

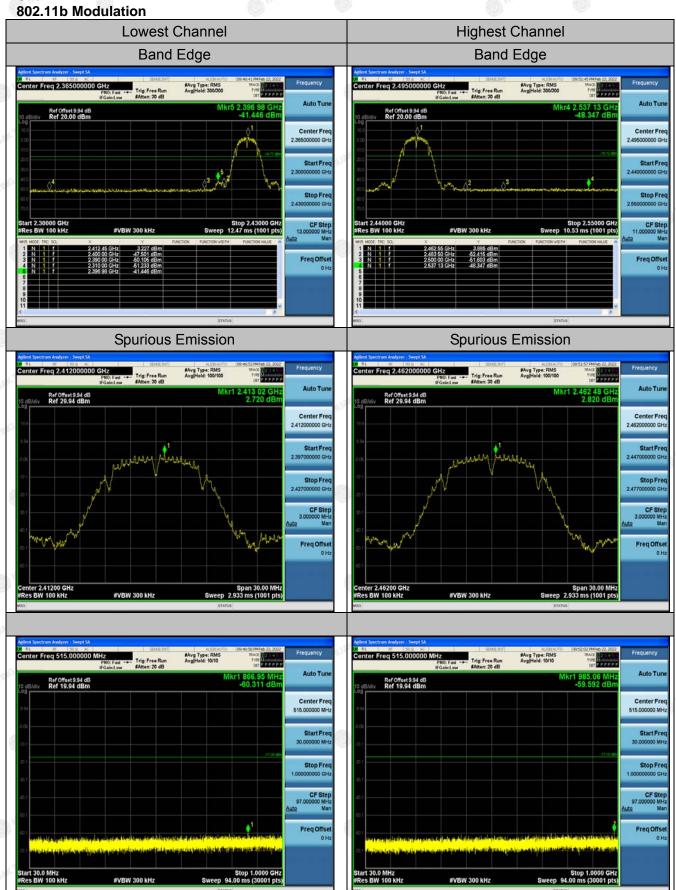
4.5. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

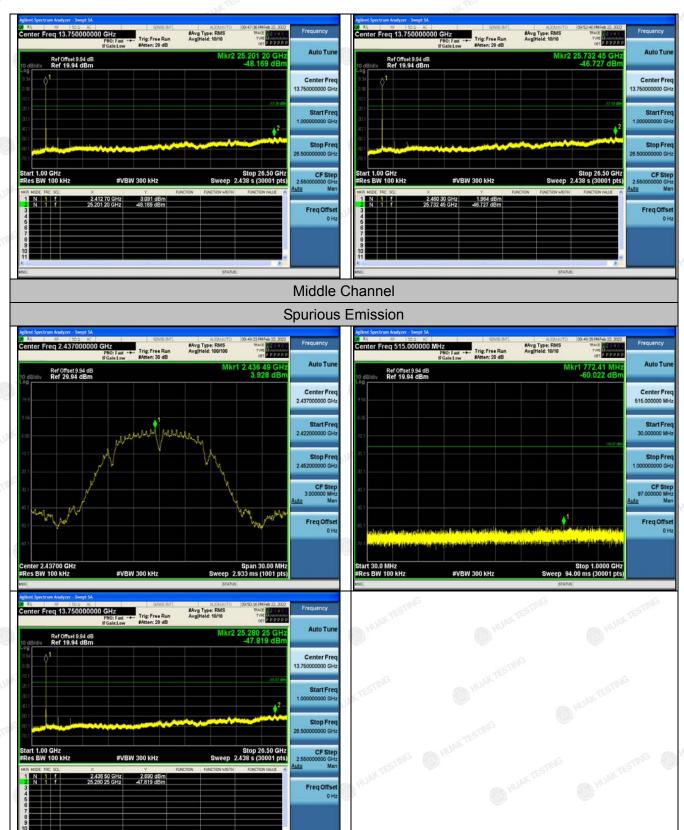
4.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


4.5.2. Test Instruments


Control of the Contro	All De All Control	130,578.5	Willy Are	400000					
RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 08, 2022					
Signal generator	Agilent	N5183A	HKE-071	Dec. 08, 2022					
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 08, 2022					
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 08, 2022					

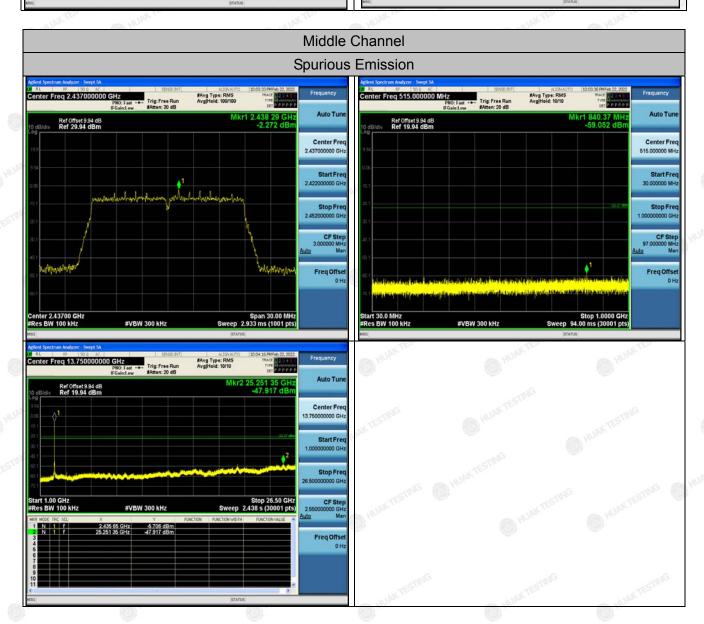
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.5.3. Test Data Chain 1 802.11b Modulation



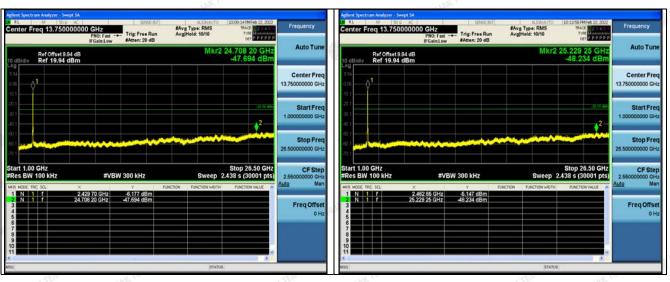
802.11g Modulation

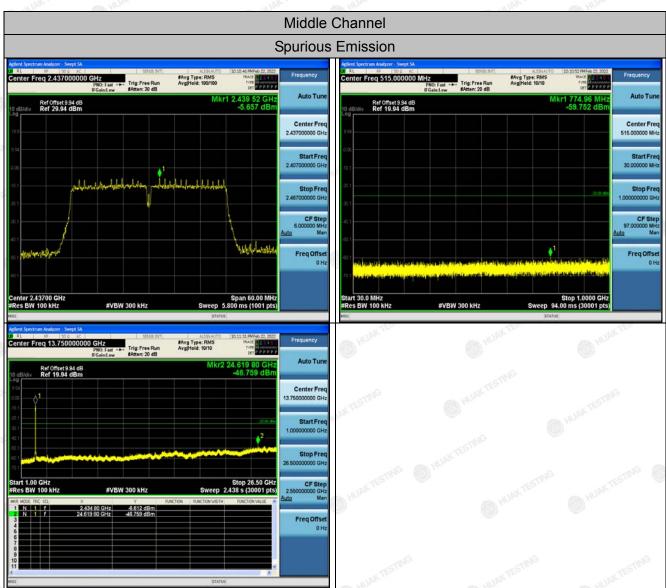
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

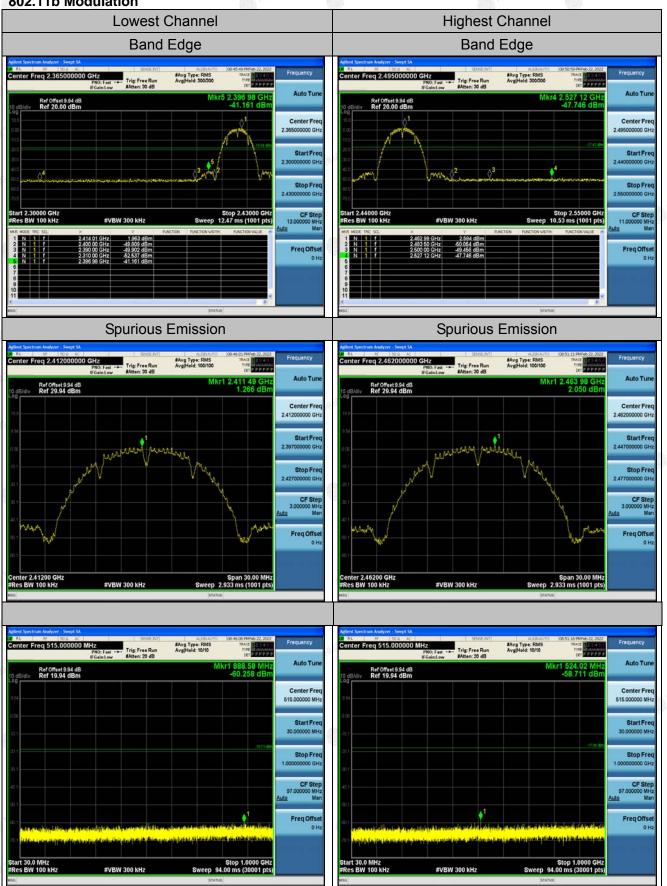

for 20 days only. The document is issued by HILAK

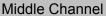
802.11n (HT20) Modulation





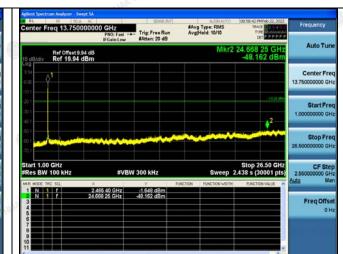



802.11n (HT40) Modulation



Chain 2 802.11b Modulation


Stop Fre

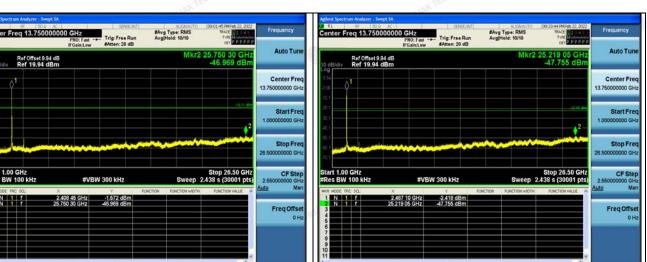

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

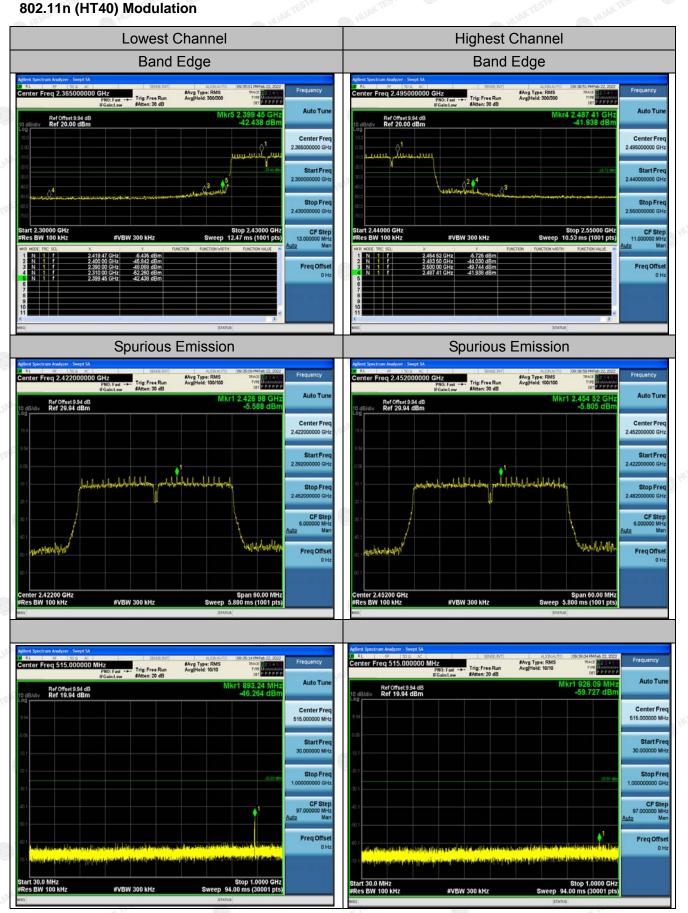
HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

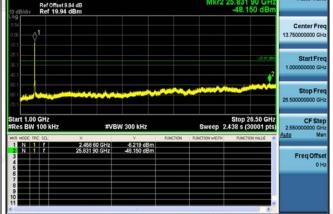
802.11g Modulation

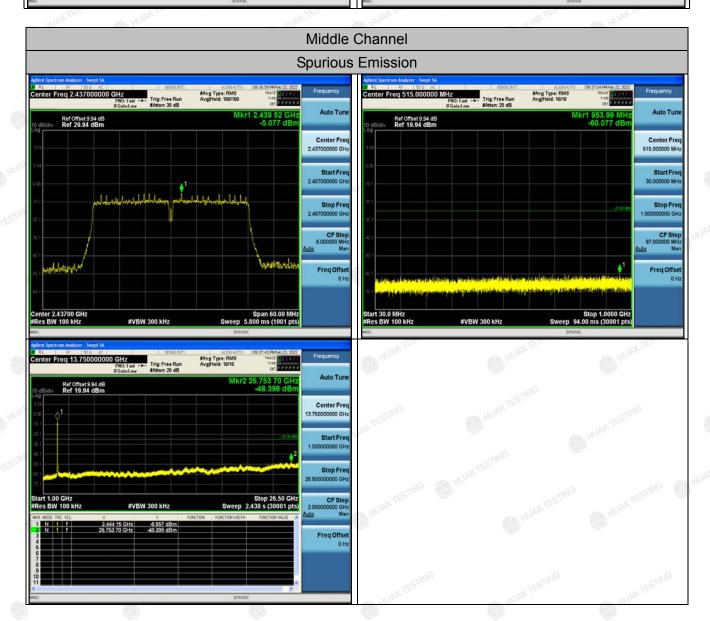
Ref Offset 9.94 dB Ref 19.94 dBm #Avg Type: RMS Avg[Hold: 10/10

Report No.: HK2202210526-E




802.11n (HT20) Modulation


000 445 (01740) 14 (15)

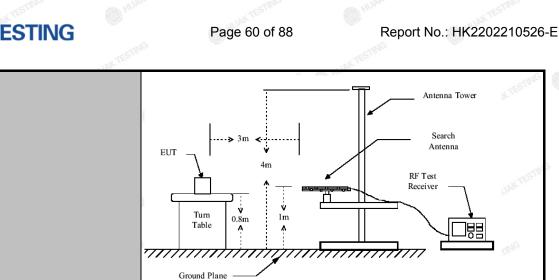


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

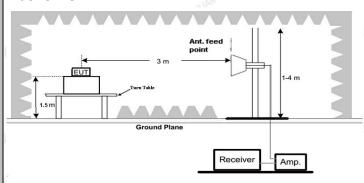
HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com


4.6. RADIATED SPURIOUS EMISSION MEASUREMENT

4.6.1. Test Specification


SkHz- 150kHz	Test Requirement:	FCC Part15	C Sec	tion	15.209	TESTI	yG	TESTI
Measurement Distance: 3 m	Test Method:	ANSI C63.10	ANSI C63.10: 2013					
Horizontal & Vertical	Frequency Range:	9 kHz to 25 (GHz			CTING		
Transmitting mode with modulation	Measurement Distance:	3 m	Y TESTING		AN HU	AKTE		TESTING
Frequency	Antenna Polarization:	Horizontal &	Vertica	al			0	HUNK
SkHz-150kHz	Operation mode:	Transmitting	mode	with	modulati	ion		
150kHz-30MHz			4.535			- 4.7	STING	Remark
South Company Compan	Receiver Setup:	150kHz-				100 A COLD		si-peak Value si-peak Value
Peak			Quasi-	peak	120KHz	300KHz	Quas	si-peak Value
Peak 1MHz 10Hz Average Vertical		Above 1GHz		14		11/46	+	eak Value
Frequency		MAN 373 13.12	Pea	ık	1MHz	10Hz	Ave	erage Value
D.490-1.705 24000/F(KHz) 30		Frequen	су			- 1(3)		
1.705-30 30 30 30 30 30 30 30		0.009-0.490).			. 43.67	
30-88							ACCOUNTS OF THE PERSON OF THE	
R8-216					300			
Test setup: 216-960 200 3					- 1/4			
Frequency Field Strength (microvolts/meter) Above 1GHz For radiated emissions below 30MHz For radiated emissions below 30MHz RX Antenna RX Antenna RX Antenna	Limit:				100 to 200 to 20	- /	STING	
Frequency Field Strength (microvolts/meter) Distance (meters) Above 1GHz 500 3 Avera 5000 3 Pea For radiated emissions below 30MHz Test setup:		1/35			500	HUAK!		3
For radiated emissions below 30MHz Test setup: Above 1GHz 5000 3 Pea		Frequency		nicrov	olts/meter)	Distan (mete	ice	Detector Average
Test setup:		Above 1GHz	*					Peak
30MHz to 1GHz	Test setup:	0.8 m		3 Gura Table	m	RX Ante)†	THE ME

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Above 1GHz

1. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level.

Test Procedure:

2. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions.

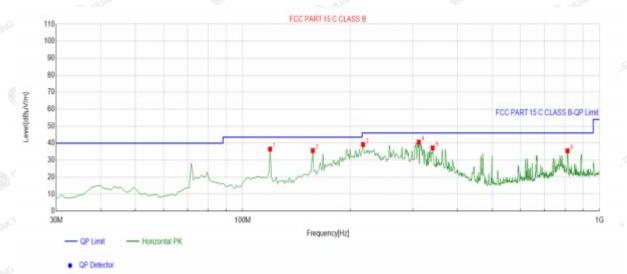
The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW;</p> Sweep = auto; Detector function = peak; Trace = (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. 6. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. **PASS** Test results:

4.6.2. Test Instruments

	Radiated En	nission Test Si	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Receiver	R&S	ESCI-7	HKE-010	Dec. 08, 2022
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 08, 2022
Preamplifier	EMCI	EMC051845S E	HKE-015	Dec. 08, 2022
Preamplifier	Agilent	83051A	HKE-016	Dec. 08, 2022
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 08, 2022
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 08, 2022
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 08, 2022
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 08, 2022
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A
RF cable	Times	1-40G	HKE-034	Dec. 08, 2022
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Dec. 08, 2022
RF Cable	Times	1-18G	HKE-099	Dec. 08, 2022

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3. Test Data

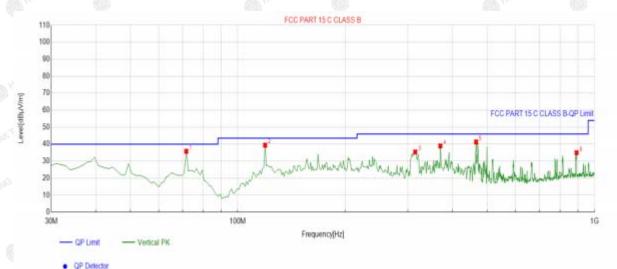

Please refer to following diagram for individual Below 1GHz

test mode: TX 802.11b 2412MHz

All the test modes completed for test. The worst case of Radiated Emission; the test data of this

mode was reported.

Horizontal


Suspe	cted List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	119.3293	-16.99	53.51	36.52	43.50	6.98	100	88	Horizontal
2	157.1972	-18.42	54.06	35.64	43.50	7.86	100	116	Horizontal
3	217.3974	-14.62	53.83	39.21	46.00	6.79	100	136	Horizontal
4	311.5816	-12.53	53.08	40.55	46.00	5.45	100	5	Horizontal
5	340.7107	-11.64	48.88	37.24	46.00	8.76	100	360	Horizontal
6	813.5736	-2.87	38.40	35.53	46.00	10.47	100	282	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Vertical

Suspe	cted List								
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	71.7518	-17.99	53.82	35.83	40.00	4.17	100	122	Vertical
2	119.3293	-16.99	56.41	39.42	43.50	4.08	100	86	Vertical
3	314.4945	-12.38	47.77	35.39	46.00	10.61	100	42	Vertical
4	369.8398	-11.01	49.98	38.97	46.00	7.03	100	332	Vertical
5	465.9660	-8.47	49.80	41.33	46.00	4.67	100	181	Vertical
6	891.2513	-1.87	36.85	34.98	46.00	11.02	100	42	Vertical

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions Frequency Range (9 kHz-30MHz)

	A.M.	4.16
Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
		
	ALTESTINE	
N. TESTING	WILE THE	MUP WTESTILL
White	100	HUN

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TIOM

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

All modes of operation were investigated and the worst-case of Antenna 1 are reported.

Horizontal:

	-6711	and HO.	-6711	The House		-CTI
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.67	-3.64	58.03	74	-15.97	peak
4824	42.08	-3.64	38.44	54	-15.56	AVG
7236	53.97	-0.95	53.02	74	-20.98	peak
7236	40.2	-0.95	39.25	[©] 54	-14.75	AVG
	Antonna Footor	. Oalda Lasa	Dro openlifor	600	HUM	HURT

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

4/4		3393	4.74	(3000)		2/4
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	60.96	-3.64	57.32	74	-16.68	peak
4824	47.08	-3.64	43.44	54	-10.56	AVG
7236	54.66	-0.95	53.71	74	-20.29	peak
7236	42.29	-0.95	41.34	^{NG} 54	-12.66	AVG
. (C)	Ho.	All HO.	ALL HO.	400	Ho.	ALL HO.

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

TESTING

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
9 4874	61.21	-3.51	57.7	74	-16.3	peak
4874	44.16	-3.51	40.65	54	-13.35	AVG
7311	53.14	-0.82	52.32	74	-21.68	peak
7311	41.72	-0.82	40.9	54	-13.1	AVG
	= Antenna Factor	+ Cable Loss – I	Pre-amplifier.	9	TESTING	AK TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	60.22	-3.51	56.71	74	-17.29	peak
4874	43.34	-3.51	39.83	54	-14.17	AVG
7311	53.18	-0.82	52.36	74	-21.64	peak
7311	40.11	-0.82	39.29	54	-14.71	AVG
25	TEL	75	TED		~5\tag{5}	1760

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
59.77	-3.43	56.34	74	-17.66	peak
41.86	-3.43	38.43	54	-15.57	AVG
52.15	-0.75	51.4	74	-22.6	peak
38.9	-0.75	38.15	54	-15.85	AVG
	(dBμV) 59.77 41.86 52.15	(dBµV) (dB) 59.77 -3.43 41.86 -3.43 52.15 -0.75	(dBμV) (dB) (dBμV/m) 59.77 -3.43 56.34 41.86 -3.43 38.43 52.15 -0.75 51.4	(dBμV) (dB) (dBμV/m) (dBμV/m) 59.77 -3.43 56.34 74 41.86 -3.43 38.43 54 52.15 -0.75 51.4 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 59.77 -3.43 56.34 74 -17.66 41.86 -3.43 38.43 54 -15.57 52.15 -0.75 51.4 74 -22.6

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.87	-3.43	57.44	74	-16.56	peak
4924	46.21	-3.43	42.78	54	-11.22	AVG
7386	55.32	-0.75	54.57	74	-19.43	peak
7386	40.37	-0.75	39.62	54	-14.38	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412 All modes of operation were investigated and the worst-case of Antenna 1 are reported.

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.71	-3.64	57.07	74 max	-16.93	peak
4824	45.92	-3.64	42.28	54	-11.72	AVG
7236	57.59	-0.95	56.64	74	-17.36	peak
7236	43.54	-0.95	42.59	54	-11.41 [©]	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	58.87	-3.64	55.23	74 HUAN	-18.77	peak
4824	41.95	-3.64	38.31	54	-15.69	AVG
7236	52.43	-0.95	51.48	74	-22.52	peak
7236	39.98	-0.95	39.03	54	-14.97	AVG
-	-	(89)			(\$19)	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	59.71	-3.51	56.2	74	-17.8	peak
4874	45.8	-3.51	42.29	54	-11.71	AVG
7311	53.17	-0.82	52.35	74	-21.65	peak
7311	42.2	-0.82	41.38	54	-12.62	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss – I	Pre-amplifier		ESTING	TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	60.39	-3.51	56.88	74	-17.12	peak
4874	45.18	-3.51	41.67	54	-12.33	AVG
7311	56.73	-0.82	55.91	74	-18.09	peak
7311	40.79	-0.82	39.97	54	-14.03	AVG
TESTINE -	NY TEST	CHAIN TES	WOOK TEST	1	TESTINE	N TEST

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.99	-3.43	57.56	74	-16.44	peak
4924	42.62	-3.43	39.19	54	-14.81	AVG
7386	58.13	-0.75	57.38	74	-16.62	peak
7386	40.14	-0.75	39.39	54	-14.61	AVG
an/G	THE STATE ST		THE CTION	(89)	-MG	TIME

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	60.47	-3.43	57.04	74	₅ -16.96	peak
4924	43.25	-3.43	39.82	54	-14.18	AVG
7386	54.1	-0.75	53.35	74 STING	-20.65	peak
7386	41.44	-0.75	40.69	54	-13.31	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

MIMO:

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits 💮	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.05	-3.64	57.41	74	-16.59	peak
4824	42.7	-3.64	39.06	54	-14.94	AVG
7236	54.88	-0.95	53.93	74	-20.07	peak
7236	41.4	-0.95	40.45	54	-13.55	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

400	a NV		40% VV	attle M		alle VIV
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	59.97	-3.64	56.33	74	-17.67	peak
4824	44.49	-3.64	40.85	54	-13.15	AVG
7236	54.24	-0.95	53.29	74	-20.71	peak
7236	40.17	-0.95	39.22	54	-14.78	AVG
		!				

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874.00	60.06	-3.51	56.55	74.00	-17.45	peak
4874.00	45.52	-3.51	42.01	54.00	-11.99	AVG
7311.00	57.57	-0.82	56.75	74.00	-17.25	peak
7311.00	42.99	-0.82	42.17	54.00	-11.83	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss – F	Pre-amplifier	000	JAK TESTING	- JUAK TESTIL

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874.00	58.02	-3.51	54.51	74.00	-19.49	peak
4874.00	42.17	-3.51	38.66	54.00	-15.34	AVG
7311.00	54.19	-0.82	53.37	74.00	-20.63	peak
7311.00	40.57	-0.82	39.75	54.00	-14.25	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

TESTING TESTING

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data dan Termi
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	63.43	-3.43	60	74	-14	peak
4924	41.81	-3.43	38.38	54 MV	-15.62	AVG
7386	57.42	-0.75	56.67	74	-17.33	peak
7386	39.38	-0.75	38.63	54 KTESTI	-15.37	AVG
	= Antenna Factor	+ Cable Loss – F	Pre-amplifier.	Mc D Ho	TESTING	W TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	STIM
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	62.52	-3.43	59.09	74	-14.91	peak
4924	43.18	-3.43	39.75	54	-14.25	AVG
7386	54.49	-0.75	53.74	74	-20.26	peak
7386	41.19	-0.75	40.44	54	-13.56	AVG
-1016	~ (U.) (ED)		The Older	11,000	Olor	-TITUS

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D TSTIN
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	57.67	-3.63	54.04	74	-19.96	peak
4844	41.62	-3.63	37.99	54	-16.01	AVG
7266	54.23	-0.94	53.29	74	-20.71	peak
7266	41.87	-0.94	40.93	54	-13.07	AVG
	= Antenna Factor	+ Cable I oss – F	Pre-amplifier	We Willy	STING	TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector TS/m
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	59.13	-3.63	55.5	74	-18.5	peak
4844	43.81	-3.63	40.18	54	-13.82	AVG
7266	54.96	-0.94	54.02	74	-19.98	peak
7266	41.73	-0.94	40.79	54	-13.21	AVG
-11/2	4511		-111a		-711/2	25W

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data da Estill
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	59.06	-3.51	55.55	74	-18.45	peak
4874	44.39	-3.51	40.88	54	-13.12	AVG
7311	55.53	-0.82	54.71	74	-19.29	peak
7311	42.05	-0.82	41.23	54	-12.77	AVG
	= Antenna Factor	+ Cable Loss – F	Pre-amplifier.	Inc Direct	STING	TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- STINK
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	60.32	-3.51	56.81	74	-17.19	peak
4874	41.03	-3.51	37.52	54	-16.48	AVG
7311	54.42	-0.82	53.6	74	-20.4	peak
7311	39.08	-0.82	38.26	54	-15.74	AVG
-71016	-STITUTE OF	1	TING ST	11.	TING	STA

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. t t TSTIN
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	58.63	-3.43	55.2	74	-18.8	peak
4904	41.11	-3.43	37.68	54 ALL	-16.32	AVG
7356	53.75	-0.75	53	74	-21	peak
7356	39.98	-0.75	39.23	54 (15511	-14.77	AVG

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
56.69	-3.43	53.26	74	-20.74	peak
47.27	-3.43	43.84	54	-10.16	AVG
51.61	-0.75	50.86	74	-23.14	peak
42.24	-0.75	41.49	54	-12.51	AVG
	(dBμV) 56.69 47.27 51.61	(dBμV) (dB) 56.69 -3.43 47.27 -3.43 51.61 -0.75	(dBμV) (dB) (dBμV/m) 56.69 -3.43 53.26 47.27 -3.43 43.84 51.61 -0.75 50.86	(dBμV) (dB) (dBμV/m) (dBμV/m) 56.69 -3.43 53.26 74 47.27 -3.43 43.84 54 51.61 -0.75 50.86 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 56.69 -3.43 53.26 74 -20.74 47.27 -3.43 43.84 54 -10.16 51.61 -0.75 50.86 74 -23.14

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode: 802.11b Mode TX CH Low (2412MHz)

All modes of operation were investigated and the worst-case of Antenna 1 are reported.

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastic Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	57.66	5.81	51.85	74	-22.15	peak
2310	TESTING WHUP	-5.81	SING / TESTIN	54	1 STING	AVG
2390	60.93	-5.84	55.09	74	-18.91	peak
2390	51.28	-5.84	45.44	54	-8.56	AVG
2400	59.47	-5.84	53.63	74	-20.37	peak
2400	47.61	-5.84	41.77	54	-12.23	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Torre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.95	-5.81	51.14	74	-22.86	peak
2310	1	-5.81	1	54	1	AVG
2390	63.27	-5.84	57.43	^{NG} 74	-16.57	peak
2390	45.95	-5.84	40.11	54	-13.89	AVG
2400	61.09	-5.84	55.25	74	-18.75	peak
2400	45.63	-5.84	39.79	54	-14.21	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Meter Reading	Factor	Emission Level	S Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
56.24	-5.65	50.59	74	-23.41	peak
ESTING /	-5.65	"IAN JESTING	54	1	AVG
53.87	-5.65	48.22	74	-25.78	peak
MA HUA	-5.65	1	54	1	AVG
	(dBµV) 56.24	(dBµV) (dB) 56.24 -5.65 / -5.65 53.87 -5.65	(dBμV) (dB) (dBμV/m) 56.24 -5.65 50.59 / -5.65 / 53.87 -5.65 48.22	(dBμV) (dB) (dBμV/m) (dBμV/m) 56.24 -5.65 50.59 74 / -5.65 / 54 53.87 -5.65 48.22 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 56.24 -5.65 50.59 74 -23.41 / -5.65 / 54 / 53.87 -5.65 48.22 74 -25.78

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.43	-5.65	50.78	74	-23.22	peak
2483.50	1	-5.65	HUPKI	54	1	AVG
2500.00	55.22	-5.65	49.57	74	-24.43	peak
2500.00	JAK TESTING	-5.65	TIME JUANTESTA	54	AK TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)
All modes of operation were investigated and the worst-case of Antenna 1 are reported.

Horizontal

-allo	- allo	Alexander and the second			allo-	Alm.
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.28	-5.81	49.47	74 HUAN	-24.53	peak
2310	/	-5.81	(I) HUAK TE	54	1	AVG
2390	60.14	-5.84	54.3	74 75 711	-19.7	peak
2390	45.66	-5.84	39.82	54	-14.18	AVG
2400	61.38	-5.84	55.54	74	-18.46	peak
2400	40.42	-5.84	34.58	54	-19.42	AVG
emark: Factor	= Antenna Factor +	- Cable Loss -	Pre-amplifier.	NG.	TESTING	TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata a Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.21	-5.81	49.4	74	-24.6	peak
2310	MAKTESTI /	-5.81	STANKE HUANTESTA	54	MAK TETING	AVG
2390	61.04	-5.84	55.2	74	-18.8	peak
2390	44.45	-5.84	38.61	54	-15.39	AVG
2400	61.03	-5.84	55.19	74	-18.81	peak
2400	43.99	-5.84	38.15	54	-15.85	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
57.12	-5.65	51.47	74	-22.53	peak
ESTING /	-5.65	THESTING	54	1	AVG
54.76	-5.65	49.11	74	-24.89	peak
me musi	-5.65	1	54	1	AVG
	(dBµV) 57.12	(dBμV) (dB) 57.12 -5.65 / -5.65 54.76 -5.65	(dBμV) (dB) (dBμV/m) 57.12 -5.65 51.47 / -5.65 / 54.76 -5.65 49.11	(dBμV) (dB) (dBμV/m) (dBμV/m) 57.12 -5.65 51.47 74 / -5.65 / 54 54.76 -5.65 49.11 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 57.12 -5.65 51.47 74 -22.53 / -5.65 / 54 / 54.76 -5.65 49.11 74 -24.89

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data Max Testine
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.74	-5.65	49.09	74	-24.91	peak
2483.50	1	-5.65	WHU AK TO	54	1	AVG
2500.00	52.36	-5.65	46.71	74	-27.29	peak
2500.00	JAKTESTING (II)	-5.65	E TIME I LAK TESTIN	54	NY ESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

MIMO:

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

	- 1111	MA.	100		212	211
Frequency	Meter Reading	Factor	Emission Level	Limits 💮	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	54.43	-5.81	48.62	74	-25.38	peak
2310	1	-5.81	1	54	,	AVG
2390	60.77	-5.84	54.93	74	-19.07	peak
2390	48.98	-5.84	43.14	54	-10.86	AVG
2400	57.07	-5.84	51.23	74	-22.77	peak
2400	44.94	-5.84	39.1	54	-14.9	AVG
Jamania Faston -	- Antonna Factor	ı Cabla Lasa	Dro amplifor	7.4	OKTESTI	AKTESTIL

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Tune
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.65	-5.81	49.84	74	-24.16	peak
2310	JAN- /	-5.81	₩ MIAN	54	HUAK	AVG
2390	62.99	-5.84	57.15	74	-16.85	peak
2390	47.42	-5.84	41.58	_s 54	-12.42	AVG
2400	60.56	-5.84	54.72	74	-19.28	peak
2400	41.28	-5.84	35.44	54	-18.56	AVG
	41.20	LAKTESTIIL	35.44)4 	-10.50	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

S FIL

Operation Mode: TX CH High (2462MHz)

Horizontal

Meter Reading	Factor	Emission Level	Limits	Margin	Data at a Truna
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
57.49	-5.65	51.84	74	-22.16	peak
Who I	-5.65	TAN ESTING	54	1	AVG
55.23	-5.65	49.58	74	-24.42	peak
THE HUAN	-5.65	1	54	1	AVG
	57.49	57.49 -5.65 / -5.65 55.23 -5.65	57.49 -5.65 51.84 / -5.65 / 55.23 -5.65 49.58	57.49 -5.65 51.84 74 / -5.65 / 54 55.23 -5.65 49.58 74	57.49 -5.65 51.84 74 -22.16 / -5.65 / 54 / 55.23 -5.65 49.58 74 -24.42

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tyra
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	57.12	-5.65	51.47	74	-22.53	peak
2483.50	I	-5.65	HUAK	54	1	AVG
2500.00	53.35	-5.65	47.7	74	-26.3	peak
2500.00	JAK TESTING (II)	-5.65	TIME LAKTESTIN	54	NY ESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	M Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	57.05	-5.81	51.24	74	-22.76	peak
2310	ESTITUE /	-5.81	WAY TESTING	54	1	AVG
2390	61.56	-5.84	55.72	74	-18.28	peak
2390	46.32	-5.84	40.48	54	-13.52	AVG
2400	60.11	-5.84	54.27	74	-19.73	peak
2400	44.25	-5.84	38.41	54	-15.59	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	TESTING _
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	58.55	-5.81	52.74	74	-21.26	peak
2310	AKTESTA /	-5.81	FILM TEST	54	HUAK TSTING	AVG
2390	60.13	-5.84	54.29	74	-19.71	peak
2390	46.36	-5.84	40.52	54	-13.48	AVG
2400	59.76	-5.84	53.92	74	-20.08	peak
2400	42.41	-5.84	36.57	54	-17.43	AVG
	THE STATE	" I AIR	- MG	100		THE STATE

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Operation Mode: TX CH High (2452MHz)

Horizontal

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
56.76	-5.65	51.11	74	-22.89	peak
ESTING /	-5.65	"IAN JESTING	54	1	AVG
53.67	-5.65	48.02	74	-25.98	peak
MUA MUA	-5.65	1	54	1	AVG
	(dBµV) 56.76	(dBµV) (dB) 56.76 -5.65 / -5.65 53.67 -5.65	(dBμV) (dB) (dBμV/m) 56.76 -5.65 51.11 / -5.65 / 53.67 -5.65 48.02	(dBμV) (dB) (dBμV/m) (dBμV/m) 56.76 -5.65 51.11 74 / -5.65 / 54 53.67 -5.65 48.02 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 56.76 -5.65 51.11 74 -22.89 / -5.65 / 54 / 53.67 -5.65 48.02 74 -25.98

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Day all All Testine
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	56.34	-5.65	50.69	74	-23.31	peak
2483.50	1	-5.65	HUAKTE	54	1	AVG
2500.00	55.87	-5.65	50.22	74	-23.78	peak
2500.00	JAK TESTING W	-5.65	STING / LAK TESTIN	54	NY ESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.7. ANTENNA REQUIREMENT

Standard Applicable

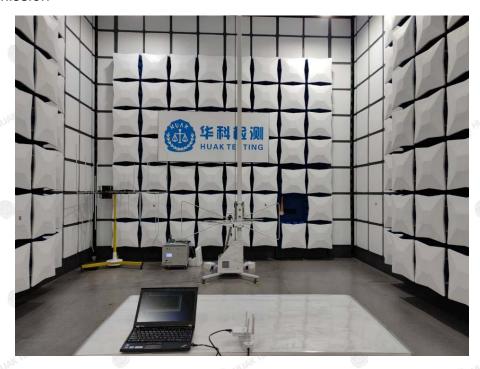
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

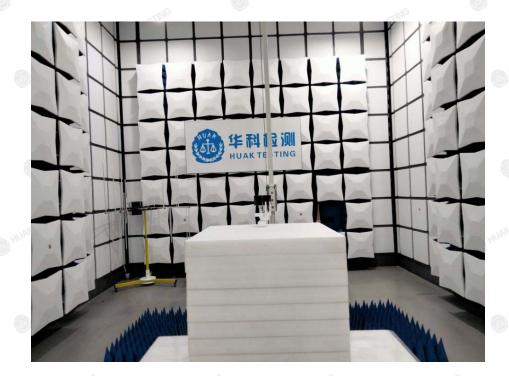
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a External Antenna, which permanently attached. It conforms to the standard requirements. and the best case gain of the antenna is Antenna port 1:1dBi and Antenna port 2:1dBi.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5. PHOTOGRAPH OF TEST

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com