

TEST REPORT

Applicant Name :	Xiamen iprt Technology Co., Ltd
Address :	Fifth Floor, No.101, Huli Industrial Park, Meixi Road, Tong'an District,
	Xiamen City, China
Report Number :	XMTN3211231-68547E-00B
FCC ID:	2A2HA-JD-468BT
Test Standard (s)	
FCC PART 15.247	
Sample Description	
Sample Description Product:	Thermal Label Printer
•	Thermal Label Printer BY-244
Product:	
Product: Tested Model:	BY-244
Product: Tested Model: Date Received:	BY-244 2021-12-31

Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Approved By:

Ting Lü EMC Engineer

R6bort li

Robert Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk % ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 12: 2021-11-09

Page 1 of 39

FCC-BLE

Shenzhen Accurate Technology Co., Ltd. Report No.: XMTN3211231-68547E-00B

TABLE OF CONTENTS

GENERAL INFORMATION		4
	MENT UNDER TEST (EUT)	
	N	
	TION	
SUPPORT EQUIPMENT LIST AND DE	TAILS	6
SUMMARY OF TEST RESULTS		9
TEST EQUIPMENT LIST		10
FCC §15.247 (i) & §2.1091- MAXIM	IUM PERMISSIBLE EXPOSURE (MPE)	11
FCC §15.203 - ANTENNA REQUI	REMENT	12
APPLICABLE STANDARD		
ANTENNA CONNECTOR CONSTRUCT	ΓΙΟΝ	12
FCC §15.207 (a) - AC LINE COND	UCTED EMISSIONS	13
FCC §15.209, §15.205 & §15.247(d)	- SPURIOUS EMISSIONS	
APPLICABLE STANDARD		17
	ANALYZER SETUP	
	ON BANDWIDTH & OCCUPIED BANDWIDTH	
APPLICABLE STANDARD		
FCC §15.247(b) (3) - MAXIMUM (CONDUCTED OUTPUT POWER	25
APPLICABLE STANDARD		25
TEST DATA		25
FCC §15.247(d) – 100 kHz BANDW	IDTH OF FREQUENCY BAND EDGE	26
	RAL DENSITY	
Version 12: 2021 11:00	Page 2 of 30	ECC BIE

Report No.: XMTN3211231-68547E-00B

TEST PROCEDURE	
Test Data	
APPENDIX BLE	
APPENDIX A: 6DB EMISSION BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: POWER SPECTRAL DENSITY	
APPENDIX E: BAND EDGE MEASUREMENTS	
Appendix F: Duty Cycle	

GENERAL INFORMATION

Product	Thermal Label Printer
Tested Model	BY-244
Frequency Range	BLE: 2402-2480MHz
Maximum Conducted Peak Output Power	BLE: -2.44dBm
Modulation Technique	BLE: GFSK
Antenna Specification*	Internal Antenna: 2dBi (provided by the applicant)
Voltage Range	DC 24V from adapter
Sample serial number	XMTN3211231-68547E-RF -S1(Assigned by ATC)
Sample/EUT Status	Good condition
Adapter Information	Model: GM53-240200-F Input: 100-240V~, 50/60Hz, 2A Output: DC 24V, 2A

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		5%
RF Fre	equency	$0.082^{*10^{-7}}$
RF output po	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.66dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
	26.5GHz - 40GHz	4.72dB
Temp	erature	1 °C
Hun	nidity	6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Equipment Modifications

No modification was made to the EUT tested.

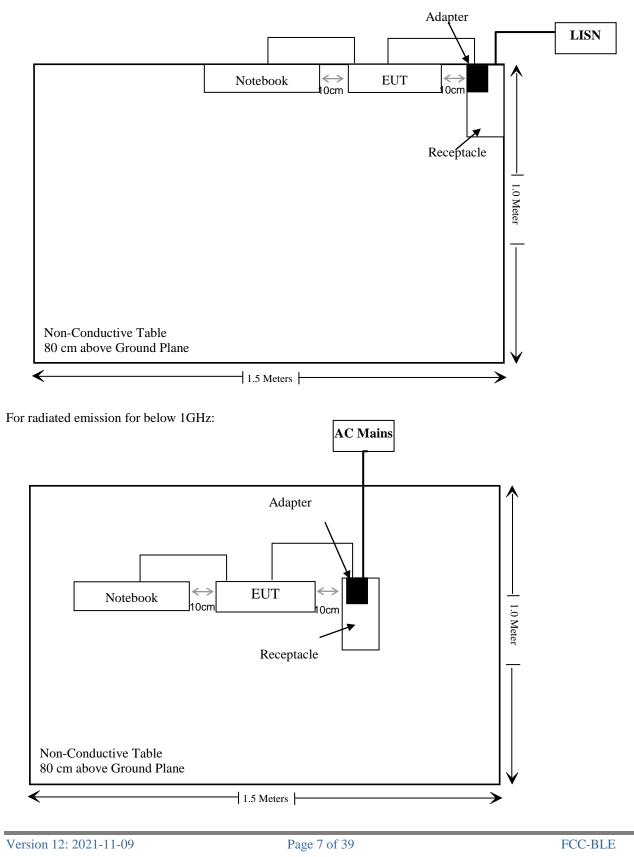
EUT Exercise Software

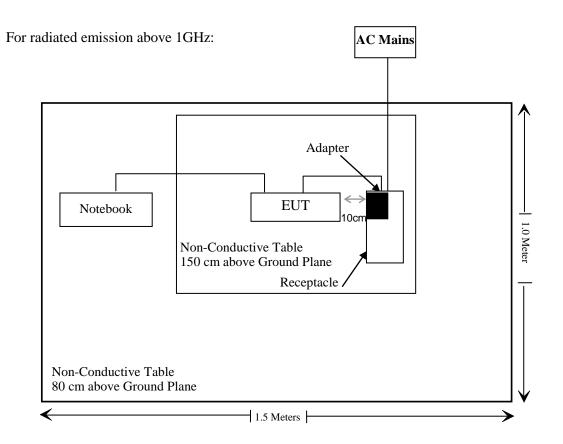
Software "BT98X FCC Tool V1.2.exe"* was used during testing and the power level was 0*.

Duty cycle

Test Result: Compliant. Please refer to the Appendix BLE.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	
Lenovo	Notebook	T430	Unknown	


External I/O Cable

Cable Description	Length (m)	From Port	То
Unshielded Detachable USB Cable	1.45	Notebook	EUT
Unshielded Un-Detachable DC Input Cable	1.13	Adapter	EUT

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (I), §1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density Comp	

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Conducted Emissions Test							
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12		
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12		
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12		
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13		
	Conducted E	mission Test Soft	tware: e3 19821b (V9)	·		
		Radiated Emissi	ons Test				
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12		
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08		
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08		
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13		
	Radiated En	nission Test Softw	ware: e3 19821b (V	/9)			
		RF Conducted	d Test				
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12		
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12		
WEINSCHEL	10dB Attenuator	5324	AU 3842	Each	time		
Unknown	RF Coaxial Cable	No.32	RF-02	Each time			

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Version 12: 2021-11-09

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	*(180/f ²)	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 =$ power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

For worst case:

Mode	FrequencyIodeRange				Tune-up Output Power		Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	$(\mathrm{mW/cm}^2)$	(mW/cm ²)	
BLE	2402-2480	2	1.58	-2.0	0.63	20	0.000199	1.0	

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

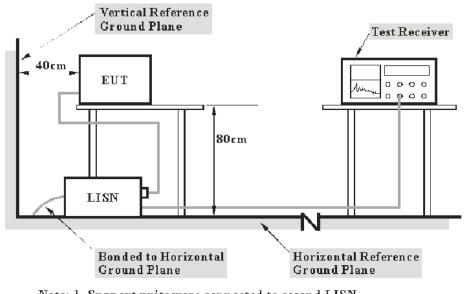
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one antenna arrangement which was permanently attached and the antenna gain is 2dBi, fulfill the requirement of this section. Please refer to the product photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the device was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

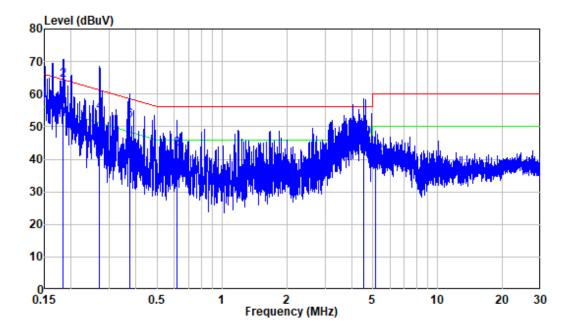
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

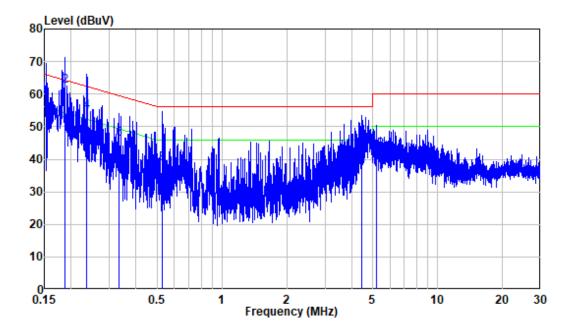
Test Data


Environmental Conditions

Temperature:	23 °C		
Relative Humidity:	58 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Nick Fang on 2022-04-03.

EUT operation mode: Transmitting (worst case is BLE 1M, high channel)


AC 120V/60 Hz, Line

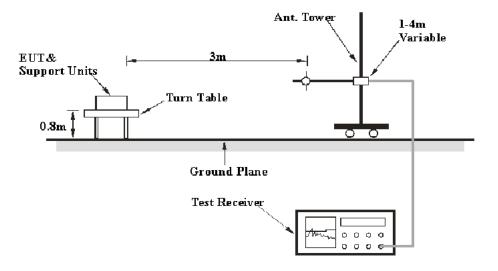
Site :	Shielding Room
Condition:	Line
Test Mode:	Transmitting
Model :	BY-244
Power :	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.184	9.80	42.40	52.20	54.31	-2.11	Average
2	0.184	9.80	54.43	64.23	64.31	-0.08	QP
3	0.271	9.80	32.85	42.65	51.09	-8.44	Average
4	0.271	9.80	44.59	54.39	61.09	-6.70	QP
5	0.374	9.80	33.14	42.94	48.41	-5.47	Average
6	0.374	9.80	42.23	52.03	58.41	-6.38	QP
7	0.616	9.81	23.80	33.61	46.00	-12.39	Average
8	0.616	9.81	33.41	43.22	56.00	-12.78	QP
9	4.561	9.85	31.36	41.21	46.00	-4.79	Average
10	4.561	9.85	36.64	46.49	56.00	-9.51	QP
11	5.142	9.85	25.99	35.84	50.00	-14.16	Average
12	5.142	9.85	31.16	41.01	60.00	-18.99	QP

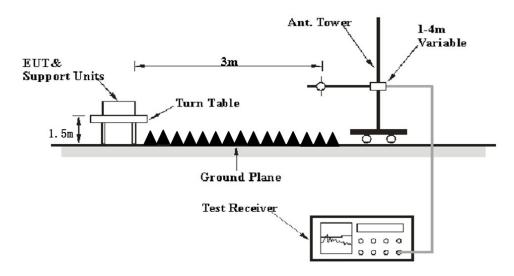
AC 120V/60 Hz, Neutral

Site :	Shielding Room
Condition:	Neutral
Test Mode:	Transmitting
Model :	BY-244
Power :	AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.186	9.80	40.43	50.23	54.20	-3.97	Average
2	0.186	9.80	52.56	62.36	64.20	-1.84	QP
3	0.237	9.80	33.34	43.14	52.22	-9.08	Average
4	0.237	9.80	44.99	54.79	62.22	-7.43	QP
5	0.333	9.80	26.32	36.12	49.39	-13.27	Average
6	0.333	9.80	36.50	46.30	59.39	-13.09	QP
7	0.530	9.81	19.00	28.81	46.00	-17.19	Average
8	0.530	9.81	28.85	38.66	56.00	-17.34	QP
9	4.430	9.86	27.44	37.30	46.00	-8.70	Average
10	4.430	9.86	32.98	42.84	56.00	-13.16	QP
11	5.208	9.90	27.63	37.53	50.00	-12.47	Average
12	5.208	9.90	33.06	42.96	60.00	-17.04	QP


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz Note 1	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

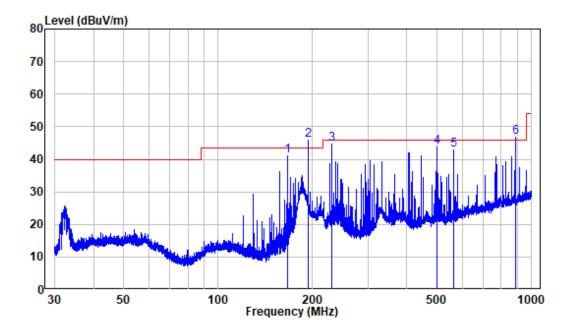
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

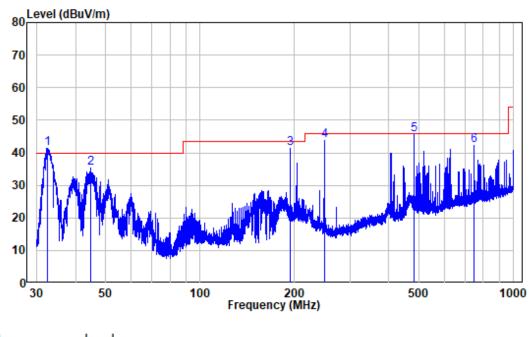
Environmental Conditions


Temperature:	19 °C
Relative Humidity:	58 %
ATM Pressure:	101.0 kPa

The testing was performed by Chao on 2022-3-13 for below 1GHz and 2022-2-8 for above 1GHz.

EUT operation mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

30 MHz~1 GHz: Worst case is BLE 1M, High channel



Site : chamber Condition: 3m HORIZONTAL Job No. : XMTN3211231-68547E-RF Test Mode: BLE Transmitting

	Freq	Factor					Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	166.214	-13.96	55.08	41.12	43.50	-2.38	QP
2	193.858	-11.31	57.32	46.01	43.50	2.51	QP *
3	230.705	-11.08	55.79	44.71	46.00	-1.29	QP
4	498.550	-4.32	48.17	43.85	46.00	-2.15	QP
5	563.156	-3.95	46.95	43.00	46.00	-3.00	QP
6	886.444	1.01	45.64	46.65	46.00	0.65	QP *

Site : chamber Condition: 3m VERTICAL Job No. : XMTN3211231-68547E-RF Test Mode: BLE Transmitting

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	32.506	-12.09	53.37	41.28	40.00	1.28	QP *
2	44.626	-9.92	45.37	35.45	40.00	-4.55	QP
3	193.858	-11.31	52.63	41.32	43.50	-2.18	QP
4	249.207	-10.72	54.54	43.82	46.00	-2.18	QP
5	480.107	-5.00	50.45	45.45	46.00	-0.55	QP
6	747.810	-0.87	43.19	42.32	46.00	-3.68	QP

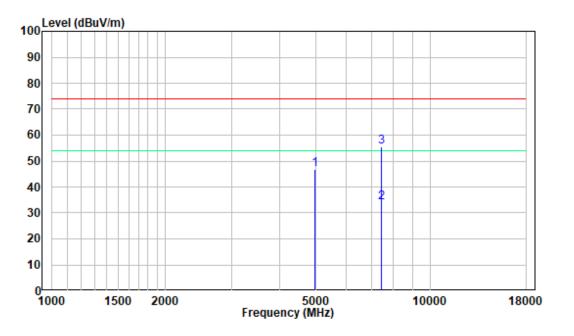
Note *: The data record above represents the worst case for all supported operating modes, there were no spurious emission in the range 30MHz -1GHz over the limit in §15.209 caused by radio, the emission list at above table was investigated and was not caused by the radio, the emission was present when the radio was not transmitting. Those emissions comply with the FCC Part 15, Subpart B-Unintentional radiators §15.109(b) limit set for Class A digital device as the EUT is a Class A equipment according the user manual.

Above 1 GHz:

T	Rece	iver	Turntable	Turntable Rx Antenna			Absolute	T invit	Manala
Frequency (MHz)	Reading (dBuV)	PK/AV	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
				BLE 1M, L	.ow Chann	el			
2310	50.71	PK	275	1.1	Н	-7.23	43.48	74	-30.52
2310	49.38	РК	109	1.9	V	-7.23	42.15	74	-31.85
2390	52.75	PK	140	1.5	Н	-7.21	45.54	74	-28.46
2390	50.4	РК	7	2.1	V	-7.21	43.19	74	-30.81
4804	48.11	РК	140	1.5	Н	-3.52	44.59	74	-29.41
4804	45.94	РК	173	1.4	V	-3.52	42.42	74	-31.58
7206	44.52	РК	173	1.4	Н	2.71	47.23	74	-26.77
7206	43.68	РК	24	1.0	V	2.71	46.39	74	-27.61
			В	BLE 1M, M	iddle Chan	nel			
4880	47.26	РК	322	1.5	Н	-3.37	43.89	74	-30.11
4880	47.73	РК	66	1.3	V	-3.37	44.36	74	-29.64
7320	45.68	PK	66	1.3	Н	3.31	48.99	74	-25.01
7320	43.84	РК	266	1.7	V	3.31	47.15	74	-26.85
				BLE 1M, H	ligh Chann	el			
2483.5	60.58	PK	272	1.7	Н	-7.2	53.38	74	-20.62
2483.5	59.8	РК	342	1.2	V	-7.2	52.6	74	-21.4
2500	47.79	PK	170	1.2	Н	-7.18	40.61	74	-33.39
2500	47.81	РК	217	1.5	V	-7.18	40.63	74	-33.37
4960	49.83	РК	118	1.4	Н	-3.01	46.82	74	-27.18
4960	46.47	РК	356	2.1	V	-3.01	43.46	74	-30.54
7440	52	PK	356	2.1	Н	3.52	55.52	74	-18.48
7440	30.36	AV	356	2.1	Н	3.52	33.88	54	-20.12
7440	43.94	РК	314	1.7	V	3.52	47.46	74	-26.54

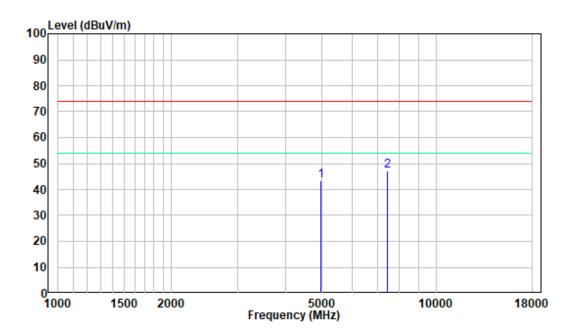
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

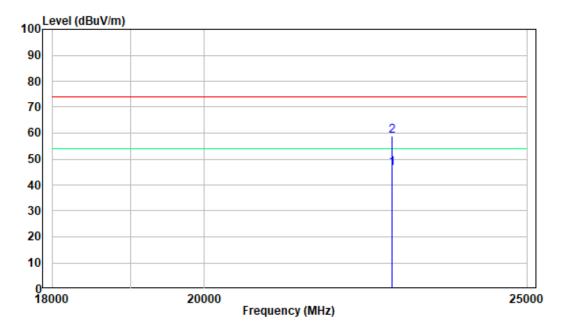

Absolute Level (Corrected Amplitude) = Factor + Reading

Margin = Absolute Level (Corrected Amplitude) – Limit

The other spurious emission which is in the noise floor level was not recorded.

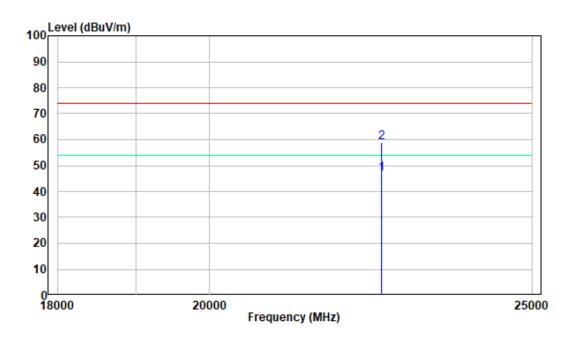

For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

1-18 GHz: Pre-scan plots:



BLE 1M High Channel Horizontal

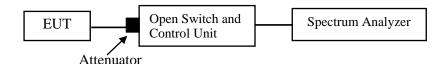
Vertical



18 -25GHz: Pre-scan plots:

BLE 1M High Channel Horizontal

Vertical


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

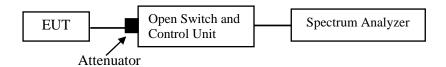
Environmental Conditions

Temperature:	20°C
Relative Humidity:	58 %
ATM Pressure:	107.0 kPa

The testing was performed by Key.Pei on 2022-01-20.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix BLE.


FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

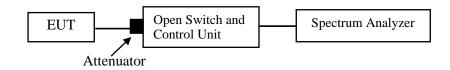
Environmental Conditions

Temperature:	20°C
Relative Humidity:	58 %
ATM Pressure:	107.0 kPa

The testing was performed by Key.Pei on 2022-01-20.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix BLE.


FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	20 °C
Relative Humidity:	58 %
ATM Pressure:	107.0 kPa

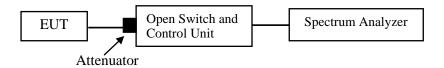
The testing was performed by Key.Pei on 2022-01-20.

EUT operation mode: Transmitting

Test Result: Compliant.

Conducted Band Edge Result:

Please refer to the Appendix BLE.


FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	20 °C
Relative Humidity:	58 %
ATM Pressure:	107.0 kPa

The testing was performed by Key.Pei on 2022-01-20.

EUT operation mode: Transmitting

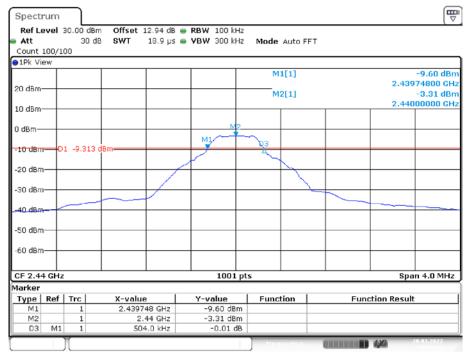
Test Result: Compliant. Please refer to the Appendix BLE.

APPENDIX BLE

Appendix A: 6dB Emission Bandwidth

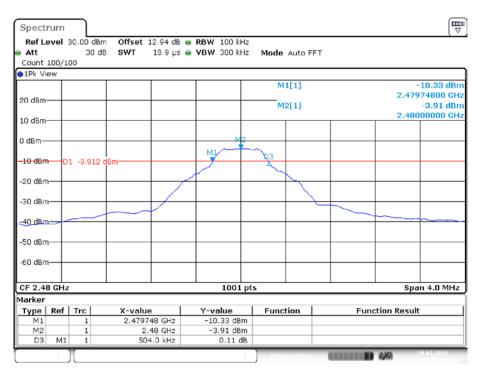
Test Result

TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.504	2401.748	2402.252	0.5	PASS
BLE_1M	Ant1	2440	0.504	2439.748	2440.252	0.5	PASS
		2480	0.504	2479.748	2480.252	0.5	PASS


Test Graphs

BLE_1M_Ant1_2402

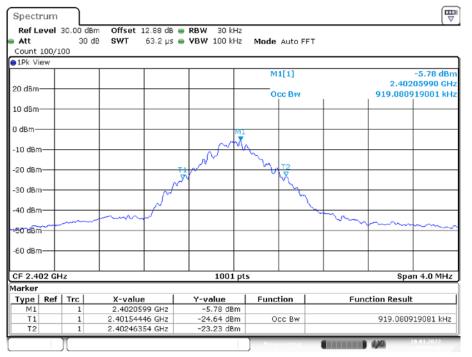
Spectrum						
Ref Level Att			RBW 100 kHz			
Count 100/		08 SWI 18.9 µs	😑 VBW 300 kHz	Mode Auto FF	• 1	
1Pk View	100					
				M1[1]		-9.90 dBn
						2.40174800 GH
20 dBm				M2[1]		-3.51 dBn
10 dBm						2.40200400 GH
0 dBm					_	
			MI	p3		
-10 dBm	D1 -9.51	.2 dBm		-X-		
0.0 40-0				\sim		
-20 dBm						
-30 dBm						
40 dBm					_	
-50 dBm						
-60 dBm						
-00 ubm						
05.0.400.0						
CF 2.402 G	HZ		1001 pt:	5		Span 4.0 MHz
1arker Type Ref	Trc	X-value	Y-value	Function	Euro	tion Result
M1 M1	1	2.401748 GHz	-9.90 dBm	Function	Func	cion Result
M2	1	2.402004 GHz	-3.51 dBm			
D3 M	1 1	504.0 kHz	0.06 dB			
	11			1	Concession in the local division of the loca	20.01.2022


Date: 20.JAN.2022 09:04:38

BLE_1M_Ant1_2440

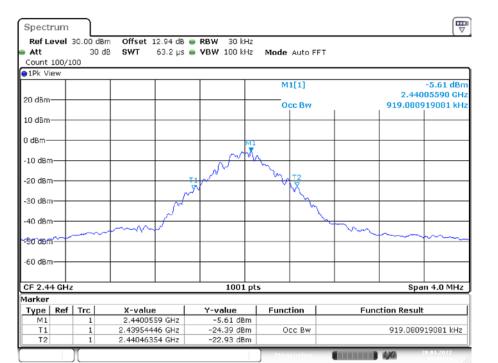
Date: 20.JAN.2022 09:08:21

BLE_1M_Ant1_2480


Date: 20.JAN.2022 09:10:53

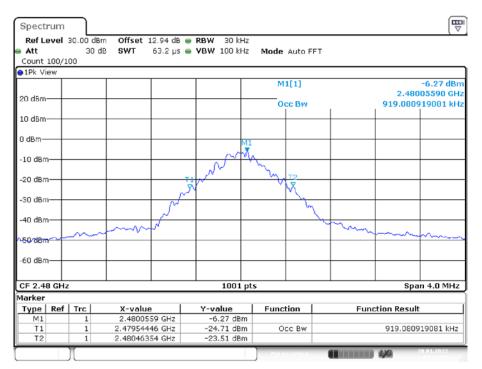
Version 12: 2021-11-09

Appendix B: Occupied Channel Bandwidth


TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.919	2401.544	2402.464		PASS
BLE_1M	Ant1	2440	0.919	2439.544	2440.464		PASS
		2480	0.919	2479.544	2480.464		PASS

Test Graphs

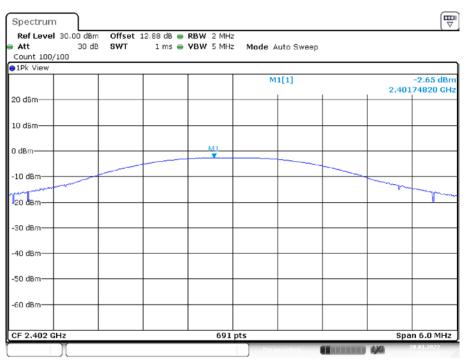
BLE_1M_Ant1_2402


Date: 20.JAN.2022 09:05:06

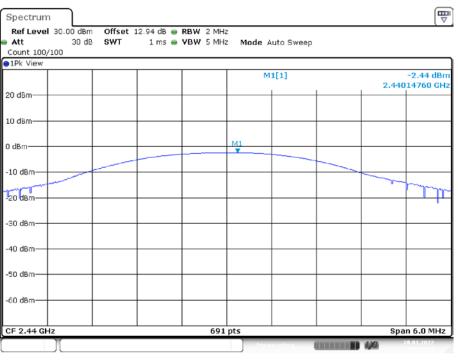
BLE_1M_Ant1_2440

Date: 20.JAN.2022 09:08:38

BLE_1M_Ant1_2480

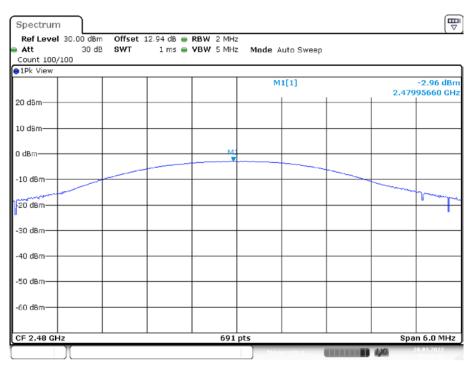

Date: 20.JAN.2022 09:12:35

Appendix C: Maximum conducted Peak output power


TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	2402	-2.65	<=30	PASS
BLE_1M		2440	-2.44	<=30	PASS
_		2480	-2.96	<=30	PASS

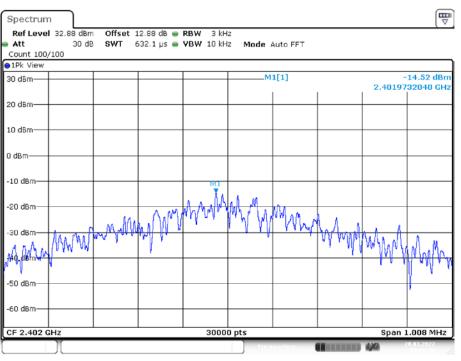
Test Graphs

BLE_1M_Ant1_2402


Date: 20.JAN.2022 09:05:19

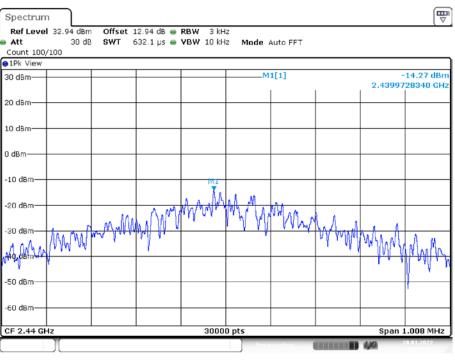
BLE_1M_Ant1_2440

Date: 20.JAN.2022 09:08:51


Date: 20.JAN.2022 09:11:22

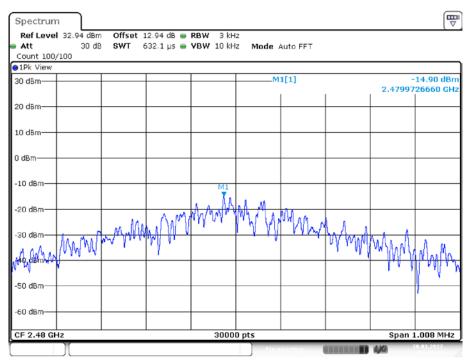
Appendix D: Power spectral density

Test Result


TestMode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-14.52	<=8	PASS
BLE_1M	Ant1	2440	-14.27	<=8	PASS
		2480	-14.9	<=8	PASS

Test Graphs

BLE_1M_Ant1_2402


Date: 20.JAN.2022 09:05:31

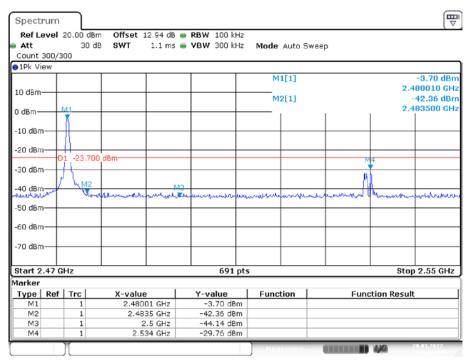
Date: 20.JAN.2022 09:09:03

Date: 20.JAN.2022 09:11:34

Appendix E: Band edge measurements

Test Result

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
		Low	2402	-3.60	-41.98	<=-23.6	PASS
BLE_1M Ant1		High	2480	-3.70	-29.76	<=-23.7	PASS


Test Graphs

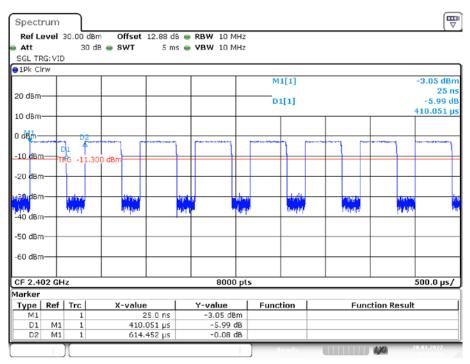
BLE_1M_Ant1_Low_2402

Spectrum						
Ref Level						
Att	30 d	B SWT 246.5 µs (VBW 300 kHz	Mode Auto P	FT	
Count 300/	300					
1Pk View						
				M1[1]		-3.60 dBr
10 dBm						2.402040 GH
				M2[1]		-43.30 dBr
0 dBm			+		1	2.400000 AL
-10 dBm						
-20 dBm						
	01 -23.600) dBm				
-30 dBm						
-40 dBm						Mź l
		and have an an and the second				M3
\$bdam+++	n n n n n n n n n n n n n n n n n n n	Phil Country Mary Sec. 12	man and a sure	للوجا والمحاصر والمحاصر والمحاصر والمحاصر والمحاصر والمحاصر والمحاصر والمحاصر والمحاص والمحاص والمحاص والمحاص	and the second second	Althour and one
-60 dBm						
-60 aBm						
-70 dBm						
Start 2.3 G	lz		691 pts	;		Stop 2.405 GHz
/larker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.40204 GHz	-3.60 dBm			
M2	1	2.4 GHz	-43.30 dBm			
MЗ	1	2.39 GHz	-50.80 dBm			
M4	1	2.399978 GHz	-41.98 dBm			

Date: 20.JAN.2022 09:06:11

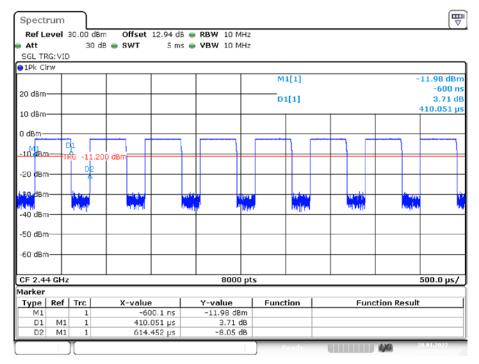
BLE_1M_Ant1_High_2480

Date: 20.JAN.2022 09:11:49

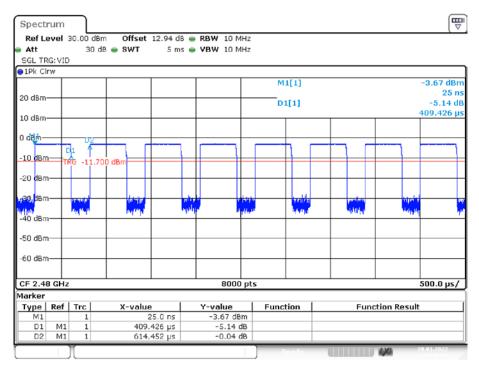

Appendix F: Duty Cycle

Test Result

TestMode	Antenna	Channel	TransmissionDuration [ms]	Transmission Period [ms]	Duty Cycle [%]
BLE_1M	Ant1	2402	0.41	0.61	67.21
		2440	0.41	0.61	67.21
		2480	0.41	0.61	67.21


Test Graphs

BLE_BT4.0_Ant1_2402


Date: 20.JAN.2022 09:04:12

BLE_1M_Ant1_2440

Date: 20.JAN.2022 09:06:48

BLE_1M_Ant1_2480

Date: 20.JAN.2022 09:10:27

***** END OF REPORT *****

Version 12: 2021-11-09

Page 39 of 39