GTS Global United Technology Services Co., Ltd.

Report No.: GTSL202106000232F01

TEST REPORT

Applicant:	Shenzhen Yingzhiqi Technology Co.Ltd
Address of Applicant: Manufacturer:	18A, Ruijun building, No. 108, Shangxing community Central Road, Xinqiao street, Bao'an District, Shenzhen Shenzhen Yingzhiqi Technology Co.Ltd
Address of Manufacturer:	18A, Ruijun building, No. 108, Shangxing community Central Road, Xinqiao street, Bao'an District, Shenzhen
Equipment Under Test (EUT)
Product Name:	Falcon 3-Axis Stabilizer for Action Camera
Model No.:	SK061, SK062
Trade Mark:	INKEE
FCC ID:	2A2GI-SK061
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Jun.18,2021
Date of Test:	Jun.18,2021- Jun.30,2021
Date of report issued:	Jun.30,2021
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Robinson Luo Laboratory Manager

e time

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description Original		
00	Jun.30,2021			
- E - E - E - E - E	5	6 6 6 6		
2 E E E E		2 B B B B		
8 8 2 8	2 9 9 8 8	8 9 8 8		
0 0 0 0 0	19 19 19 19	0 0 0 0 0		

Tested/Prepared By:

Date: sont

Project Engineer

Jun.30,2021

Check By:

objuson Lus Reviewer

Date:

Jun.30,2021

6 6 8

3 Contents

		Page
1	I COVER PAGE	1
2	2 VERSION	
2		
3		40 60
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	
	5.8 Additional Instructions	
6	6 TEST INSTRUMENTS LIST	8
7	7 TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED OUTPUT POWER	
	7.4 CHANNEL BANDWIDTH	15
	7.5 Power Spectral Density	17
	7.6 BAND EDGES	
	7.6.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	
	7.7.2 Radiated Emission Method	
8	3 TEST SETUP PHOTO	33
9	9 EUT CONSTRUCTIONAL DETAILS	

Report No.: GTSL202106000232F01

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
RF Conducted Spurious Emissions & Band Edge	15.247(d)	Pass
Radiated Spurious Emissions	15.205/15.209(a)	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Falcon 3-Axis Stabilizer for Action Camera
Model No.:	SK061
Test sample(s) ID:	GTSL202106000232-1(Engineer sample) GTSL202106000232-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	FPC Antenna
Antenna Gain:	-3.8dBi
Power Supply:	DC 3.7V Form Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: CD122 Input: AC100-240V, 50/60Hz, 500mA Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note: The line display in grey were the channel selected for testing

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-

anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accred itation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default
Duty Cycle	The EUT can be set to operate at duty cycle >=98% during the test.

6 Test Instruments list

Rad	iated Emission:		10 10 IN	45	la la	10 In
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

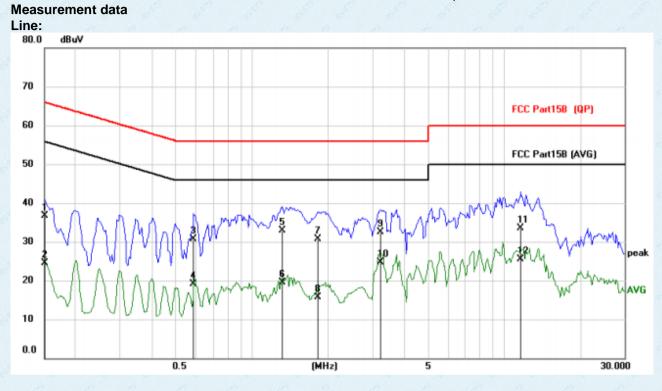
Cond	Conducted Emission						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022	
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022	
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 10 2020	July. 09 2021	

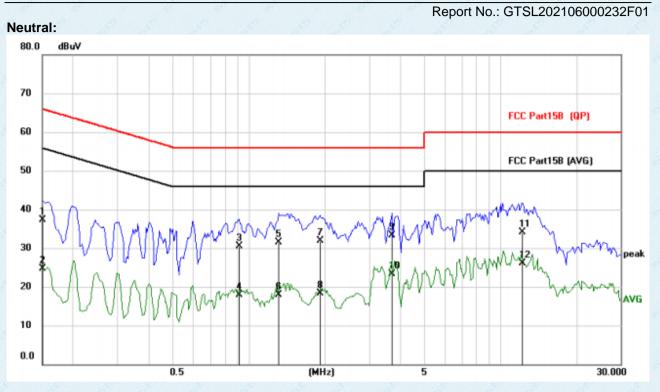
RF Conducted Test:						
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022

Gene	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
_1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022	
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022	

7 Test results and Measurement Data

7.1 Antenna requirement


	Standard requirement:	FCC Part15 C Section 15.203
4	15.203 requirement:	
	responsible party shall be u antenna that uses a unique	I be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an e coupling to the intentional radiator, the manufacturer may design the unit so be replaced by the user, but the use of a standard antenna jack or electrical
	15.247(c) (1)(i) requireme	nt:
	operations may employ tra	e 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point insmitting antennas with directional gain greater than 6dBi provided the ut power of the intentional radiator is reduced by 1 dB for every 3 dB that the nna exceeds 6dBi.
	E.U.T Antenna:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3	The antenna is PCB Anten details	na, the best case gain of the is -3.8dBi, reference to the appendix II for


7.2 Conducted Emissions

ANSI C63.10:2013	e e	6 6					
	ANSI C63.10:2013						
150KHz to 30MHz							
Class B							
RBW=9KHz, VBW=30KHz, S	weep time=auto	2 12 - 12					
	Limit	: (dBuV)					
Frequency range (MHZ)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
		46					
		50					
 line impedance stabilization 50ohm/50uH coupling impedance The peripheral devices are LISN that provides a 50ohr termination. (Please refer to 	EMI Receiver are connected to the n network (L.I.S.N.). edance for the measu also connected to th n/50uH coupling imp	This provides a uring equipment. le main power through a edance with 50ohm					
 Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10: 	d the maximum emis I all of the interface c 2009 on conducted n	sion, the relative ables must be changed					
		9 B B					
		Press.: 1012mba					
6 6 6	0270	10121100					
PASS		State of the second sec					
	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm Reference Plane 40cm 80cm Equipment E.U.T Test table/Insulation plane Remark E.U.T E.U.T Test table/Insulation plane Remark E.U.T E.U.T Test table/Insulation plane Remark E.U.T E.U.T Tad simulators at line impedance Stabilization Network Test table height=0.8m 1. The E.U.T and simulators at line impedance stabilization 500hm/50uH coupling impedance stabilization stabilization 500hm/50uH coupling impedance stabilization stabi	Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 56 5-30 60 * Decreases with the logarithm of the frequency. Reference Plane LISN 40cm 80cm Filter Ac p Function Filter AUX E.U.T Feamark E.U.T Equipment E.U.T Test table/Insulation plane EMI Remark E.U.T LUSN Line impedance Stabilization Network Test table height=0 8m 1. The E.U.T and simulators are connected to the line impedance stabilization network (L.I.S.N.). 500hm/50uH coupling impedance for the measu 2. The peripheral devices are also connected to the LISN that provides a 500hm/50uH coupling imp termination. (Please refer to the block diagram or photographs). 3. Both sides of A.C. line are checked for maximum emis positions of equipment and all of the interface craccording to ANSI C63.10:2009 on conducted m Refer to section 6.0 for details Refer to section 5.2 for details Temp.: 25 °C Humid.: 52%					

Report No.: GTSL202106000232F01

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	25.73	10.92	36.65	66.00	-29.35	QP
2		0.1500	13.53	10.92	24.45	56.00	-31.55	AVG
3		0.5868	19.74	10.92	30.66	56.00	-25.34	QP
4		0.5868	8.27	10.92	19.19	46.00	-26.81	AVG
5		1.3200	21.87	10.94	32.81	56.00	-23.19	QP
6		1.3200	8.56	10.94	19.50	46.00	-26.50	AVG
7		1.8231	19.78	10.96	30.74	56.00	-25.26	QP
8		1.8231	4.82	10.96	15.78	46.00	-30.22	AVG
9		3.2262	21.58	11.02	32.60	56.00	-23.40	QP
10	*	3.2262	13.75	11.02	24.77	46.00	-21.23	AVG
11		11.6268	22.06	11.39	33.45	60.00	-26.55	QP
12		11.6268	14.04	11.39	25.43	50.00	-24.57	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	26.41	10.92	37.33	66.00	-28.67	QP
2		0.1500	13.73	10.92	24.65	56.00	-31.35	AVG
3		0.9144	19.58	10.92	30.50	56.00	-25.50	QP
4		0.9144	6.99	10.92	17.91	46.00	-28.09	AVG
5		1.3083	20.58	10.94	31.52	56.00	-24.48	QP
6		1.3083	6.99	10.94	17.93	46.00	-28.07	AVG
7		1.9089	21.02	10.96	31.98	56.00	-24.02	QP
8		1.9089	7.30	10.96	18.26	46.00	-27.74	AVG
9		3.6981	22.25	11.04	33.29	56.00	-22.71	QP
10	*	3.6981	12.27	11.04	23.31	46.00	-22.69	AVG
11		12.2313	22.67	11.41	34.08	60.00	-25.92	QP
12		12.2313	14.72	11.41	26.13	50.00	-23.87	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

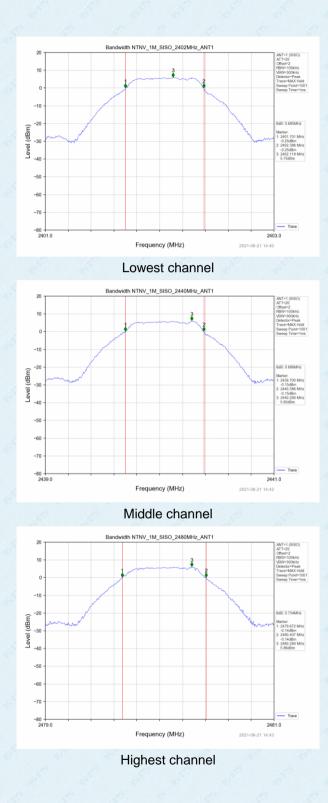
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02					
Limit:	30dBm					
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					

Measurement Data

Test channel Peak Output Power (dBm)		Limit(dBm)	Result
Lowest	6.68	6	8 6 6
Middle	6.76	30.00	Pass
Highest	6.82	2 B B	8 8 8 8

7.4 Channel Bandwidth

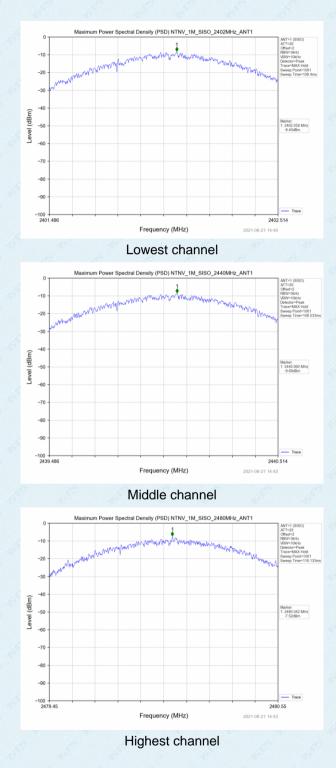
Report No.: GTSL202106000232F01


					57 57	10
Test Requirement:	FCC Part15	5 C Section	15.247 (a)(2)	6	E S	S.
Test Method:	ANSI C63.1	10:2013 and	KDB558074	D01 15.247	7 Meas Guida	nce v05r02
Limit:	>500KHz	9	8 8	C	2 8	S
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table				
		Grou	nd Reference Pla	ane		
Test Instruments: Refer to section 6.0 for details					8	6
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mba

Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.685	2 B B B	2 6 8
Middle	0.686	>500	Pass
Highest	0.734		

Test plot as follows:

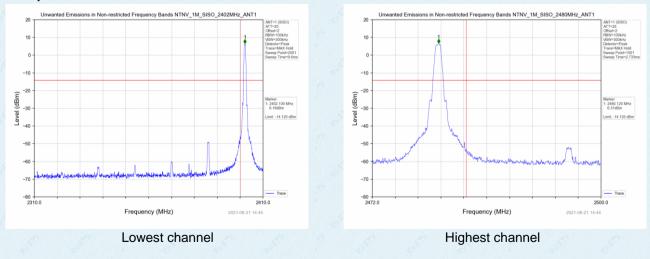

7.5 Power Spectral Density

Test Requirement:	FCC Part15	C Section	15.247 (e)	- 6	6	
Test Method:	ANSI C63.1	0:2013 and	KDB558074	D01 15.247	' Meas Guida	nce v05r02
Limit:	8dBm/3kHz	2	8 8	8	2 8	5
Test setup:	Spo	Spectrum Analyzer E.U.T Non-Conducted Table				
		Grou	nd Reference Pla	ine		8
Test Instruments:	Refer to sec	ction 6.0 for	details	e e	\$	S. S.
Test mode:	Refer to section 5.2 for details					
Test results:	Pass	8 8	de la	de de	S.	de de
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

Measurement Data

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-8.40	5 6 5	0 0 0 0
Middle	-8.69	8.00	Pass
Highest	-7.52		

Test plot as follows:



7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test Tesuits.	F d >>					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					

Test plot as follows:

Test Requirement: FCC Part15 C Section 15.209 and 15.205 Test Method: ANSI C63.10:2013 Test Frequency Range: All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed. Test site: Measurement Distance: 3m RBW VBW Receiver setup: Frequency Detector Value Peak 1MHz 3MHz Peak Above 1GHz RMS 1MHz 3MHz Average Limit: Limit (dBuV/m @3m) Value Frequency 54.00 Average Above 1GHz 74.00 Peak Test setup: Test Antenna+ <1m ... 4m > EUT Turn Table <150cm> A Receiver+ Preamplifier Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass 52% 1012mbar Test environment: Temp.: 25 °C Humid .: Press.:

7.6.2 Radiated Emission Method

Measurement Data

Operation Mode: GFSK TX Low channel(2402MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	57.33	-5.68	51.65	74.00	-22.35	peak
2390	46.97	-5.68	41.29	54.00	-12.71	AVG

Harizantal (Marat an

Frequency Meter Reading		Factor Emission Level		Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	62.28	-5.68	56.60	74.00	-17.40	peak
2390	45.93	-5.68	40.25	54.00	-13.75	AVG

Operation Mode: GFSK TX High channel (2480MHz)

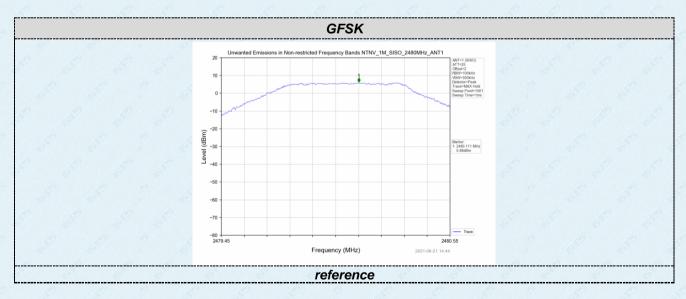
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	59.72	-5.85	53.87	74.00	-20.13	peak
2483.5	45.69	-5.85	39.84	54.00	-14.16	AVG

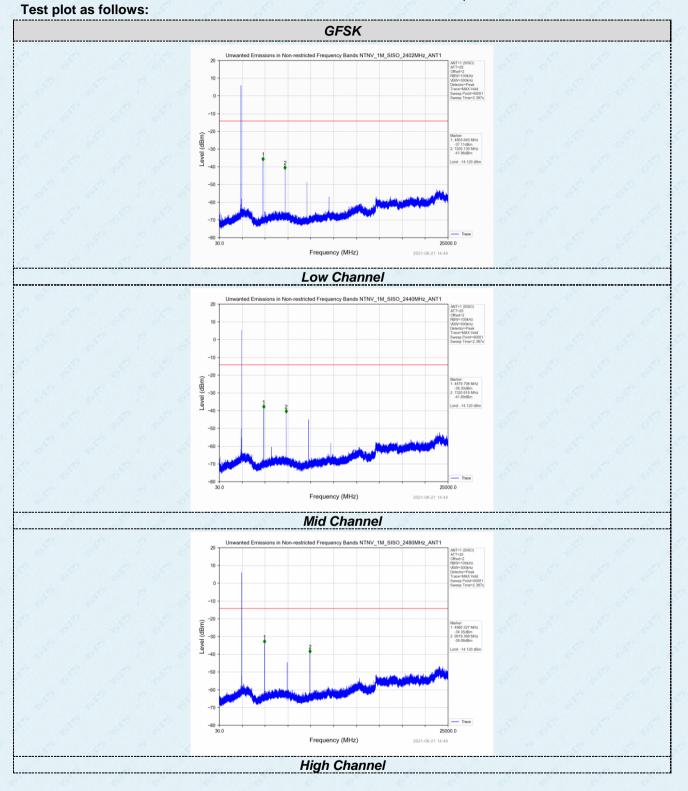
Horizontal (Worst case)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

V	ert	ica	1:
	-		

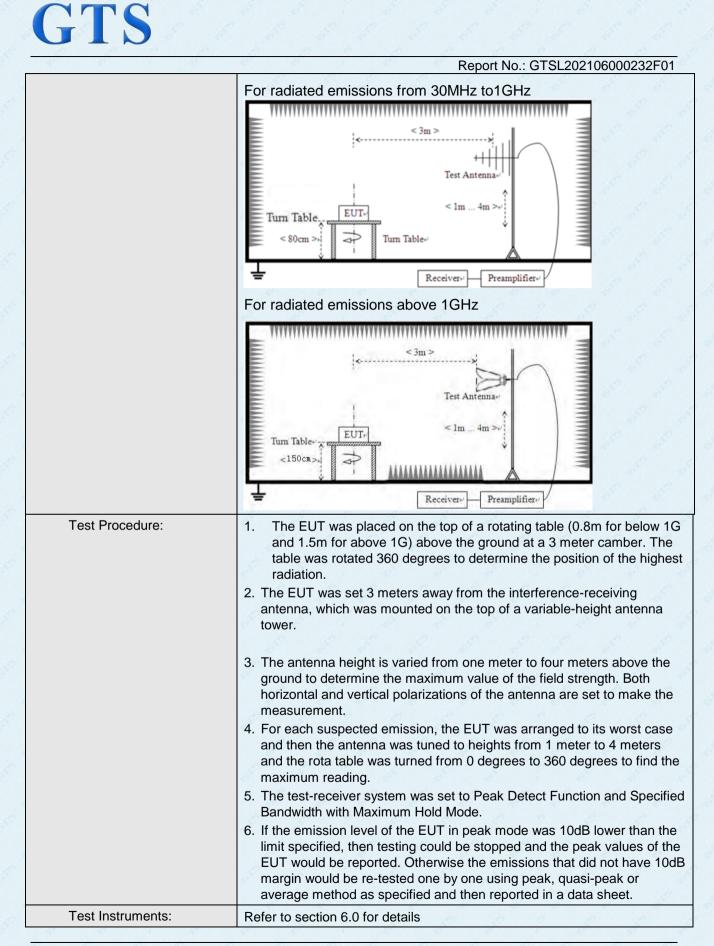
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.5	62.33	-5.85	56.48	74.00	-17.52	peak	
2483.5	46.27	-5.85	40.42	54.00	-13.58	AVG	


Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.


7.7 Spurious Emission

7.7.1 Conducted Emission Method

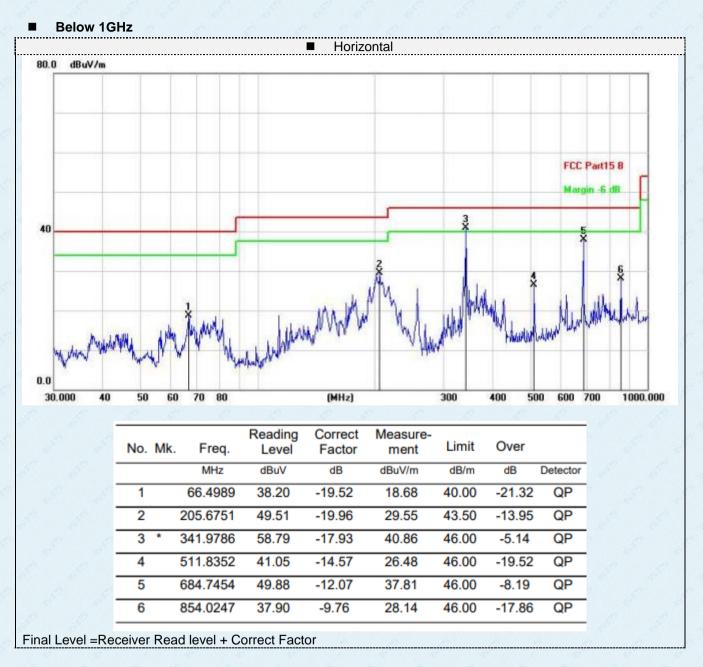
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that ir the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mba



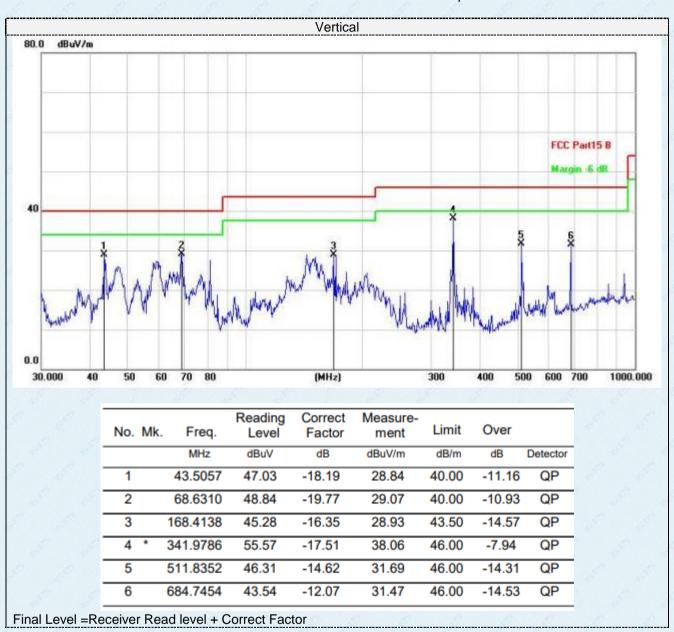
Report No.: GTSL202106000232F01

Test Requirement:	FCC Part15 C Section	on 15	5.209	6	2	1	8 8	
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	E	Detector	RB\	N	VBW	Value	
	9KHz-150KHz	Qu	uasi-peak	200	Ηz	600Hz	Quasi-peak	
	150KHz-30MHz	Qı	uasi-peak	9KH	łz	30KHz	z Quasi-peak	
	30MHz-1GHz	Qı	uasi-peak	120K	Hz	300KH	z Quasi-peak	
		Ð	Peak	1MH	Ηz	3MHz	Peak	
	Above 1GHz		Peak	1MH	Ηz	10Hz	Average	
Limit:	Frequency	e e	Limit (u\	//m)	V	alue	Measurement Distance	
	0.009MHz-0.490MHz		2400/F(ł	(Hz)		QP	300m	
	0.490MHz-1.705MHz		24000/F(KHz)	2	QP	30m	
	1.705MHz-30MHz		30	S		QP	30m	
	30MHz-88MHz		100	5	ł	QP	6	
	88MHz-216MHz	150	Carlo Carlo	6	QP			
	216MHz-960MH	200	4	2	QP	3m		
	960MHz-1GHz	500	8	Å	QP	3111		
	Above 1GHz	500		Av	erage			
	Above ronz		5000)	F	Peak		
Test setup:	For radiated emiss		< 3m >	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		z		

			rtoport rto	: GTSL202106	000202101
Refer to see	ction 5.2 fo	r details			
Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
AC 120V, 6	0Hz	R	8 5	2 1	2 8
Pass	9	2 2	D.	9 9	0
	Temp.: AC 120V, 6	Temp.: 25 °C AC 120V, 60Hz	AC 120V, 60Hz	Temp.: 25 °C Humid.: 52% AC 120V, 60Hz	Temp.: 25 °C Humid.: 52% Press.: AC 120V, 60Hz


Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Above 1GHz

CH Low (2402MHz)

Horizontal:

rionzontai.						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	3
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	62.35	-3.61	58.74	74.00	-15.26	peak
4804	45.20	-3.61	41.59	54.00	-12.41	AVG
7206	55.07	-0.85	54.22	74.00	-19.78	peak
7206	45.92	-0.85	45.07	54.00	-8.93	AVG
		e <u></u> e	1	e <u>.a</u>		S S
E E	8 8	& <u></u> &	8 8	8 - 8	8 8	<u></u>

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detecto Type
4804	62.09	-3.61	58.48	74.00	-15.52	peak
4804	45.84	-3.61	42.23	54.00	-11.77	AVG
7206	55.83	-0.85	54.98	74.00	-19.02	peak
7206	41.59	-0.85	40.74	54.00	-13.26	AVG
	6 6				g g	19
		0 0		· · · · · ·		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH Middle (2440MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dutation
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	62.37	-3.49	58.88	74.00	-15.12	peak
4880	45.80	-3.49	42.31	54.00	-11.69	AVG
7320	56.82	-0.80	56.02	74.00	-17.98	peak
7320	41.28	-0.80	40.48	54.00	-13.52	AVG
8 8	8 - 8	8 8	8 8	8 - 8	8 8	<u></u>
<u>8</u>	<u> </u>	¢	2 6	e <u>e</u> 1	<u></u>	8 0

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	8. 8
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	62.35	-3.49	58.86	74.00	-15.14	peak
4880	46.25	-3.49	42.76	54.00	-11.24	AVG
7320	55.72	-0.80	54.92	74.00	-19.08	peak
7320	42.26	-0.80	41.46	54.00	-12.54	AVG
<u></u>	<u>_</u>	<u></u> 2	2	e <u>a</u> ?	<u></u>	8 8
8 - 8	8	£ &	2 <u></u> 2	8 8	8 - 8	<u>2</u>

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH High (2480MHz)

Horizontal:

. . .

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	6
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	62.38	-3.41	58.97	74.00	-15.03	peak
4960	46.46	-3.41	43.05	54.00	-10.95	AVG
7440	55.82	-0.72	55.10	74.00	-18.90	peak
7440	44.79	-0.72	44.07	54.00	-9.93	AVG
8 8	8 8	8 8	8 8	\$ _ 8	8 8	4
<u></u>	<u>6</u>	¢ _{}	2 <u>6</u>	e <u>e</u> :	<u>6</u>	8 <u>-</u> 6

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	61.28	-3.41	57.87	74.00	-16.13	peak
4960	45.82	-3.41	42.41	54.00	-11.59	AVG
7440	56.83	-0.72	56.11	74.00	-17.89	peak
7440	45.98	-0.72	45.26	54.00	-8.74	AVG
		00		<u> </u>		<u>s s</u>
8 8	8 8	8 3	8 8	8 8	\$ \$	2

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

Report No.: GTSL202106000232F01

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----