Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202202-0173-1

Page: 1 of 64

Radio Test Report

FCC ID: 2A2GJ-HTIT

Report No. : TBR-C-202202-0173-1

Applicant: Heltec Automation Technology Co., Ltd

Equipment Under Test (EUT)

EUT Name : Heltec WiFl Kit LoRa Node

Model No. : HTIT-WS

Series Model No. : Please see page 5

Brand Name : ----

Sample ID : RW-C-202202-0173-1-1# & RW-C-202202-0173-1-2#

Receipt Date : 2022-02-24

Test Date : 2022-02-24 to 2022-03-30

Issue Date : 2022-04-01

Standards: FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : WWSV

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	6
	1.3 Block Diagram Showing the Configuration of System Tested	8
	1.4 Description of Support Units	
	1.5 Description of Test Mode	9
	1.6 Description of Test Software Setting	10
	1.7 Measurement Uncertainty	10
	1.8 Test Facility	
2.	TEST SUMMARY	12
3.	TEST SOFTWARE	12
4.	TEST EQUIPMENT	13
5.	CONDUCTED EMISSION	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	15
	5.3 Test Procedure	15
	5.4 Deviation From Test Standard	16
	5.5 EUT Operating Mode	16
	5.6 Test Data	16
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	
	6.1 Test Standard and Limit	17
	6.2 Test Setup	
	6.3 Test Procedure	19
	6.4 Deviation From Test Standard	20
	6.5 EUT Operating Mode	20
	6.6 Test Data	
7.	EMISSIONS IN NONRESTRICTED FREQUENCY BANDS	21
	7.1 Test Standard and Limit	
	7.2 Test Setup	21
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	
	7.6 Test Data	
8.	99% OCCUPIED AND 20DB BANDWIDTH	
	8.1 Test Standard and Limit	23
	8.2 Test Setup	23
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	24

	8.6 Test Data	24
9.	PEAK OUTPUT POWER TEST	25
	9.1 Test Standard and Limit	25
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	26
	9.5 EUT Operating Mode	26
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY	27
	10.1 Test Standard and Limit	27
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 Antenna Connected Construction	27
	10.6 Test Data	27
11.	CARRIER FREQUENCY SEPARATION	28
	11.1 Test Standard and Limit	
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	
	11.5 Antenna Connected Construction	
	11.6 Test Data	
12.	TIME OF OCCUPANCY (DWELL TIME)	30
	12.1 Test Standard and Limit	
	12.2 Test Setup	
	12.3 Test Procedure	
	12.4 Deviation From Test Standard	
	12.5 Antenna Connected Construction	31
	12.6 Test Data	
13.	NUMBER OF HOPPING FREQUENCIES	32
	13.1 Test Standard and Limit	
	13.2 Test Setup	
	13.3 Test Procedure	
	13.4 Deviation From Test Standard	33
	13.5 Antenna Connected Construction	33
	13.6 Test Data	33
14.	HOPPING FUNCTION REQUIREMENTS	34
	14.1 Test Standard and Limit	34
	14.4 Deviation From Test Standard	
	14.6 Test Data	
15.	ANTENNA REQUIREMENT	
1	15.1 Test Standard and Limit	
	15.2 Deviation From Test Standard	

Report No.: TBR-C-202202-0173-1 Page: 4 of 64

15.3 Antenna Connected Construction	35
15.4 Test Data	35
ATTACHMENT A CONDUCTED EMISSION TEST DATA	36
ATTACHMENT BUNWANTED EMISSIONS DATA	38
ATTACHMENT C—EMISSIONS IN NONRESTRICTED FREQUENCY DATA	50
ATTACHMENT D—99% OCCUPIED AND 20DB BANDWIDTH DATA	54
ATTACHMENT E—PEAK OUTPUT POWER DATA	58
ATTACHMENT F—POWER SPECTRAL DENSITY DATA	60
ATTACHMENT G—CARRIER FREQUENCY SEPARATION DATA	62
ATTACHMENT H—TIME OF OCCUPANCY(DWELL TIME) DATA	63
ATTACHMENT I—NUMBER OF HOPPING FREQUENCY	64

Report No.: TBR-C-202202-0173-1 Page: 5 of 64

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202202-0173-1	Rev.01	Initial issue of report	2022-04-01
The state of the s	an Bi	1000	Charles of the Control of the Contro
	33	TODAY	
THE WAY			
			The state of the s
THE PARTY OF		33	3
	MBY		
THE PARTY OF THE P			W COUNTY
THE PARTY OF	133	TODAY TOTAL	
mn 33			mnis s
			118 3
	110		

Page: 6 of 64

1. General Information about EUT

1.1 Client Information

Applicant		Heltec Automation Technology Co., Ltd	
Address		1st floor, No. 54, 56, 58 zirui North Street, High-tech Zone, Chengdu city, China	
Manufacturer	1	Heltec Automation Technology Co., Ltd	
Address		1st floor, No. 54, 56, 58 zirui North Street, High-tech Zone, Chengdu city, China	

1.2 General Description of EUT (Equipment Under Test)

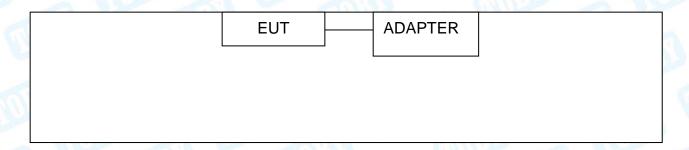
EUT Name	:	Heltec WiFI Kit LoRa N	lode		
Models No.		HTIT-WS, HTIT-WB32LAF, HTIT-WB32, HTIT-WS, HTIT-WSL, HTIT-WSH, HTIT-TB, HTIT-LN151, HTIT-LK151, HITI-WB32LAB HTIT-W8266, HTIT-WB32G, HT-M00, HT-M01S, HTCC-AB01, HTCC-AB01-S, HTCC-AB02, HTCC-AB02-S, HTCC-AB03, HTCC-AB03-S, HTCC-AC01, HTCC-AC01-S, HTCC-AC02, HTCC-AC02-S, HTCC-AC03, HTCC-AC03-S, HTCC-AM01, HTCC-AM01-S, HTCC-AM02, HTCC-AM02-S, HTCC-AM03, HTCC-AM03-S, HTIT-DIY0051N, HTIT-DIY0031			
Model Different	200	All these models are identical in the same PCB, layout and electrical circuit, the only difference is appearance and color.			
4000	3	Operation Frequency:	LoRa(125KHz): 902.3MHz-914.9MHz		
Product		Number of Channel:	64 channels		
Description		Antenna Gain:	3.0dBi Internal Antenna		
TWO TO S		Bit Rate of Transmitter:	5.47kbps		
Power Rating	Power Rating : USB Input: DC 5V				
Software Version : V1.0		V1.0	THE RESERVE TO THE RE		
Hardware Version		V2			
Domorke					

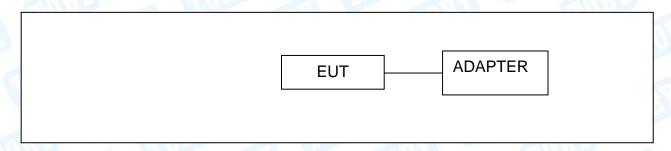
Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant. And the type of antenna please see the external photos.

Report No.: TBR-C-202202-0173-1 Page: 7 of 64

(4) Channel List:


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	902.3	23	906.7	45	911.1
02	902.5	24	906.9	46	911.3
03	902.7	25	907.1	47	911.5
04	902.9	26	907.3	48	911.7
05	903.1	27	907.5	49	911.9
06	903.3	28	907.7	50	912.1
07	903.5	29	907.9	51	912.3
08	903.7	30	908.1	52	912.5
09	903.9	31	908.3	53	912.7
10	904.1	32	908.5	54	912.9
11	904.3	33	908.7	55	913.1
12	904.5	34	908.9	56	913.3
13	904.7	35	909.1	57	913.5
14	904.9	36	909.3	58	913.7
15	905.1	37	909.5	59	913.9
16	905.3	38	909.7	60	914.1
17	905.5	39	909.9	61	914.3
18	905.7	40	910.1	62	914.5
19	905.9	41	910.3	63	914.7
20	906.1	42	910.5	64	914.9
21	906.3	43	910.7	2.0	ann's s
22	906.5	44	910.9		


Page: 8 of 64

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

	Equipment Information						
Name	Model	FCC ID/SDOC	Manufacturer	Used "√"			
	(3)	1000					
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
			133				

Page: 9 of 64

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	TX Mode Channel 01			
	For Radiated Test			
Final Test Mode	Description			
Mode 1	TX Mode Channel 01			
Mode 2	TX Mode Channel 01/34/64			
Mode 3	Hopping Mode			

Note:

- (1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.
 - According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.
- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 10 of 64

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	Windows PowerShell		
Frequency	902.3MHz	908.9MHz	914.9MHz
LoRa	16	16	16

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 11 of 64

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202202-0173-1 Page: 12 of 64

2. Test Summary

Standard Section	To at Ham	Tank Campula(a)		_	
FCC	Test Item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	Conducted Emission	RW-C-202202-0173-1-1#	PASS	N/A	
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	RW-C-202202-0173-1-1#	PASS	N/A	
FCC 15.203	Antenna Requirement	RW-C-202202-0173-1-2#	PASS	N/A	
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	RW-C-202202-0173-1-2#	PASS	N/A	
FCC 15.247(b)(1)	Peak Output Power	RW-C-202202-0173-1-2#	PASS	N/A	
FCC 15.247(f)	Power Spectral Density	RW-C-202202-0173-1-2#	PASS	N/A	
FCC 15.247(a)(1)	Carrier frequency separation	RW-C-202202-0173-1-2#	PASS	N/A	
FCC 15.247(f)	Time of occupancy	RW-C-202202-0173-1-2#	PASS	N/A	
FCC 15.247(b)(1)	Number of Hopping Frequency	RW-C-202202-0173-1-2#	PASS	N/A (2)	
FCC 15.247(d)	Band Edge	RW-C-202202-0173-1-2#	PASS	N/A	
FCC 15.207	Conducted Unwanted Emissions	RW-C-202202-0173-1-2#	PASS	N/A	
FCC 15.205	Emissions in Restricted Bands	RW-C-202202-0173-1-2#	PASS	N/A	
FCC 15.247(a)(1)	Hopping function Requirements	RW-C-202202-0173-1-2#	PASS	N/A	
	On Time and Duty Cycle	RW-C-202202-0173-1-2#	1 501	N/A	

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202202-0173-1 Page: 13 of 64

4. Test Equipment

Conducted Emiss	sion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emissi	on Test (A Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb.27, 2022	Feb.26, 2023
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 02, 2022	Mar. 01, 2023
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	May. 20, 2021	May. 19, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Radiation Emis	sion Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 03, 2021	Sep. 02, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	May 20, 2021	May 19, 2022
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	May 20, 2021	May 19, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022

Report No.: TBR-C-202202-0173-1 Page: 14 of 64

Antenna Conducted Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 03, 2021	Sep. 02, 2022
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 03, 2021	Sep. 02, 2022
Vector Signal Generator	Agilent	5182B	MY59101429	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	Agilent	5181A	MY48180463	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
DE Device Consor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jul. 02, 2021	Jul. 01, 2022
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep. 03, 2021	Sep. 02, 2022

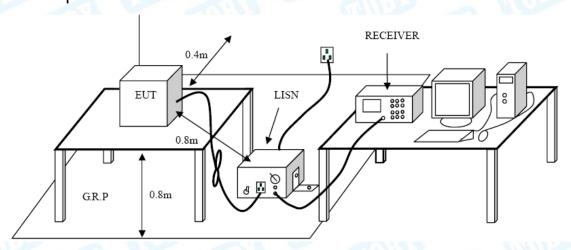
Page: 15 of 64

5. Conducted Emission

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- ●The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 16 of 64

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

	General field strength limits at frequencies Below 30MHz				
- AND -	Frequency Field Strength Field Strength Measurement (MHz) (µA/m)* (microvolt/meter)** Distance (meters		Measurement Distance (meters)		
-	0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300	
	0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30	
	1.705~30.0	0.08	30	30	

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

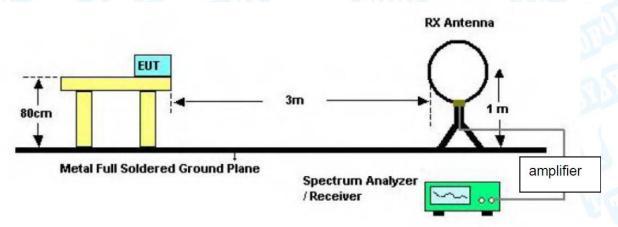
2, *is for RSS Standard, **is for FCC Standard.

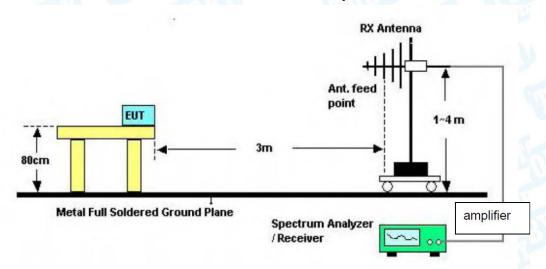
General field	General field strength limits at frequencies above 30 MHz			
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

General field strength limits at frequencies Above 1000MHz		
Frequency	Distance of 3m (dBuV/m)	
(MHz)	Peak	Average
Above 1000	74	54

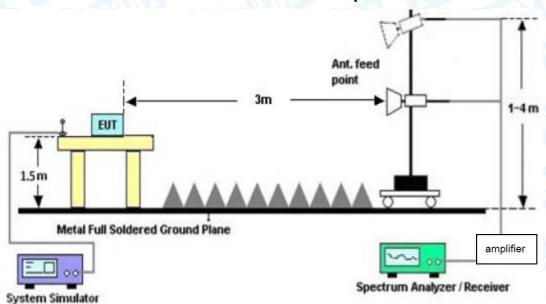
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

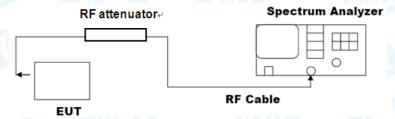

Page: 18 of 64

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Page: 19 of 64

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 20 of 64

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

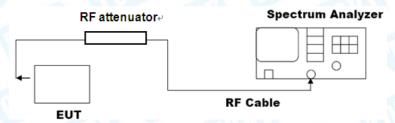
Please refer to the Attachment B.

Page: 21 of 64

7. Emissions in nonrestricted frequency bands

7.1 Test Standard and Limit

7.1.1 Test Standard


FCC Part 15.205 & FCC Part 15.247(d)

7.1.2 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Test Setup

Conducted measurement

7.3 Test Procedure

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW ≥ [3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Page: 22 of 64

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW ≥ [3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

Please refer to the Attachment C.

Page: 23 of 64

8. 99% Occupied and 20dB Bandwidth

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(a)

8.1.2 Test Limit

There are no limits for 20dB bandwidth and 99% occupied bandwidth.

8.2 Test Setup

8.3 Test Procedure

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring

Page: 24 of 64

instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

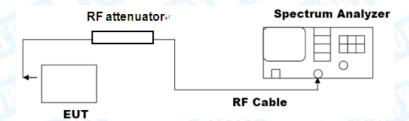
Please refer to the description of test mode.

8.6 Test Data

Please refer to the Attachment D.

Page: 25 of 64

9. Peak Output Power Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247(b)(1)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
	BW _{20dB} ≤250KHz	
Dook Output Dower	t ch ≤ 0.4 s for $T = 20$ s	002 029
Peak Output Power	<i>P</i> _{max-pk} ≤ 0.25W	902~928
	25≤ <i>N</i> _{ch} <50	The state of the s
THE PARTY OF THE P	f ≥ MAX { 25 kHz, BW _{20dB} }	
	250KHz <bw<sub>20dB ≤500KHz</bw<sub>	
	t ch ≤ 0.4 s for $T = 10$ s	The state of the s
tch = average time of occu	upancy; $T = \text{period}$; $N_{ch} = \# \text{hopping}$	frequencies; BW = bandwidth;
f = hopping channel carrier frequency separation		

9.2 Test Setup

9.3 Test Procedure

- ●This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
- a) Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW≥ RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.
 - 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external attenuators and cables.

Page: 26 of 64

e) A plot of the test results and setup description shall be included in the test report.

NOTE-A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

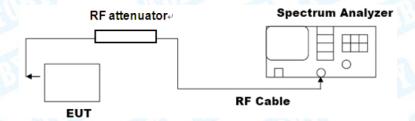
9.6 Test Data

Please refer to the Attachment E.

Page: 27 of 64

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(f)

10.1.2 Test Limit

Test Item	Limit
Power Spectral Density	8dBm(in any 3 kHz)

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

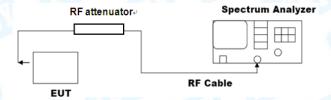
10.6 Test Data

Please refer to the Attachment F.

Page: 28 of 64

11. Carrier frequency separation

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.247(a)(1)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
	BW _{20dB} ≤250KHz	
Carrier frequency	t ch ≤ 0.4 s for $T = 20$ s	902~928
separation	<i>P</i> _{max-pk} ≤ 0.25W	902~926
	25≤ <i>Nch</i> <50	U.S.
	f ≥ MAX { 25 kHz, BW _{20dB} }	
011	250KHz <bw<sub>20dB ≤500KHz</bw<sub>	
	t ch ≤ 0.4 s for $T = 10$ s	131
tch = average time of occ	cupancy; $T = period$; $N_{ch} = \# hopping$	frequencies; BW = bandwidth;
f:	= hopping channel carrier frequency	separation

11.2 Test Setup

11.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Page: 29 of 64

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

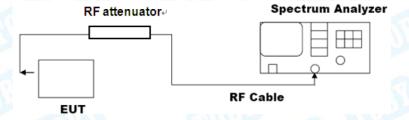
Please refer to the description of test mode.

11.6 Test Data

Please refer to the Attachment G.

Page: 30 of 64

12. Time of occupancy (Dwell time)


12.1 Test Standard and Limit

12.1.1 Test Standard FCC Part 15.247(f)

12.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	<i>P</i> _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 50	
OLD TO	f ≥ MAX { 25 kHz, BW _{20dB} }	
	BW _{20dB} ≤250KHz	
Time of occupancy	t ch ≤ 0.4 s for $T = 20$ s	902~928
(dwell time)	<i>P</i> _{max-pk} ≤ 0.25W	
	25≤ <i>N</i> _{ch} <50	
CHILD TO	f ≥ MAX { 25 kHz, BW _{20dB} }	
	250KHz <bw<sub>20dB ≤500KHz</bw<sub>	
	t ch ≤ 0.4 s for $T = 10$ s	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

12.2 Test Setup

12.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \Box channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping

Page: 31 of 64

channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer)x(period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

12.4 Deviation From Test Standard

No deviation

12.5 Antenna Connected Construction

Please refer to the description of test mode.

12.6 Test Data

Please refer to the Attachment H.

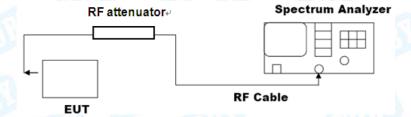
Page: 32 of 64

13. Number of hopping frequencies

13.1 Test Standard and Limit

13.1.1 Test Standard

FCC Part 15.247(b)(1)


13.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	Nch ≥ 50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
	BW _{20dB} ≤250KHz	
Carrier frequency	t ch ≤ 0.4 s for $T = 20$ s	002 028
separation	<i>P</i> _{max-pk} ≤ 0.25W	902~928
	25≤ <i>Nch</i> <50	
THE PARTY OF THE P	f ≥ MAX { 25 kHz, BW20dB }	
	250KHz <bw20db td="" ≤500khz<=""><td></td></bw20db>	
	t ch ≤ 0.4 s for $T = 10$ s	

 t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth; f = hopping channel carrier frequency separation

There is no minimum number of hopping channels associated with this type of hybrid system. While there is not a specific minimum limit, the hop sequence is required to appear as pseudorandom per Section 15.247(a)(1) (see Section 3 of this document).

13.2 Test Setup

13.3 Test Procedure

- ●The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.

Page: 33 of 64

g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

13.4 Deviation From Test Standard

No deviation

13.5 Antenna Connected Construction

Please refer to the description of test mode.

13.6 Test Data

Please refer to the Attachment I.

Page: 34 of 64

14. Hopping function Requirements

14.1 Test Standard and Limit

14.1.1 Test Standard FCC Part 15.247(a)(1)

14.1.2 Test Limit

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

14.4 Deviation From Test Standard

No deviation

14.6 Test Data

The transmitter follows the LoRa alliance protocol which complies with the pseudo-random hop sequence, equal use of each frequency, and receiver matching bandwidth and synchronization requirements.

Page: 35 of 64

15. Antenna Requirement

15.1 Test Standard and Limit

15.1.1 Test Standard

FCC Part 15.203

15.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.2 Deviation From Test Standard

No deviation

15.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 3.0dBi, and the antenna de-signed with Unique connector antenna and consideration of replacement. Please see the EUT photo for details.

15.4 Test Data

The EUT antenna is a Internal antenna. It complies with the standard requirement.

Antenna Type							
⊠Permanent attached antenna	40						
Unique connector antenna							
☐Professional installation antenna	1000						

Page: 36 of 64

Attachment A-- Conducted Emission Test Data

Temperature:		24.5℃		R	elative Humic	dity: 4	15%	COUNTY OF		
Test Vo	ltage:	AC 12	0V/60Hz		a Wy		ATT.			
Termin	al:	Line	Line							
Test Mo	ode:	Mode	Mode 1							
Remark	k:	Only w	orse case is	reported.	ARTIC					
30 dB	11/20 A		Miller of the second of the se	And special states of the Property of the Prop		MANAMA	QP: AVG:	peak		
-20 0.150		0.5	Dooding	(MHz)	5			30.000		
No.	Mk.	Freq.	Reading Level	Correct Factor		Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector		
1	(0.1700	30.50	11.62	42.12	64.96	-22.84	QP		
2	(0.1700	11.64	11.62	23.26	54.96	-31.70	AVG		
3	(0.2940	24.42	11.59	36.01	60.41	-24.40	QP		
4	(0.2940	6.29	11.59	17.88	50.41	-32.53	AVG		
5	*	0.4860	22.76	11.50	34.26	56.24	-21.98	QP		
6		0.4860	8.03	11.50	19.53	46.24	-26.71	AVG		
7		1.2540	14.25	11.02	25.27	56.00	-30.73	QP		
8		1.2540	-0.09	11.02	10.93	46.00	-35.07	AVG		
9	,	3.5460	10.42	10.14	20.56	56.00	-35.44	QP		
10	,	3.5460	-1.27	10.14	8.87	46.00	-37.13	AVG		
11	•	7.1380	14.45	10.02	24.47	60.00	-35.53	QP		
12	-	7.1380	1.26	10.02	11.28	50.00	-38.72	AVG		
Remark										

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature	24.5	$^{\circ}$ C		Relative Hu	midity:	45%	
Test Voltage:	: AC 1	20V/60Hz			333		WIND:
Terminal:	Neut	ral		3 100		67.1	
Test Mode:	Mode	e 1	THE STATE OF THE S		UN.	1) Library	
Remark:	Only	worse case	is reported.				
80.0 dBuV							
30		A for the second of the forest			you to sure of the	QP: AVG:	peak AVG
0.150	0.5		(MHz)	5			30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1749	28.43	11.63	40.06	64.72	-24.66	QP
2	0.1749	9.89	11.63	21.52	54.72	-33.20	AVG
3	0.3180	23.51	11.55	35.06	59.76	-24.70	QP
4	0.3180	5.93	11.55	17.48	49.76	-32.28	AVG
5 *	0.4860	23.73	11.50	35.23	56.24	-21.01	QP
6	0.4860	9.98	11.50	21.48	46.24	-24.76	AVG
7	0.7820	16.49	11.38	27.87	56.00	-28.13	QP
8	0.7820	1.44	11.38	12.82	46.00	-33.18	AVG
9	1.2980	14.88	10.98	25.86	56.00	-30.14	QP
10	1.2980	0.37	10.98	11.35	46.00	-34.65	AVG
11	7.1780	13.96	10.02	23.98	60.00	-36.02	QP
12	7.1780	0.41	10.02	10.43	50.00	-39.57	AVG
Remark: 1. Corr. Factor 2. Margin (dB)	(dB) = LISN	Factor (dB) +	Cable Loss ((dB)			

Page: 38 of 64

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

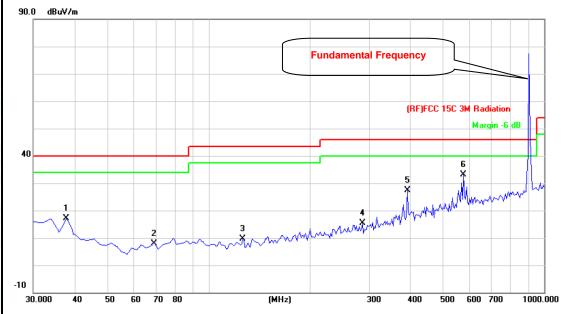
emp	perature:	2	23.5°	C				Relative I	Humidi	ty:	4	16%		
est '	Voltage:	A	AC 1:	20V	/60Hz	Z		THUE				III.		
nt. l	Pol.	Ъ	Horiz	onta	al		100		100	(1)				
est	Mode:	N	/lode	2 (902.3	3MHz	2)		100			đ	NI	-
Rema	ark:						reported.	The				W		
90.0	dBuV/m													
								Fundamenta	ıl Frequen	су				
										(RF)FC	C 15C :	3M Ra	diation	
-		_	+										rgin -6 d	IB
40_				44					5		1			
									4 ×			6 X		
				2				3	MM	./\.	A wallow	MMW	Herman	V
	*	√ ~		Å	~~	M	mm	3 M _{WW} W/M/A/A	111	My.	The			
-10														
	.000 40	50	60	70 8	0		(MHz)		300	400	500	600	700	1000.00
					Read	dina	Correct	Measure						
	N				1100		COLLEGE	11100000		:4	Ov	er		
	No. Mk	:. F	-req.		Lev		Factor	ment	Lim	П	٠.			ector
-	No. IVIK		Freq. MHz	, ——	Lev	/el	Factor dB/m	ment dBuV/m			d	В	Dete	Cloi
	1 NO. IVIK	1				vel uV				V/m	d	B 1.32		ak
		37.	MHz	9	dBu	/el u∨ 10	dB/m	dBuV/m	dBu\	V/m 00	-24		pe	
	1	37. 74.	MHz .7599	9	dBu 34.	rel uV 10 86	dB/m -18.42	dBuV/m 15.68	dBu\ 40.	V/m 00 00	-24 -23	1.32	pe pe	eak
	1 2	37. 74. 196	MHz .7599 .6200	9 0	34. 39.	rel uV 10 86 29	dB/m -18.42 -23.22	dBuV/m 15.68 16.64	dBu\ 40. 40.	V/m 00 00 50	-24 -23 -23	1.32 3.36	pe pe pe	eak eak
	1 2 3	37. 74. 196 299	.7599 .6200	9 0 00 00	34. 39.3 40.3	rel vel vel vel vel vel vel vel vel vel v	dB/m -18.42 -23.22 -20.06	dBuV/m 15.68 16.64 20.23	40. 40. 43.	V/m 00 00 50	-24 -23 -23	1.32 3.36 3.27	pe pe pe	eak eak eak

Remark:

*:Maximum data

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

x:Over limit !:over margin

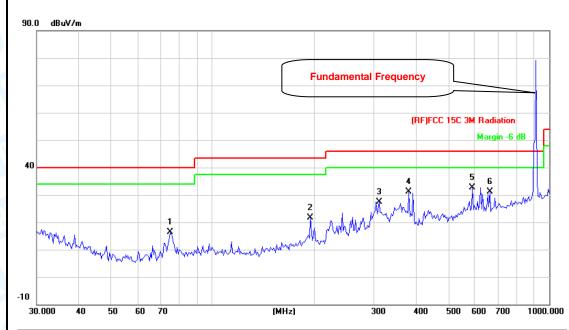

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 39 of 64

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		Unna
Ant. Pol.	Vertical		- TION
Test Mode:	Mode 2 (902.3MHz)		W. Carlotte
Remark:	Only worse case is re	ported.	
90.0 dBuV/m			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		37.7599	35.62	-18.42	17.20	40.00	-22.80	peak
2		68.1514	31.83	-23.87	7.96	40.00	-32.04	peak
3		127.0000	32.21	-22.54	9.67	43.50	-33.83	peak
4		288.0200	31.88	-16.53	15.35	46.00	-30.65	peak
5		392.7800	40.06	-12.72	27.34	46.00	-18.66	peak
6	*	577.0800	41.75	-8.72	33.03	46.00	-12.97	peak

^{*:}Maximum data x:Over limit !:over margin


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 40 of 64

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	Mode 2 (908.9MHz)		U					
Remark:	Only worse case is report	ed.						

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		74.6569	39.58	-23.22	16.36	40.00	-23.64	peak
2		195.1365	41.77	-20.02	21.75	43.50	-21.75	peak
3		312.1794	43.29	-15.89	27.40	46.00	-18.60	peak
4		382.5879	44.34	-13.20	31.14	46.00	-14.86	peak
5	*	590.9737	41.17	-8.53	32.64	46.00	-13.36	peak
6		665.8035	38.83	-7.62	31.21	46.00	-14.79	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

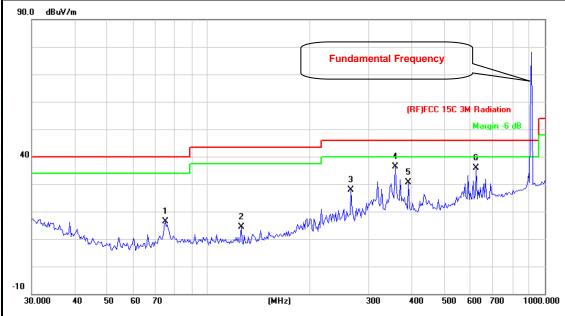
Tempe	erature	2	23.5	°C				Re	lative Hu	midity:	46%	6			1
Test V	oltage:	A	AC 1	20\	//60)Hz		C ST		183			6	11/1	
Ant. P	ol.	V	/erti	cal	1	11/1	1:1	A.	aW			1	1		
Test M	ode:	N	/lode	e 2 ((90	8.9M	Hz)	No		~ B	ME	A 3-4			À
Remar	k:	C	Only	woı	rse	case	is reporte	ed.	and the	N.B.		6	11	12	
90.0 d	BuV/m														_
								F	undamental	Frequency					
										(RF)F	CC 15C 3	M Rad	iation		
					_						5	Marc	jin -6	dB	F
40	1 2									4 X	X	6 X			
M.	* !	1	ı.	3 X W				. LMA	mound			llhm 4	ya, wa	ww.	
	, Mv*	M	MM/	۱۰ - الر	₩	Mmy	photograph was positive.	Way 1	•						
-10 30.000	40	50	60	70			(МН	z)	3	00 400	500	600	700	1000	0.00
	N 41 -			F		ading			Measure	;- Limit		Ove	<u> </u>		
NO.	. Mk.	Fre	<u> </u>			evel	Fact	or	ment						
		MH			dl	BuV	dB/m		dBuV/m	dBuV/	m	dB		Dete	cto
1	;	36.25	541		44	1.26	-17.7	2	26.54	40.0	0 -	13.4	16	pe	ak
2		42.00)66		48	3.10	-20.4	5	27.65	40.0	0 -	12.3	35	pea	ak
3		74.65	569		43	3.21	-23.2	2	19.99	40.0	0 -	20.0)1	pea	ak
4	3	393.4	723		47	7.69	-12.6	9	35.00	46.0	0 -	11.0	00	pe	ak
5	* 5	35.7	073		47	7.50	-9.54	1	37.96	46.0	0 -	-8.0	4	pe	ak
6	5	78.6	699		42	2.64	-8.69	9	33.95	46.0	0 -	12.0)5	pea	ak

Remark:

*:Maximum data

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

x:Over limit !:over margin

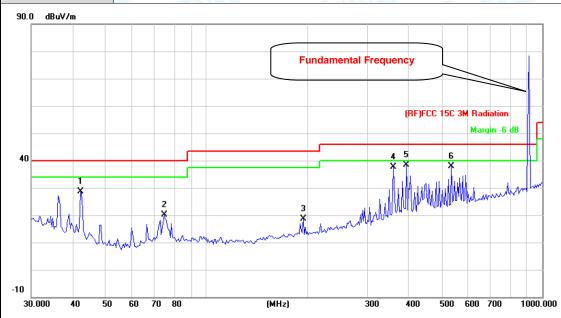

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 42 of 64

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal	70 100	5011
Test Mode:	Mode 2 (914.9MHz)		U
Remark:	Only worse case is repo	rted.	CHILD !
90.0 dBuV/m			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		74.6569	39.63	-23.22	16.41	40.00	-23.59	peak
2		125.4457	36.81	-22.52	14.29	43.50	-29.21	peak
3		265.6757	44.82	-16.98	27.84	46.00	-18.16	peak
4	*	359.1860	50.74	-14.27	36.47	46.00	-9.53	peak
5		393.4723	43.26	-12.69	30.57	46.00	-15.43	peak
6		625.0780	44.19	-8.21	35.98	46.00	-10.02	peak

^{*:}Maximum data x:Over limit !:over margin


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 43 of 64

8	Temperature:	23.5℃	Relative Humidity:	46%
V	Test Voltage:	AC 120V/60Hz		
-	Ant. Pol.	Vertical		
F	Test Mode:	Mode 2 (914.9MHz)		
	Remark:	Only worse case is reported	ed.	

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		42.0066	48.98	-20.45	28.53	40.00	-11.47	peak
2		74.6569	43.37	-23.22	20.15	40.00	-19.85	peak
3		193.7728	38.62	-20.01	18.61	43.50	-24.89	peak
4		359.1860	51.92	-14.27	37.65	46.00	-8.35	peak
5	*	393.4723	51.12	-12.69	38.43	46.00	-7.57	peak
6		535.7073	47.50	-9.54	37.96	46.00	-8.04	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 44 of 64

Above 1GHz

i i	Temperature:	23.5℃	Relative Humidity:	46%
V	Test Voltage:	AC 120V/60Hz	William .	
	Ant. Pol.	Horizontal		
	Test Mode:	TX 902.3MHz		
	Remark:	Only worse case is reported		a Allowa

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			1804.574	58.50	-2.25	56.25	74.00	-17.75	peak
2		*	1804.868	43.89	-2.25	41.64	54.00	-12.36	AVG

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz	WILLIAM STATE	MAG			
Ant. Pol. Vertical						
Test Mode:	TX 902.3MHz					
Remark:	Only worse case is repor	ted.				

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1804.476	59.46	-2.25	57.21	74.00	-16.79	peak
2	*	1804.960	44.01	-2.25	41.76	54.00	-12.24	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 45 of 64

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Horizontal							
Test Mode:	TX 908.9MHz							
Remark:	Only worse case is rep	orted.	a William					

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1817.726	56.33	-2.12	54.21	74.00	-19.79	peak
2	*	1818.202	47.21	-2.10	45.11	54.00	-8.89	AVG

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz	WILLIAM STATE	MAG			
Ant. Pol. Vertical						
Test Mode:	TX 908.9MHz					
Remark:	Only worse case is repor	ted.				

No	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1817.936	42.63	-2.10	40.53	54.00	-13.47	AVG
2		1818.122	58.31	-2.10	56.21	74.00	-17.79	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 46 of 64

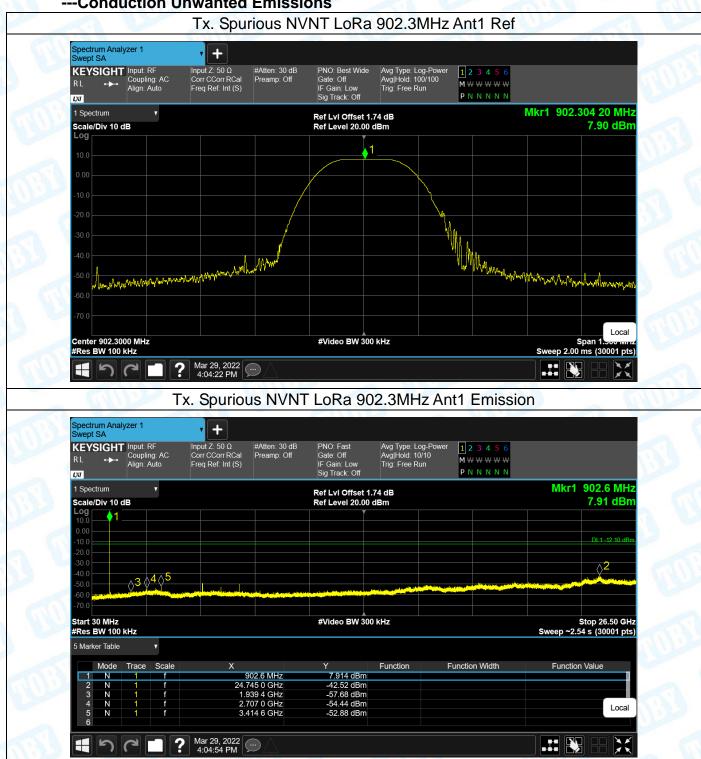
Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	MILLER					
Ant. Pol.	Horizontal						
Test Mode:	TX 914.9MHz	A U					
Remark:	Only worse case is reported	d. (1)	A WILL				

N	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	1830.010	50.71	-1.97	48.74	54.00	-5.26	AVG
2			1830.170	60.48	-1.97	58.51	74.00	-15.49	peak

Remark:

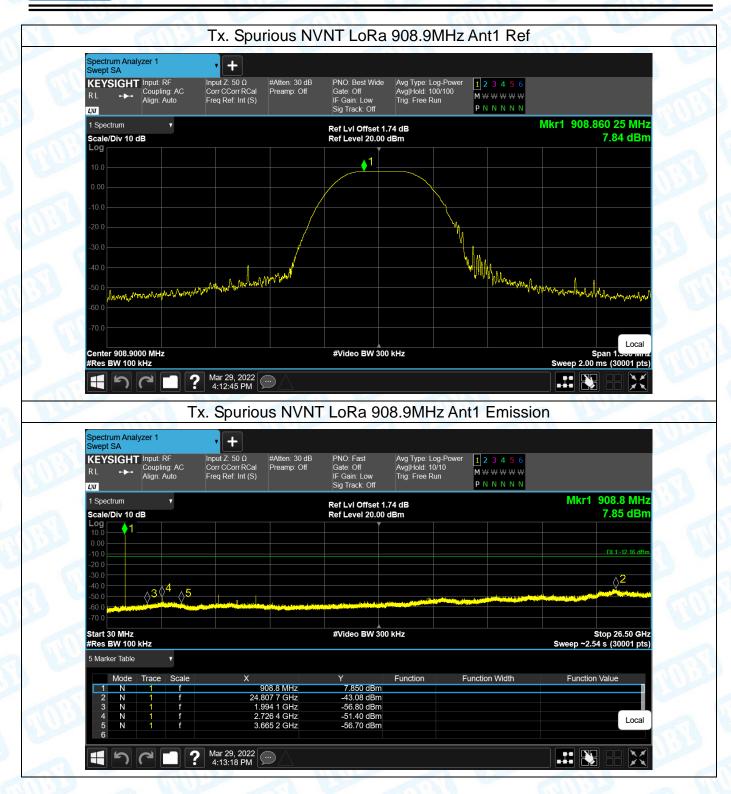
- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

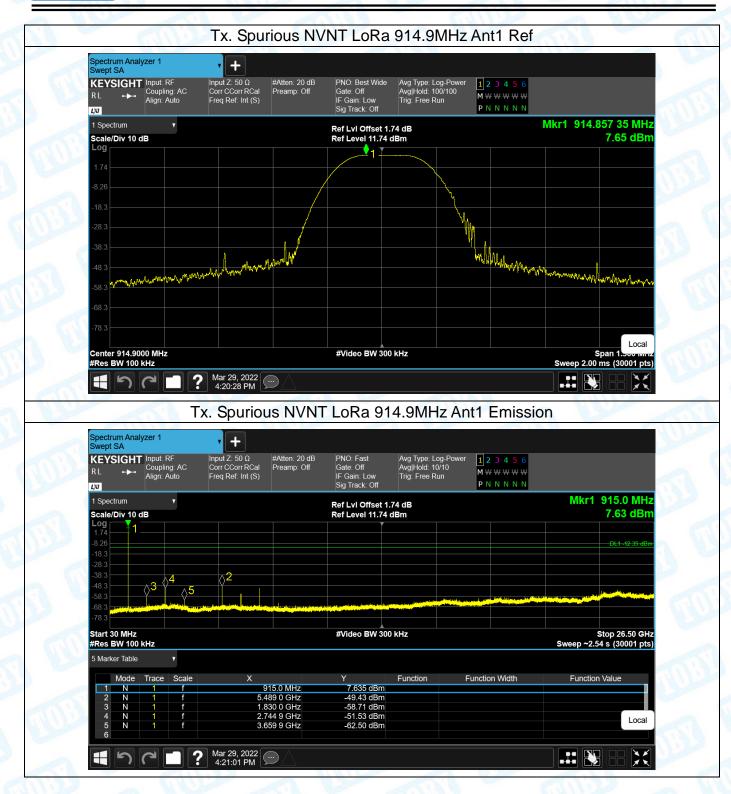
Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz	WILLIAM STATE	THUL			
Ant. Pol. Vertical						
Test Mode:	TX 914.9MHz					
Remark:	Only worse case is repor	ted.				

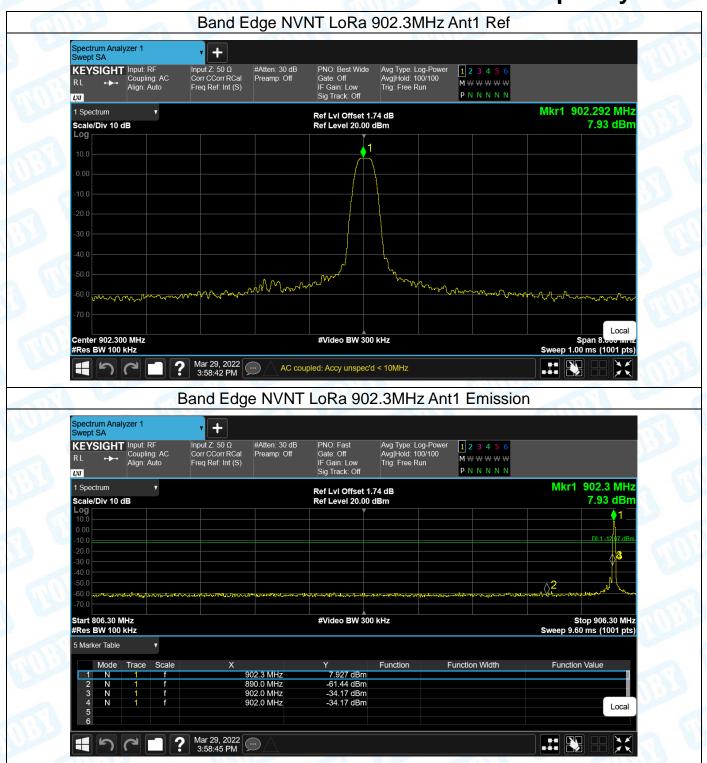

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1829.796	56.63	-1.98	54.65	74.00	-19.35	peak
2	*	1830.164	50.94	-1.97	48.97	54.00	-5.03	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

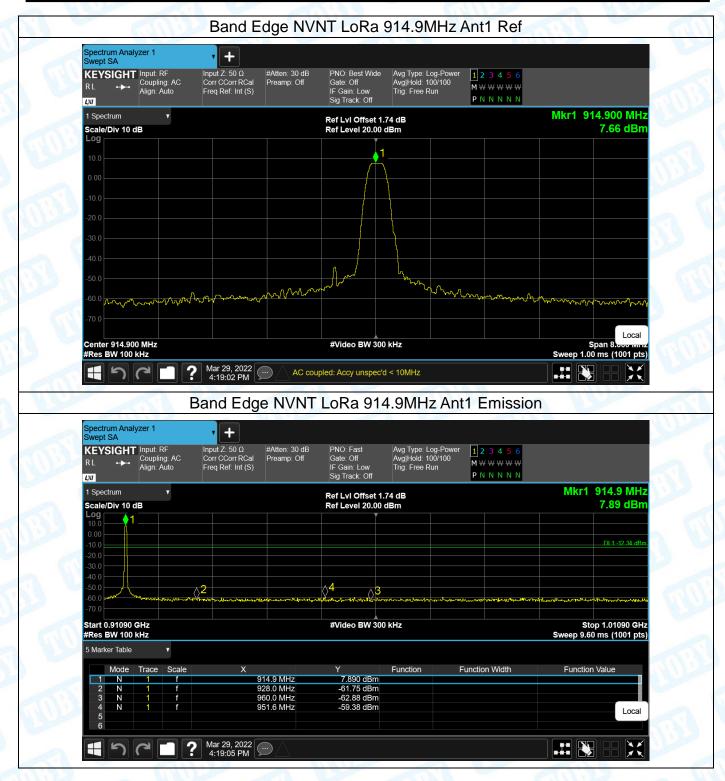
Page: 47 of 64


--- Conduction Unwanted Emissions

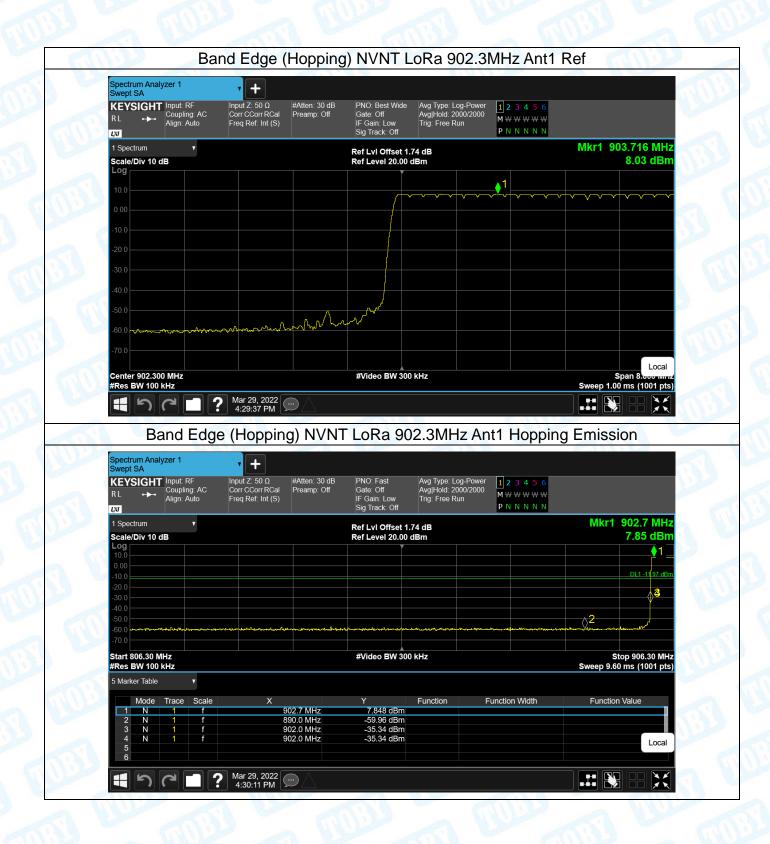

Page: 48 of 64

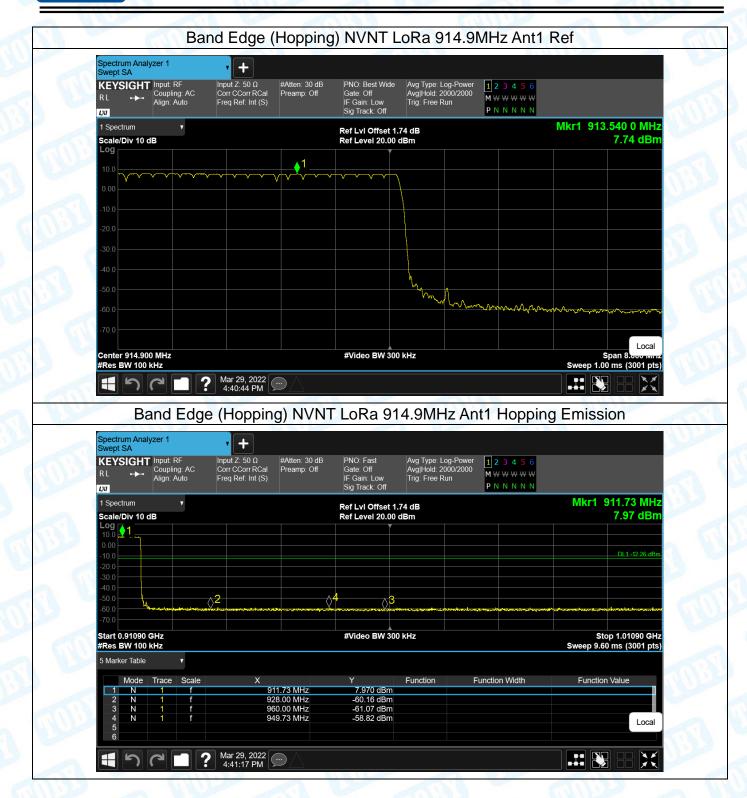

Page: 49 of 64

TOBY


Attachment C—Emissions In Nonrestricted Frequency Data

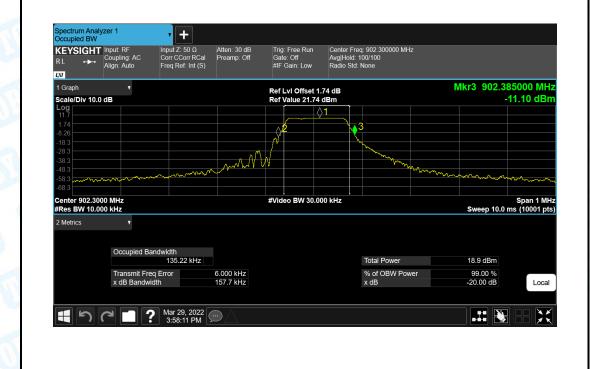
Page: 51 of 64





Page: 52 of 64

TOBY



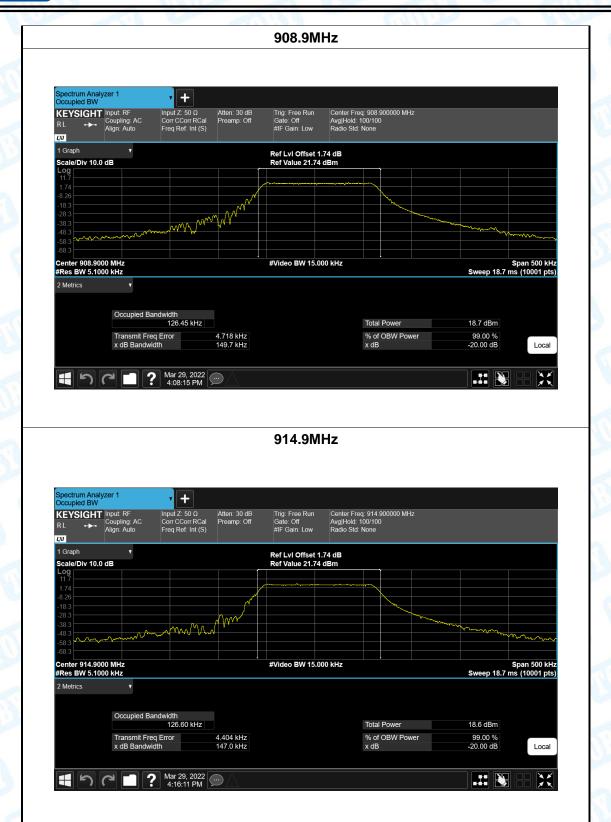
Page: 54 of 64

Attachment D—99% Occupied and 20dB Bandwidth Data

Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	DC 5	SV (TV)		
Test Mode:	TX N	lode		Ulips Cal
Channel frequency		20dB Bandwidth	20dB Bandwidth	Limit
(MHz)		(kHz)	*2/3 (kHz)	(kHz)
902.3		157.7	105.1	
908.9		908.9 158.7		/
914.9		156.5	104.3	

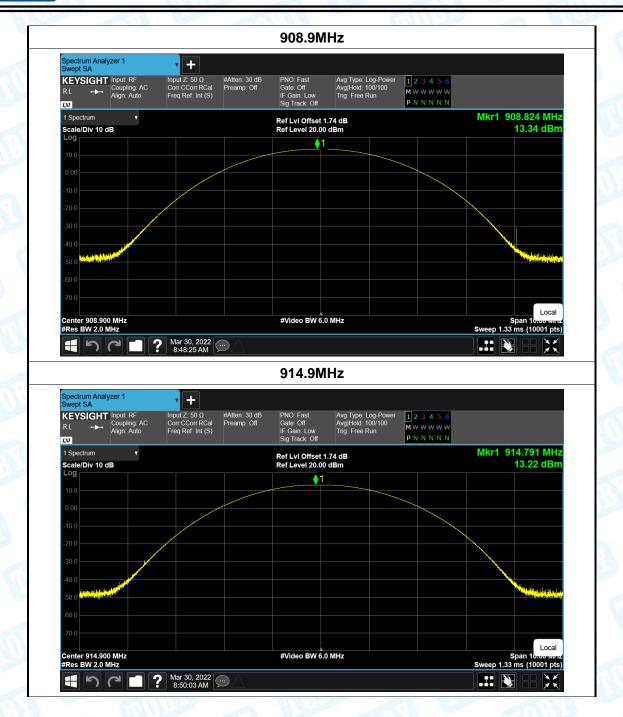
902.3MHz

Page: 55 of 64



	25℃			1 6	Relative	Hum	iaity:	55%	
est Voltage:	DC 5\	/	1100			1834			6.30
est Mode:	TX Mo	ode			183			Myle	
Channel freque	ency		99	% Bar	ndwidth				Limit
(MHz)				(kH	lz)				(kHz)
902.3				126	.39				
908.9				126	.45				/
914.9	126.60							-	
			9	902.3N	lHz			I	
RL Hard Align: Auto	AC Corr C		amp: Off (rig: Free Run Gate: Off #IF Gain: Low	Center Freq: 9/ Avg Hold: 100/ Radio Std: Nor	100			
RL Coupling: A Align: Auto 1 Graph Scale/Div 10.0 dB	AC Corr C	Corr RCal Prea	amp: Off (#	Gate: Off	Avg Hold: 100/ Radio Std: Nor 1.74 dB	100	<u>.</u>		
Coupling Align Auto 1 Graph Scale/Div 10.0 dB Log 117 1.74	AC Corr C Freq R	Corr RCal Pres	amp: Off (##	Gate: Off #IF Gain: Low ef LvI Offset	Avg Hold: 100/ Radio Std: Nor 1.74 dB	100			
Coupling Align: Auto I Graph Scale/Div 10.0 dB Log 117 1.74	AC Corr C Freq R	Corr RCal Pres	amp: Off (##	Gate: Off #IF Gain: Low ef LvI Offset	Avg Hold: 100/ Radio Std: Nor 1.74 dB	100			
Coupling Align Auto 1 Graph Scale/Div 10.0 dB Log 117 1.74	AC Corr C Freq R	Corr RCal Prea	amp: Off (##	Gate: Off #IF Gain: Low ef LvI Offset	Avg Hold: 100/ Radio Std: Nor 1.74 dB	100			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Coupling A Align. Auto 1 Graph Scale/Div 10.0 dB Loae/Div 10.0 dB 17 1.74 -8.26 -18.3 -28.3 -38.3 -48.3 -58.3 -68.3 Center 902.3000 MHz #Res BW 5.1000 kHz	AC Corr C Freq R	Corr RCal Pres	RR RR	Gate: Off #IF Gain: Low ef LvI Offset	Avg Hold 100/ Radio Std: Nor 1.74 dB 4 dBm	100		Sweep 18.	Span 500 kHz 7 ms (10001 pts)
Coupling A Align: Auto 1 Graph Scale/Div 10.0 dB Log 117 174 -8.26 -18.3 -28.3 -48.3 -58.3 Center 902.3000 MHz	AC Corr C Freq R	Corr RCal Pres	RR RR	Sate: Off IF Gain: Low of Lvi Offset of Value 21.7	Avg Hold 100/ Radio Std: Nor 1.74 dB 4 dBm	100		Sweep 18.	Span 500 kHz
Coupling Align: Auto 1 Graph Scale/Div 10.0 dB Log 1,7 1,74 -8.26 -18.3 -28.3 -48.3 -58.3 -58.3 Center 902.3000 MHz #Res BW 5.1000 kHz 2 Metrics	Corr C Freq R	Corr RCal Ref. Int (S)	RR RR	Sate: Off IF Gain: Low of Lvi Offset of Value 21.7	Avg Hold. 100/ Radio Std: Non 1.74 dB 4 dBm	100 e		·	Span 500 kHz
Coupling A Align: Auto 1 Graph Scale/Div 10.0 dB Log 117 1.74 8.26 -18.3 -28.3 -38.3 -48.3 -68.3 Center 902.3000 MHz #Res BW 5.1000 kHz 2 Metrics Occupi	Corr C Freq R	.39 kHz	RR RR	Sate: Off IF Gain: Low of Lvi Offset of Value 21.7	Avg Hold. 100/ Radio Std. Nor 1.74 dB 4 dBm	tal Power of OBW Pow		27.4 dBm 99.00 % -20.00 dB	Span 500 kHz
Coupling A Align Auto 1 Graph Scale/Div 10.0 dB Log 177 174 820 -183 -283 -38.3 -38.3 -68.3 Center 902.3000 MHz #Res BW 5.1000 kHz 2 Metrics Occupi	ied Bandwidth 126 anti Freq Error	.39 kHz	RR RR	Sate: Off IF Gain: Low of Lvi Offset of Value 21.7	Avg Hold 100/ Radio Std: Nor 1.74 dB 4 dBm	tal Power of OBW Pow		27.4 dBm 99.00 %	Span 500 kHz 7 ms (10001 pts)

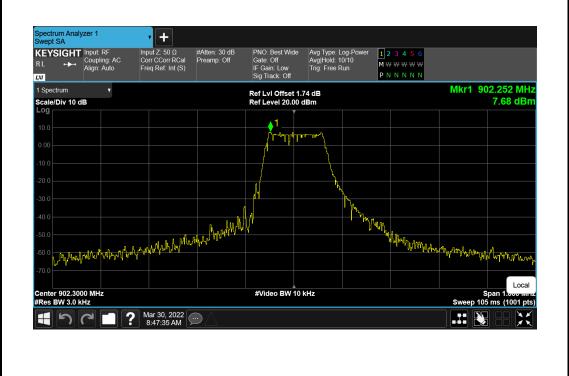
Page: 57 of 64



Attachment E—Peak Output Power Data

25℃		R	elative Hu	midity:	55%		
DC 5V	4/1/2		A 113			1 60	
TX Mode	The second	STATE OF	A.S.		MAR		
cy (MHz)	Tes	st Result	(dBm)		Limit ((dBm)	
		13.45	;				
908.9			13.34			30	
		13.22	2				
		902.3M	Hz				
+							
Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S)	#Atten: 36 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Avg Hold: 100/100 Trig: Free Run	1 2 3 4 5 6 M W W W W W P N N N N N			
					Mkr1	902.279 MHz 13.45 dBm	
		1				10.10 0.511	
						Additional and the public	
						Local	
		#Video BW 6.0	MHz		Sween 1	Span 10.00 mm/2 .33 ms (10001 pts)	
	DC 5V TX Mode cy (MHz)	DC 5V TX Mode Cy (MHz) Test Input Z: 50 Ω Corr CCorr RCal Preamp: Off	DC 5V TX Mode 13.45 13.34 13.22 902.3M 1 + Input Z: 50 \(\text{D} \) Ereq Ref. Int (S) Input Z: 50 \(\text{D} \) HAtten: 36 dB Proamp. Off Feath Cale Off Freq Ref. Int (S) Ref LvI Offset 1 Ref Level 25.00	DC 5V TX Mode cy (MHz) Test Result (dBm) 13.45 13.34 13.22 902.3MHz Input Z: 50 \(\text{Q} \) #Atten: 36 dB PNO: Fast Cade: Off Cade: Clow Freq Ref Int (S) Freamp: Off Gale: Clow Ting Free Run T	Test Result (dBm) 13.45 13.34 13.22 902.3MHz Preamp Off Gate Off IF Gain: Low Sig Track Off Freq Ref Int (S) Ref Level 25.00 dBm Test Result (dBm) 13.45 13.34 13.22 902.3MHz	TX Mode cy (MHz)	

Page: 59 of 64



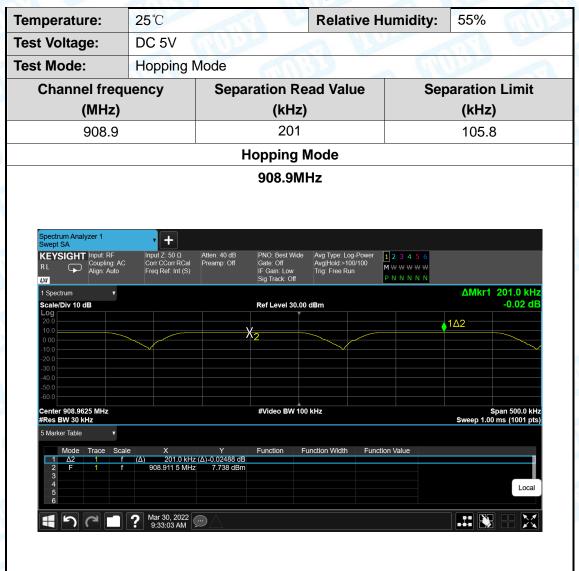
Page: 60 of 64

Attachment F—Power Spectral Density Data

Temperature:	25°C Relative		ımidity:	55%	
Test Voltage:	DC 5V				6.3
Test Mode:	TX Mode			11/20	
Channel Frequency		Power Density Li		t	Result
(MHz)		(dBm/3kHz)	(dBm/3k	(Hz)	Result
902.3		7.68			
908.9		7.61			PASS
914.9		7.95			

902.3MHz

Page: 61 of 64

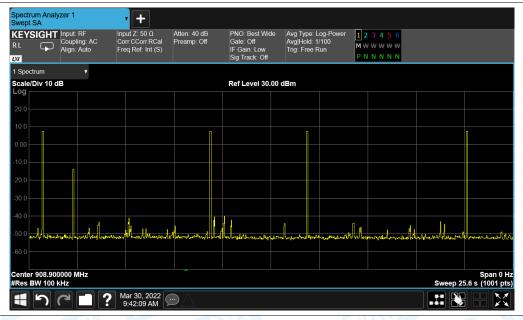


Page: 62 of 64

Attachment G—Carrier Frequency Separation Data

Report No.: TBR-C-202202-0173-1

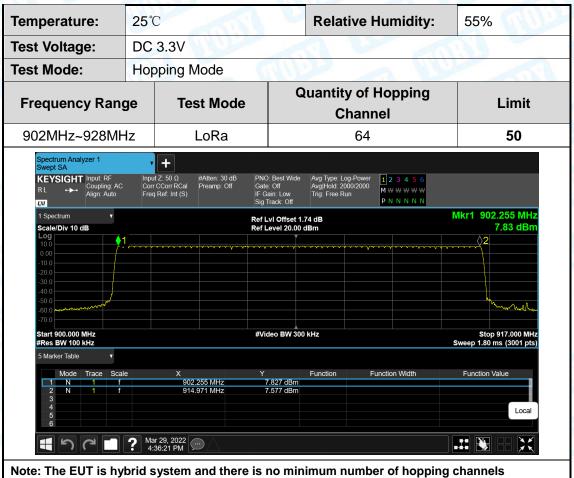
Page: 63 of 64


Attachment H—Time of Occupancy(Dwell Time) Data

Test Mode	Number of Channel	Observation Period (0.4s* Number of Channel) (s)	Max. Duration of Each Bust (s)	Number of Burst Repetition During Observation Period	Average Time of Occupancy on any Channel	Limit (s)
Hopping Mode	64	25.6	0.06	4	0.24	0.4

Burst Duration

Burst Repetition During Observation Period Duration



Page: 64 of 64

Attachment I—Number of Hopping Frequency

Note: The EUT is hybrid system and there is no minimum number of hopping channels associated with this type of hybrid system.

----END OF REPORT-----