns Avg Typ                                                                                       | be: Log-Pwr              | TR.<br>T               | PM May 27,<br>ACE 1 2 3<br>TYPE WWW<br>DET PNN |
| I0 dB/div                                                | Ref Offse<br>Ref 20.0        | et 2.02 dB<br>00 dBm |                   |                                                 |                                                                                                                |                          | ΔMkr1 ′                | 1.636<br>-0.09                                 |
| 10.0                                                     |                              | <u></u> 1Δ           | 2                 |                                                 |                                                                                                                |                          |                        |                                                |
| 0.00                                                     | X2                           |                      |                   |                                                 |                                                                                                                |                          |                        | TR                                             |
| 20.0                                                     |                              |                      |                   |                                                 |                                                                                                                |                          |                        |                                                |
| 30.0                                                     |                              |                      |                   |                                                 |                                                                                                                |                          |                        |                                                |
| 40.0<br>50.0 <b>Webstern</b>                             | and the second               |                      |                   |                                                 | and be and other with other                                                                                    | ha da a ti sa aka shara  | ilidhaansi darahdada   | Hilling                                        |
| 50.0 <mark>1741 17</mark>                                |                              |                      |                   | Low Marker                                      | de la la compañía de | and didicitations and he | dil sika di sua dasa i | i di di sa da                                  |
| 70.0                                                     |                              |                      | <i>v</i> ,        |                                                 | In a second to                                                                                                 | and a the                | 41                     | Faile de                                       |
| enter 2.                                                 | .44100000<br>1.0 MHz         | 00 GHz               | #VBW 3.           |                                                 |                                                                                                                | Sweep                    | o 10.00 ms (           | Span (<br>(10001                               |
| Center 2.<br>Res BW                                      | 1.0 MHz                      | x                    | Y                 | 0 MHz                                           | FUNCTION WIDTH                                                                                                 |                          | 0 10.00 ms (           | Span (<br>10001                                |
| enter 2.<br>es BW 1                                      | 1.0 MHz                      |                      | Υ<br>(Δ) -0.09 dB | 0 MHz                                           |                                                                                                                |                          | o 10.00 ms (           | Span (<br>10001                                |
| Center 2.<br>Res BW 1<br>1 A2<br>2 F<br>3<br>4<br>5<br>6 | 1.0 MHz<br>RC SCL<br>1 t (Δ) | ×<br>1.636 ms        | Υ<br>(Δ) -0.09 dE | 0 MHz                                           |                                                                                                                |                          | o 10.00 ms (           | Span (<br>10001                                |
| Center 2.<br>Res BW                                      | 1.0 MHz<br>RC SCL<br>1 t (Δ) | ×<br>1.636 ms        | Υ<br>(Δ) -0.09 dE | 0 MHz                                           |                                                                                                                |                          | o 10.00 ms (           | Span (<br>10001                                |
| Res BW /                                                 | 1.0 MHz<br>RC SCL<br>1 t (Δ) | ×<br>1.636 ms        | Υ<br>(Δ) -0.09 dE | 0 MHz                                           |                                                                                                                |                          | o 10.00 ms (           | Span (<br>(10001                               |





# GFSK DH5

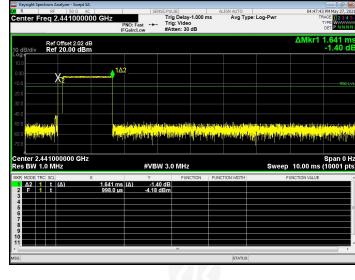


# π/4-DQPSK DH1

|                                                      | trum Analyzer - Swep<br>RF 50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | SENSE:PU           |                  |                |            | IN AUTO  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | 04.47.1                  | 9 PM May 27             |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|------------------|----------------|------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|-------------------------|
| R<br>enter Fre                                       | eq 2.441000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PNO: Fast •<br>FGain:Low | Tri                |                  | 1.000 ms<br>dB |            |          | be: Log-Pwi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                      |                          | TYPE WWW<br>DET PNN     |
| ) dB/div                                             | Ref Offset 2.02<br>Ref 20.00 di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB<br>Bm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                    |                  |                |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | AMkr1                    | 389.0<br>6.26           |
| 0.0                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |                  |                |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                          |                         |
| .0                                                   | 1Δ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |                  |                |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                          | TRI                     |
| i.o<br>.o                                            | -X <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |                  |                |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                          |                         |
| 1.0<br>1.0 <b></b>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                    |                  |                |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                          |                         |
| Internal in Station in                               | and in the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | die platike in the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | States and the states    | No. of Contraction | ALC: NOT BEEN IN | A DEPARTMENT   | THE STREET | A DECK   | ALC: NOT A REAL PROPERTY OF A REAL PROPERTY | of the second second   | CONTRACTOR OF THE OWNER. | 1000 1000               |
|                                                      | the state of the s | and the second states of the s | <mark>Angged peak</mark> | a Physics          | hour             |                |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.000                 | whenterphin              | pr <sup>at</sup> tinit' |
| enter 2.44                                           | 41000000 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                    |                  |                |            |          | KAP HATTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i <mark>har-pit</mark> | ahaa kaliitta            | Span                    |
| es BW 1.0                                            | 0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #\                       | /BW 3.0            | 0 MHz            | NA (AN INI)    |            | nuliya n | KAP HATTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /eep                   | 10.00 ms                 | Span                    |
| enter 2.44<br>es BW 1.0<br>R MODE TRC<br>A2 1<br>F 1 | 0 MHz<br>scl<br>t (Δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #\<br>(A)                | /BW 3.0            | 0 MHz            | NA (AN INI)    |            |          | KAP HATTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /eep                   | ahaa kaliitta            | Span                    |
| enter 2.44<br>es BW 1.0<br>R MODE TRC<br>Δ2 1<br>F 1 | 0 MHz<br>scl<br>t (Δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hz<br>389.0 us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #\<br>(A)                | /BW 3.0            | 0 MHz            | NA (AN INI)    |            | nuliya n | KAP HATTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /eep                   | 10.00 ms                 | Span (                  |
| enter 2.44<br>es BW 1.0<br>A2 1<br>A2 1<br>F 1       | 0 MHz<br>scl<br>t (Δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hz<br>389.0 us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #\<br>(A)                | /BW 3.0            | 0 MHz            | NA (AN INI)    |            | nuliya n | KAP HATTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /eep                   | 10.00 ms                 | Span                    |
| enter 2.44<br>es BW 1.0<br>R MODE TRC<br>A2 1<br>F 1 | 0 MHz<br>scl<br>t (Δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hz<br>389.0 us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #\<br>(A)                | /BW 3.0            | 0 MHz            | NA (AN INI)    |            | nuliya n | KAP HATTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /eep                   | 10.00 ms                 | Span                    |



Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China


**\*** +86-400-000-9970







# π/4-DQPSK DH3



#### π/4-DQPSK DH5

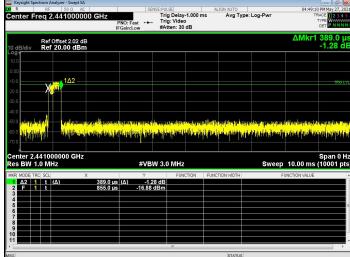
| Keysight Spectrum Analyzer - !     |                       |                           |                                            |                                                                                                                 |                      |                    | 0                        |
|------------------------------------|-----------------------|---------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------|
| R RF 50                            |                       | SENSE:PUI                 | u Delay-1.000 ms                           | ALIGN AUTO                                                                                                      | Dura Dura            | 04:48:1            | PM May 27,<br>RACE 1 2 3 |
| enter Freq 2.4410                  |                       | NO: Fast Tri              | g Delay-1.000 m<br>g: Video<br>tten: 30 dB | s Avglyp                                                                                                        | e: Log-Pwr           | I                  |                          |
| Ref Offset 2<br>dB/div Ref 20.00   | 2.02 dB<br>) dBm      |                           |                                            |                                                                                                                 |                      | ΔMkr1              | 2.889 i<br>4.58          |
| 0.0                                |                       |                           |                                            |                                                                                                                 |                      |                    |                          |
|                                    |                       | 1∆2                       |                                            |                                                                                                                 |                      |                    |                          |
|                                    | ninene, iheene helend |                           |                                            |                                                                                                                 |                      |                    | TRK                      |
| 0.0                                |                       |                           |                                            |                                                                                                                 |                      |                    |                          |
| 0.0<br>0.0 octobrance.co           |                       |                           |                                            | ten formusionaries.                                                                                             | and dealers at a tar | - tikeline and the | the state                |
|                                    |                       |                           | ana sanganan na sang                       | and the second secon |                      |                    |                          |
|                                    |                       |                           |                                            |                                                                                                                 |                      |                    |                          |
| enter 2.441000000<br>es BW 1.0 MHz | GHz                   | #VBW 3.0                  | 0 MHz                                      |                                                                                                                 | Sweep                | 10.00 ms           | Span 0<br>(10001         |
| R MODE TRC SCL                     | x                     | Y                         | FUNCTION                                   | FUNCTION WIDTH                                                                                                  | F                    | UNCTION VALUE      |                          |
| 1 Δ2 1 t (Δ)<br>2 F 1 t            | 2.889 ms<br>854.0 us  | (Δ) 4.58 dB<br>-17.06 dBm |                                            |                                                                                                                 |                      |                    |                          |
| 3                                  |                       |                           |                                            |                                                                                                                 |                      |                    |                          |
| 5                                  |                       |                           |                                            |                                                                                                                 |                      |                    |                          |
| 7                                  |                       |                           |                                            |                                                                                                                 |                      |                    |                          |
| 9                                  |                       |                           |                                            |                                                                                                                 |                      |                    |                          |
| 0                                  |                       |                           |                                            |                                                                                                                 |                      |                    |                          |
|                                    |                       |                           |                                            |                                                                                                                 |                      |                    |                          |
|                                    |                       |                           | m.                                         |                                                                                                                 |                      |                    |                          |


















### 8-DPSK DH1



# 8-DPSK DH3

| R RF 50 Ω A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                             |              |                    |                        |                                 |                                          | 0                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------|--------------|--------------------|------------------------|---------------------------------|------------------------------------------|-----------------------------------------------------|
| enter Freq 2.4410000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00 GHz        | NO: Fast                                                    |              | /-1.000 ms<br>o    | ALIGN AUTO<br>Avg Type | : Log-Pwr                       | т                                        | 0 PM May 27,<br>RACE 1 2 3<br>TYPE WWW<br>DET P N N |
| Ref Offset 2.02 d<br>0 dB/div Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B<br>n        |                                                             |              |                    |                        |                                 | ΔMkr1                                    | 1.640<br>0.17                                       |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ▲ 1∆3         | 2                                                           |              |                    |                        |                                 |                                          |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                             |              |                    |                        |                                 |                                          | TRX                                                 |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                             |              |                    |                        |                                 |                                          |                                                     |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                             |              |                    |                        |                                 |                                          |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | n dan kalangan kalan<br><mark>Producti yang kalangan</mark> |              |                    |                        | aleren palanti<br>Nata na dat D | i dentro entrett<br>17. http://www.stade | an Criter an<br>An Criter and An                    |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | րո            | l da celle de el l                                          | in ala i     | delle successioner | In to other fa         | a da da da se od                | ada nada da                              | . As aller                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                             |              |                    |                        |                                 |                                          |                                                     |
| enter 2.441000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | #VB                                                         | W 3.0 MH;    |                    |                        | Sweep                           | 10.00 ms                                 | Span 0<br>(10001                                    |
| enter 2.441000000 GHz<br>es BW 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x             | Y                                                           | FUI          |                    | CTION WIDTH            |                                 | 10.00 ms                                 | Span 0<br>(10001                                    |
| enter 2.441000000 GHz<br>es BW 1.0 MHz<br>KR MODE TRC  SCL <br>1 A2 1 t (A)<br>2 F 1 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | γ<br>(Δ) 0.1                                                |              |                    | CTION WIDTH            |                                 |                                          | Span 0<br>(10001                                    |
| enter 2.441000000 GHz<br>es BW 1.0 MHz<br>KR MODE TRC; SCL<br>1 A2 1 t (A)<br>2 F 1 t<br>3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×<br>1.640 ms | γ<br>(Δ) 0.1                                                | FUI<br>17 dB |                    | CTION WIDTH            |                                 |                                          | Span 0<br>(10001                                    |
| enter 2.441000000 GHz<br>es BW 1.0 MHz<br>RF MODE TRCI SCL<br>2 F 1 t (Δ)<br>2 F 1 t<br>4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×<br>1.640 ms | γ<br>(Δ) 0.1                                                | FUI<br>17 dB |                    | CTION WIDTH            |                                 |                                          | Span 0<br>(10001                                    |
| RF MODE TRC SCL<br>2 F 1 t (A)<br>2 F 1 t (A)<br>3 4 5 5 6 6 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×<br>1.640 ms | γ<br>(Δ) 0.1                                                | FUI<br>17 dB |                    | CTION WIDTH            |                                 |                                          | Span 0<br>(10001                                    |
| enter 2.441000000 GHz<br>es BW 1.0 MHz<br>1 Δ2 1 t (Δ)<br>2 F 1 t<br>4 5<br>5 6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×<br>1.640 ms | γ<br>(Δ) 0.1                                                | FUI<br>17 dB |                    | CTION WIDTH            |                                 |                                          | Span 0<br>(10001                                    |
| Image: Second control of the second control | ×<br>1.640 ms | γ<br>(Δ) 0.1                                                | FUI<br>17 dB |                    | CTION WIDTH            |                                 |                                          | Span 0<br>(10001                                    |





















#### 12. Antenna Requirement

| Standard requirement: | FCC Part15 C Section 15.203 /247(c) |
|-----------------------|-------------------------------------|
| 4E 000 menuinement    |                                     |

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### EUT Antenna:

The antenna is PCB antenna, the best case gain of the antennas is 0dBi, reference to the appendix II for details





R

Reference to the **appendix I** for details.

# 14. EUT Constructional Details

Reference to the appendix II for details.

**\*\*\*\*\* END OF REPORT \*\*\*\*** 



