

FCC REPORT

Report Reference No.....: CHTEW21080065

Report Verification

Project No...... SHT2106054104EW

FCC ID.....: 2A2II-ITALK660

Applicant's name.....: iTALKPTT Corporation

1817, USA

Test item description: PoC Radio

Trade MarkiTALKPTT

Model/Type reference..... iTALK-660

Listed Model(s) iTALK-630, iTALK-600

Standard: FCC CFR Title 47 Part 2

FCC CFR Title 47 Part 90

Date of receipt of test sample...... Jun. 25, 2021

Date of testing...... Jun. 26, 2021- Aug. 05, 2021

Date of issue...... Aug. 06, 2021

Result...... Pass

Compiled by

(position+printedname+signature)...: File administrators Silvia Li

Silvia Li

Supervised by

(position+printedname+signature)....: Project Engineer Aaron Fang

Aaron.Fang

Approved by

(position+printedname+signature)....: Manager Hans Hu

Homsty

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW21080065 Page: 2 of 24 Issued: 2021-08-06

Contents

<u>l.</u>	IEST STANDARDS AND REPORT VERSION	ა
1.1.	Applicable Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
_		_
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.1. 3.2.	Product Description	5
3.2. 3.3.	Operation state	6
3.4.	EUT operation mode	6
3.5.	EUT configuration	6
3.6.	Modifications	6
0.0.	Modifications	v
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Testing Laboratory Information	7
4.2.	Equipments Used during the Test	8
4.3.	Environmental conditions	9
4.4.	Statement of the measurement uncertainty	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Conducted Output Power	10
5.2.	Peak-to-Average Ratio	11
5.3.	99% Occupied Bandwidth & 26 dB Bandwidth	12
5.4.	Band Edge	13
5.5.	Conducted Spurious Emissions	14
5.6.	Frequency stability VS Temperature measurement	15
5.7.	Frequency stability VS Voltage measurement	16
5.8.	ERP	17
5.9.	Radiated Spurious Emission	20
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	24
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	24
		
8.	APPENDIX REPORT	24

Report No.: CHTEW21080065 Page: 3 of 24 Issued: 2021-08-06

1. TEST STANDARDS AND REPORT VERSION

1.1. Applicable Standards

The tests were performed according to following standards:

FCC Rules Part 2: FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS

FCC Rules Part 90: PRIVATE LAND MOBILE RADIO SERVICES.

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2021-08-26	Original

Report No.: CHTEW21080065 Page: 4 of 24 Issued: 2021-08-06

2. Test Description

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Output Power	Part 2.1046 Part 90.635(b)	Pass	Jiongsheng Feng
Peak-to-Average Ratio	-	Pass	Jiongsheng Feng
99% Occupied Bandwidth & 26 dB Bandwidth	Part 2.1049	Pass	Jiongsheng Feng
Band Edge	Part 2.1051 Part 90.691	Pass	Jiongsheng Feng
Conducted Spurious Emissions	Part 2.1051 Part 90.691	Pass	Jiongsheng Feng
Frequency stability VS Temperature	Part 2.1055(a)(1)(b) Part 90.213	Pass	Jiongsheng Feng
Frequency stability VS Voltage	Part 2.1055(d)(1)(2) Part 90.213	Pass	Jiongsheng Feng
ERP	Part 22.913(a) Part 90.635(b)	Pass	Pan Xie
Radiated Spurious Emissions	Part 2.1053 Part 90.691	Pass	Pan Xie

Note: The measurement uncertainty is not included in the test result.

Report No.: CHTEW21080065 Page: 5 of 24 Issued: 2021-08-06

3. **SUMMARY**

3.1. Client Information

Applicant:	iTALKPTT Corporation
Address:	6905 S 1300 E #450, Cottonwood Heights, UT 84047-1817, USA
Manufacturer:	Shenzhen VTU Systems Co., Ltd.
Address:	6/F, Building A, Ganghongji High-tech Intelligent Industrial Park, No. 1008, Songbai Road, Nanshan District, Shenzhen 518055, P.R. China

3.2. Product Description

Name of EUT:	PoC Radio
Trade Mark:	iTALKPTT
Model No.:	iTALK-660
Listed Model(s):	iTALK-630, iTALK-600
SIM Information:	Support Two SIM Card
Power supply:	DC 3.8V
Adapter information:	Model:JZB110-050200WU Input: AC100-240V, 50/60Hz, 0.35A Output: 5.0Vdc, 2.0A 10.0W
Hardware version:	V2.0
Software version:	VTU_VTUBP01.005
4G	
Operation Band:	☑ FDD Band 26
Transmit frequency:	814.7 MHz – 823.3 MHz
Receive frequency:	859.7 MHz – 868.3 MHz
Channel bandwidth:	1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz
Power Class:	Class 3
Modulation type:	QPSK, 16QAM
Antenna type	PIFA Antenna
Antenna Gain	0.5dBi

Report No.: CHTEW21080065 Page: 6 of 24 Issued: 2021-08-06

3.3. Operation state

Test frequency list

TDD Band 26						
	Test Frequency	Banwidth[MHz]	N _{UL}	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
	ID					
		1.4	26997	814.7	8697	859.7
		3	26705	815.5	8705	860.5
	Low Range	5	26715	816.5	8715	861.5
		10	-	-	-	-
		15	26765	821.5		
	Mid Range	1.4/3/5/10	26740	819	8740	864
		1.4	26783	823.3	8783	868.3
	High Dange	3	26775	822.5	8775	867.5
	High Range	5	26765	821.5	8765	866.5
		10	-	-	-	ı

3.4. EUT operation mode

For RF test items

The EUT has been tested under typical operating condition. Testing was performed by configuring EUT to maximum output power status.

Toot Itomo	Dond		Bandwidth (MHz)				Modulation		RB#		
Test Items	Band	1.4	3	5	10	15	QPSK	16QAM	1	Half	Full
Conducted Output Power	26	0	0	0	0	0	0	0	0	0	0
Peak-to-Average Ratio	26	0	0	0	0	0	0	0	0	-	0
99% Occupied Bandwidth & 26 dB Bandwidth	26	0	0	0	0	0	0	0	-	-	0
Band Edge	26	0	0	0	0	0	0	0	0	-	0
Conducted Spurious Emission	26	0	0	0	0	0	0	0	0	-	-
Frequency Stability	26	0	0	0	0	0	0	0	-	-	0
ERP and EIRP	26	0	0	0	0	0	0	0	0	-	-
Radiated Spurious Emission	26	0	0	0	0	0	0	0	0	-	-
Remark	 The mark "o"means that this configuration is chosenfor testing The mark "-"means that this bandwidth is not test. 										

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

 - su 	pplied	by tl	ne la	ab
--------------------------	--------	-------	-------	----

0		Manufacturer:	/
	/	Model No.:	/
	I	Manufacturer:	/
0	/	Model No.:	/

3.6. Modifications

No modifications were implemented to meet testing criteria.

Report No.: CHTEW21080065 Page: 7 of 24 Issued: 2021-08-06

4. TEST ENVIRONMENT

4.1. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.				
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China				
Connect information:	Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn				
Qualifications	Туре	Accreditation Number			
Qualifications	FCC	762235			

Report No.: CHTEW21080065 Page: 8 of 24 Issued: 2021-08-06

4.2. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2020/10/19	2021/10/18
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2020/10/19	2021/10/18
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2020/10/19	2021/10/18
•	Radio communication tester	R&S	HTWE0287	CMW500	137688-Lv	2020/10/19	2021/10/18
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

•	Radiated Spu	rious Emission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2020/10/20	2021/10/19
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2022/04/05
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/11
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2022/04/05
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2020/11/13	2021/11/12
•	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2021/03/05	2022/03/04
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 02	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 03	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0120- 04	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0121- 01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25
•	EMI Test Software	Audix	N/A	E3	N/A	N/A	N/A

•	Auxiliary Equipment								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2020/10/21	2021/10/20		
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A		

Report No.: CHTEW21080065 Page: 9 of 24 Issued: 2021-08-06

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	VN=Nominal Voltage	DC 3.80V			
Voltage	VL=Lower Voltage	DC 3.60V			
	VH=Higher Voltage	DC 4.35V			
Tomporoturo	TN=Normal Temperature	25 °C			
Temperature	Extreme Temperature	From -30° to + 50° centigrade			
Humidity	30~60 %				
Air Pressure	950-1050 hPa				

4.4. Statement of the measurement uncertainty

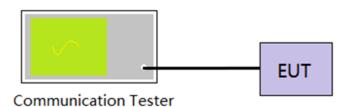
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Transmitter power Radiated	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Radiated spurious emissions	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Occupied Bandwidth	15Hz for <1GHz 70Hz for >1GHz	(1)
Frequency error	15Hz for <1GHz 70Hz for >1GHz	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW21080065 Page: 10 of 24 Issued: 2021-08-06


5. TEST CONDITIONS AND RESULTS

5.1. Conducted Output Power

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

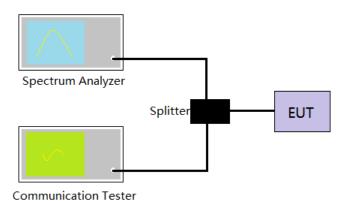
- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix A on the section 8 appendix report


Report No.: CHTEW21080065 Page: 11 of 24 Issued: 2021-08-06

5.2. Peak-to-Average Ratio

<u>LIMIT</u>

13dB

TEST CONFIGURATION

TEST PROCEDURE

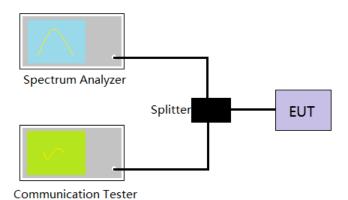
- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed.
 - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
 - ii. For bursttransmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that issynced with an incoming pulse and the measurement interval is set to less than the durationof the "on time" of one burst to ensure that energy is only captured during a time in whichthetransmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix B on the section 8 appendix report


Report No.: CHTEW21080065 Page: 12 of 24 Issued: 2021-08-06

5.3. 99% Occupied Bandwidth & 26 dB Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Center Frequency= Carrier frequency, RBW=1% to 5% of the anticipated OBW, VBW= 3 * RBW, Detector=Peak,

Trace maximum hold.

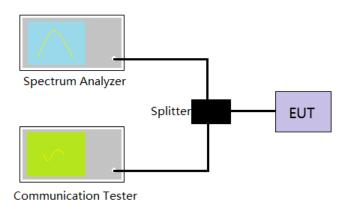
4. Record the value of 99% Occupied bandwidth and 26dB bandwidth.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix C on the section 8 appendix report


Report No.: CHTEW21080065 Page: 13 of 24 Issued: 2021-08-06

5.4. Band Edge

LIMIT

- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log₁₀(f/6.1) decibels or 50 + 10 Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

TEST CONFIGURATION

TEST PROCEDURE

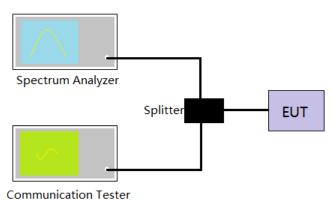
- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- Set EUT in maximum power output.
- 3. The band edges of low and high channels were measured.
- Spectrum analyzer setting as follow:
 RBW= no less than 1% of the OBW, VBW =3 * RBW, Sweep time= Auto
- 5. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix D on the section 8 appendix report


Report No.: CHTEW21080065 Page: 14 of 24 Issued: 2021-08-06

5.5. Conducted Spurious Emissions

LIMIT

- (3) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log₁₀(f/6.1) decibels or 50 + 10 Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (4) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

TEST CONFIGURATION

Communication rester

TEST PROCEDURE

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter
- 2. Set EUT in maximum power output.
- 3. Spectrum analyzer setting as follow:

Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto Scan frequency range up to 10th harmonic.

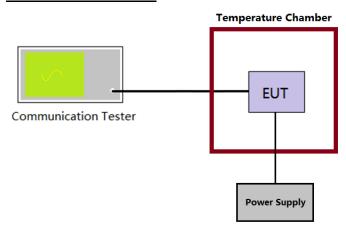
4. Record the test plot.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix E on the section 8 appendix report


Report No.: CHTEW21080065 Page: 15 of 24 Issued: 2021-08-06

5.6. Frequency stability VS Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

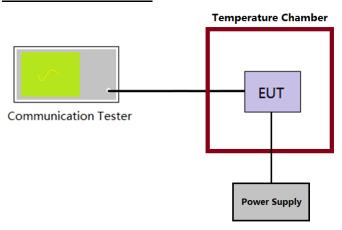
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to −30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 5. Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW21080065 Page: 16 of 24 Issued: 2021-08-06

5.7. Frequency stability VS Voltage measurement

<u>LIMIT</u>

2.5ppm

TEST CONFIGURATION

TEST PROCEDURE

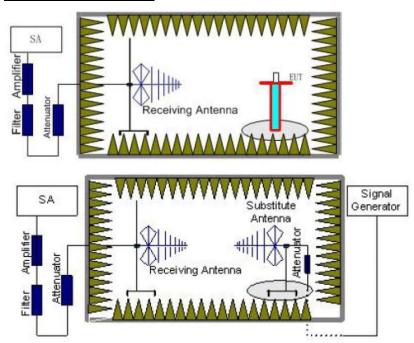
- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C
- 4. The power supply voltage to the EUT was varied ±15% of the nominal value measured at the input to the EUT
- 5. Record the maximum frequency change.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Refer to appendix F on the section 8 appendix report


Report No.: CHTEW21080065 Page: 17 of 24 Issued: 2021-08-06

5.8. ERP

LIMIT

LTE Band 26: 100W(50.00dBm) ERP

TEST CONFIGURATION

TEST PROCEDURE

- Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.

Report No.: CHTEW21080065 Page: 18 of 24 Issued: 2021-08-06

Set-up the substitution measurement with the reference point of the substitution antenna located as near
as possible to where the center of the EUT radiating element was located during the initial EUT
measurement.

- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) -2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: CHTEW21080065 Page: 19 of 24 Issued: 2021-08-06

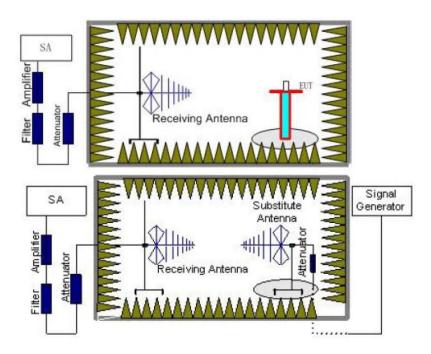
LTE Band 26-1.4MHz							
Modulation	Channel	ERP (dBm)		Limit (dDay)	Danill		
iviodulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	21.38	18.59		PASS		
QPSK	Mid	22.38	19.49				
	High	20.93	18.51				
	Low	21.25	18.52	- - - -			
16QAM	Mid	22.28	19.65		PASS		
	High	20.82	18.39				

LTE Band 26-3MHz							
Modulation	Channel	ERP	ERP (dBm)		Dogult		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
	Low	21.38	18.62		PASS		
QPSK	Mid	22.48	19.42	50.00			
	High	21.06	18.61				
	Low	21.16	18.41	<50.00			
16QAM	Mid	22.11	19.46	1	PASS		
	High	20.68	18.37				

LTE Band 26-5MHz							
Modulation	Channel	ERP	(dBm)	Limit (dPm)	Result		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)			
	Low	21.30	18.51		PASS		
QPSK	Mid	22.27	19.53	50.00			
	High	20.93	18.76				
	Low	21.37	18.79	<50.00			
16QAM	Mid	22.21	19.40		PASS		
	High	20.67	18.45				

LTE Band 26-10MHz							
Modulation	Channel	ERP (dBm)		Limit (dBm)	Result		
Modulation	Chame	Vertical	Horizontal	Lilliit (UBIII)	Nesuit		
QPSK	Mid	22.44	19.57	-E0 00	PASS		
16QAM	Mid	22.46	19.68	<50.00	PASS		

LTE Band 26-15MHz							
Madulation	Channel	ERP (dBm)		Limit (dPm)	Daguit		
Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result		
QPSK	Low	21.23	18.33	<50.00	PASS		
16QAM	Low	21.33	18.59		PASS		


Report No.: CHTEW21080065 Page: 20 of 24 Issued: 2021-08-06

5.9. Radiated Spurious Emission

LIMIT

- (5) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log₁₀(f/6.1) decibels or 50 + 10 Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (6) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.

Report No.: CHTEW21080065 Page: 21 of 24 Issued: 2021-08-06

Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.

- c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
- d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
- e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near
 as possible to where the center of the EUT radiating element was located during the initial EUT
 measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note: only show the worse case for QPSK modulation.

Report No.: CHTEW21080065 Page: 22 of 24 Issued: 2021-08-06

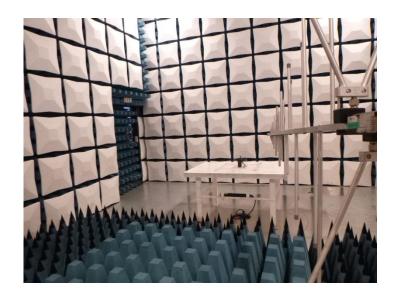
LTE Band 26-1.4MHz							
Channal	Frequency	Spurious	Emission	Limit (dDm)	D !!		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	1629.4	Vertical	-29.76				
	2444.1	V	-38.34	<-13.00	Pass		
Low	3258.8	V	-40.25				
Low	1629.4	Horizontal	-34.95				
	2444.1	Н	-41.80	<-13.00	Pass		
	3258.8	Н	-41.63				
	1638	Vertical	-29.43		Pass		
	2457	V	-37.59	<-13.00			
Mid	3276	V	-39.66				
iviid	1638	Horizontal	-34.49		Pass		
	2457	Н	-40.83	<-13.00			
	3276	Н	-40.60				
	1646.6	Vertical	-28.95				
	2469.9	V	-36.64	<-13.00	Pass		
High	3293.2	V	-38.87				
High	1646.6	Horizontal	-34.04				
	2469.9	Н	-39.19	<-13.00	Pass		
	3293.2	Н	-38.98				

		LTE Ban	d 26-3MHz		
Channel	Frequency	Spurious	Emission	Limit (dDm)	D !!
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	1631	Vertical	-28.54		
	2446.5	V	-36.10	<-13.00	Pass
	3262	V	-38.50		
Low	1631	Horizontal	-33.80		
	2446.5	Н	-38.60	<-13.00	Pass
	3262	Н	-38.48		
	1638	Vertical	-29.20	<-13.00	Pass
	2457	V	-37.07		
Mid	3276	V	-39.24		
IVIIU	1638	Horizontal	-34.17		Pass
	2457	Н	-40.15	<-13.00	
	3276	Н	-39.88		
	1645	Vertical	-28.86		
	2467.5	V	-36.40	<-13.00	Pass
Lliab	3290	V	-38.68		
High	1645	Horizontal	-33.86		
	2467.5	Н	-39.00	<-13.00	Pass
	3290	Н	-38.74		l

Report No.: CHTEW21080065 Page: 23 of 24 Issued: 2021-08-06

LTE Band 26-5MHz							
Ob a see al	Frequency	Spurious I	Emission	(15			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
	1633	Vertical	-28.04				
	2449.5	V	-35.32	<-13.00	Pass		
Low	3266	V	-37.94				
LOW	1633	Horizontal	-33.38				
	2449.5	Н	-37.82	<-13.00	Pass		
	3302	Н	-37.73				
	1638	Vertical	-27.58	<-13.00	l		
	2457	V	-34.27		Pass		
Mid	3276	V	-37.10				
IVIIG	1638	Horizontal	-32.73				
	2457	Н	-36.45	<-13.00	Pass		
	3276	Н	-36.28				
	1643	Vertical	-26.91				
	2464.5	V	-32.93	<-13.00	Pass		
∐igh	3286	V	-35.98				
High	1643	Horizontal	-32.10				
	2464.5	Н	-35.26	<-13.00	Pass		
	3286	Н	-35.32				

LTE Band 26-10MHz							
Channel	Frequency	Spurious Emission		Limit (dBm)	Danielt		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dbin)	Result		
	1638	Vertical	-25.92	<-13.00	Pass		
	2457	V	-31.23				
Mid	3276	V	-34.50				
IVIIG	1638	Horizontal	-31.49				
	2457	Н	-33.84	<-13.00	Pass		
	3276	Н	-34.20				


LTE Band 26-15MHz					
Channel	Frequency (MHz)	Spurious Emission		Limit (dBm)	Result
		Polarization	Level (dBm)	LIIIII (dbiii)	Nesull
Low	1643	Vertical	-24.75	<-13.00	Pass
	2464.5	V	-29.91		
	3286	V	-33.12		
	1643	Horizontal	-30.48	<-13.00	Pass
	2464.5	Н	-32.60		
	3286	Н	-32.98		

Remark:

- Remark"---" means that the emission level is too low to be measured The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Report No.: CHTEW21080065 Page: 24 of 24 Issued: 2021-08-06

6. TEST SETUP PHOTOS OF THE EUT

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Refere to the test report No.: CHTEW21080062

8. APPENDIX REPORT