

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101270

FCC REPORT (WIFI)

Applicant: Nu Era Telecom Inc

Address of Applicant: 1688 Meridian Av. Suite 700, Miami Beach, FL, US

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: X7

Trade mark: XMOBILE

FCC ID: 2A2ERXMOX7

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 05 Jul., 2021

Date of Test: 05 Jul., to 29 Jul., 2021

Date of report issued: 30 Jul., 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	30 Jul., 2021	Original

Tested by: Janet Wei Date: 30 Jul., 2021
Test Engineer

Reviewed by: _____ Date: ____ 30 Jul., 2021

Project Engineer

Contents

			Page
1	COVER PAG	GE	1
2	VERSION		2
3		S	9
4		MARY	
5	GENERAL II	INFORMATION	5
	5.1 CLIENT	r Information	5
		RAL DESCRIPTION OF E.U.T	
		ENVIRONMENT AND MODE	
	5.4 DESCRI	RIPTION OF SUPPORT UNITS	6
		JREMENT UNCERTAINTY	
		ATORY FACILITY	
	5.7 LABORA	ATORY LOCATION	6
	5.8 TEST IN	NSTRUMENTS LIST	7
6	TEST RESU	ULTS AND MEASUREMENT DATA	8
	6.1 ANTENN	INA REQUIREMENT	8
		JCTED EMISSION	
		JCTED OUTPUT POWER	
		PY BANDWIDTH	
		R SPECTRAL DENSITY	
		EDGE	
		nducted Emission Method	
		diated Emission Method	
		OUS EMISSION	
		nducted Emission Method	
	6.7.2 Radi	diated Emission Method	30
7	TEST SETU	JP PHOTO	36
8	FUT CONST	TRUCTIONAL DETAILS	27
J	LUI CONSI	'	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result			
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass			
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass			
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass			
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass			
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass			
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass			
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass			
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass			
Conducted Spurious Emission	45 205 8 45 200	Appendix A – 2.4G Wi-Fi	Pass			
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass			

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	Nu Era Telecom Inc	
Address:	1688 Meridian Av.Suite 700, Miami Beach, FL, US	
Manufacturer: Nu Era Telecom Inc		
Address:	1688 Meridian Av.Suite 700, Miami Beach, FL, US	

5.2 General Description of E.U.T.

Product Name:	Tablet PC			
Model No.:	X7			
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)			
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)			
Channel separation:	5MHz			
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)			
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)			
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps			
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps			
Data speed (IEEE 802.11n):	Up to 72.2Mbps			
Antenna Type:	Internal Antenna			
Antenna gain:	3.48dBi			
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2500mAh			
AC adapter:	Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 1000mA			
Test Sample Condition:	The test samples were provided in good working order with no visible defects.			

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3 2422MHz 6 2437MHz 9 2452MHz							

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.					
Mode Data rate					
802.11b	1Mbps				
802.11g	6Mbps				
802.11n(HT20)	6.5Mbps				

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)	

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\	ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021
Simulated Station	Ronde & Schwarz	CIVIVV500	140493	07-21-2021	07-20-2022
10m SAC	ETS	RFSD-100-F/A	Q2005	03-31-2021	04-01-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	03-31-2021	04-01-2022
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	03-31-2021	04-01-2022
EMI Test Receiver	R&S	ESR 3	102800	04-06-2021	04-07-2022
EMI Test Receiver	R&S	ESR 3	102802	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-07-2022
Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-07-2022
Test Software	R&S	EMC32		Version: 10.50.40)

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022		
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2021	06-17-2022		
Cable	HP	10503A	N/A	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919l)		

Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021	
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021	
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021	

RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT N/A		N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0		
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

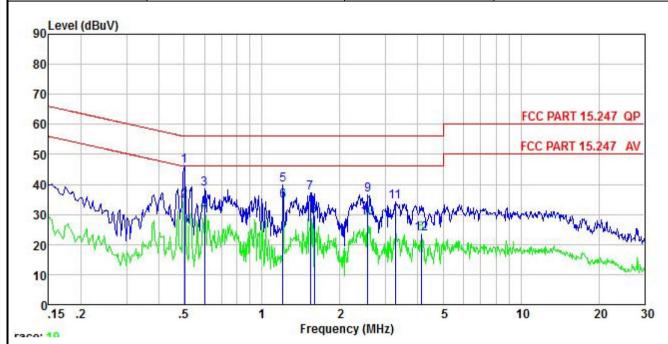
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 3.48 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

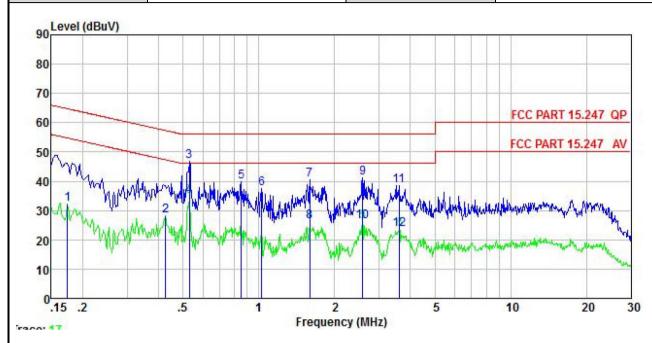
6.2 Conducted Emission


			-		
Test Requirement:	FCC Part 15 C Section 15.207				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarit	hm of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	LISN	st	er — AC power		
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for deta	nils			
Test results:	Passed				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 37

Measurement Data:

Product name:	Tablet PC	Product model:	X7
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

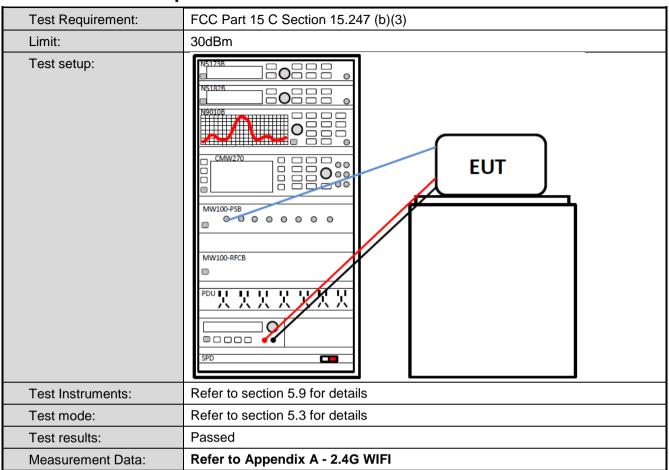

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	—dBu∜	<u>dB</u>	<u>ab</u>	<u>ab</u>	dBu₹	—dBu∜	<u>dB</u>	
1	0.502	36.05	10.34	-0.35	0.03	46.07	56.00	-9.93	QP
2	0.502	24.48	10.34	-0.35	0.03	34.50	46.00	-11.50	Average
3	0.601	28.53	10.38	-0.38	0.02	38.55	56.00	-17.45	QP
4	0.601	21.03	10.38	-0.38	0.02	31.05	46.00	-14.95	Average
5	1.203	29.00	10.50	0.25	0.09	39.84	56.00	-16.16	QP
1 2 3 4 5 6 7 8 9	1.203	23.66	10.50	0.25	0.09	34.50	46.00	-11.50	Average
7	1.535	26.69	10.52	-0.03	0.15	37.33	56.00	-18.67	QP
8	1.593	18.95	10.52	-0.06	0.16	29.57	46.00	-16.43	Average
9	2.567	26.20	10.56	-0.25	0.12	36.63	56.00	-19.37	QP
10	2.567	18.40	10.56	-0.25	0.12	28.83	46.00	-17.17	Average
11	3.276	23.82	10.59	-0.16	0.07	34.32		-21.68	
12	4.114	12.87	10.63	-0.03	0.08	23.55		-22.45	Average

Notes:

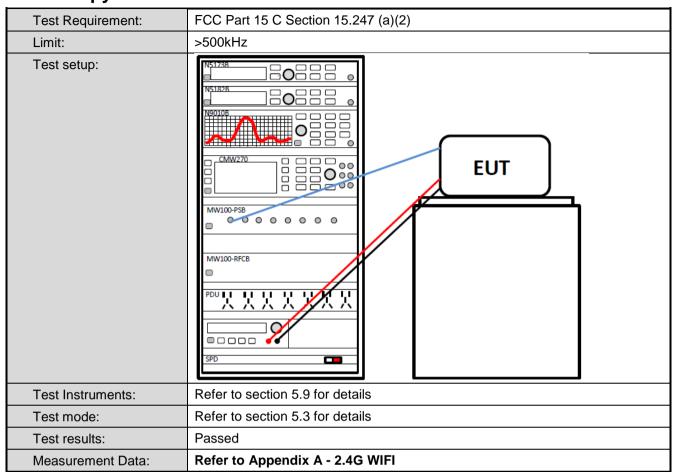
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Tablet PC	Product model:	X7
Test by:	Janet	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

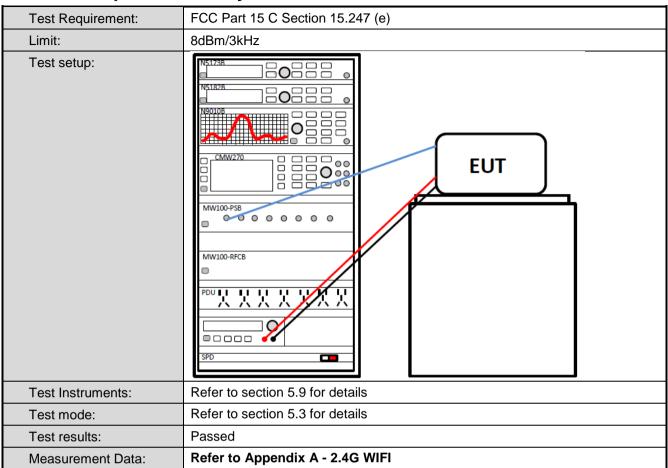
	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
=	MHz	dBu∜	<u>dB</u>	<u>dB</u>	<u>ab</u>	dBu∜	—dBu√	<u>dB</u>	
1	0.174	22.36	9.91	0.00	0.01	32.28	54.77	-22.49	Average
2	0.426	18.12	10.14	-0.03	0.03	28.26	47.33	-19.07	Average
3	0.529	36.39	10.23	0.03	0.03	46.68	56.00	-9.32	QP
4	0.529	24.51	10.23	0.03	0.03	34.80	46.00	-11.20	Average
5	0.853	29.21	10.47	0.06	0.04	39.78	56.00	-16.22	QP
6	1.027	26.70	10.57	0.08	0.06	37.41	56.00	-18.59	QP
7	1.593	29.45	10.72	0.14	0.16	40.47	56.00	-15.53	QP
8	1.593	15.30	10.72	0.14	0.16	26.32	46.00	-19.68	Average
1 2 3 4 5 6 7 8 9	2.581	29.84	10.86	0.26	0.12	41.08		-14.92	
10	2.581	14.90	10.86	0.26	0.12	26.14	46.00	-19.86	Average
11	3,603	27.19	10.94	0.44	0.08	38.65		-17.35	
12	3.623	12.04	10.94	0.44	0.08	23.50	46.00	-22.50	Average


Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power


6.4 Occupy Bandwidth

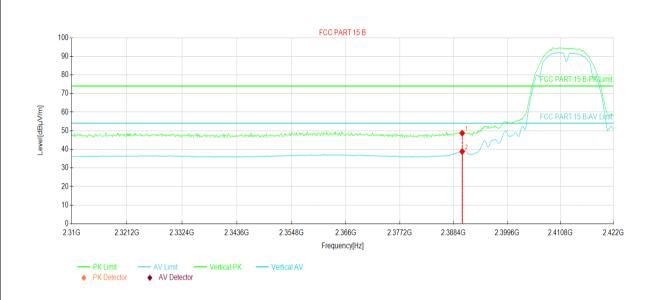
Page 13 of 37

6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.				
Test setup:	NS112B				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Measurement Data:	Refer to Appendix A - 2.4G WIFI				

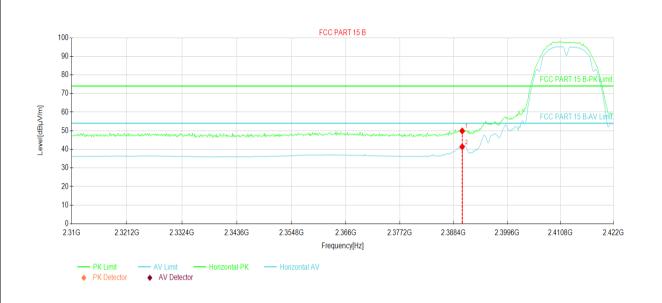

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Frequency Range:	2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VBW		Remark	
	Above 1GHz	Peak	1MHz	3MH		eak Value	
l insta	Frequency	RMS	1MHz nit (dBuV/m @	3MH		erage Value nark	
Limit:			54.00	3111)		e Value	
	Above 1GH	Z	74.00			Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 						
Test setup:	AE EUT Ground Reference Plane Test Receiver Amplifier Controller						
Test Instruments:	Refer to section 5	.9 for details					
Test mode:	Refer to section 5	.3 for details					
Test results:	Passed						

802.11b mode:

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspected Data List∂									
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level√ [dBµV/m]	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace₽	Polarity₀	
1₽	2390.19	41.60₽	48.68₽	7.08₽	74.00₽	25.32₽	PK₽	Vertical₽	
2₽	2390.19	31.76₽	38.84₽	7.08₽	54.00₽	15.16₽	AV₽	Vertical₽	

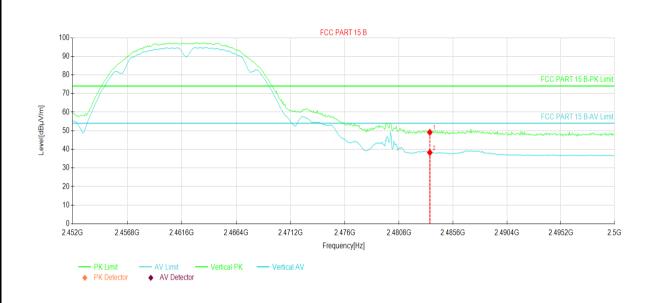

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2107009

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspected Data List∉								
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity∂
1₽	2390.19	42.81₽	49.89₽	7.08₽	74.00₽	24.11₽	PK₽	Horizontal₽
2↩	2390.19	34.29₽	41.37₽	7.08₽	54.00₽	12.63₽	AV₽	Horizontal₽

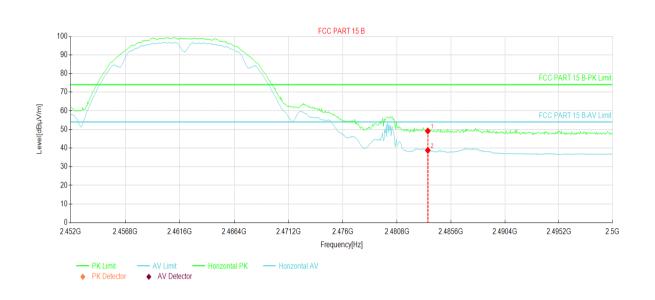

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 18 of 37

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspected Data List⊮								
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace	Polarity∂
1₽	2483.53	41.45₽	49.14₽	7.69₽	74.00₽	24.86₽	PK₽	Vertical₽
2₽	2483.53	30.60₽	38.29₽	7.69₽	54.00₽	15.71₽	AV₽	Vertical₽


Remark

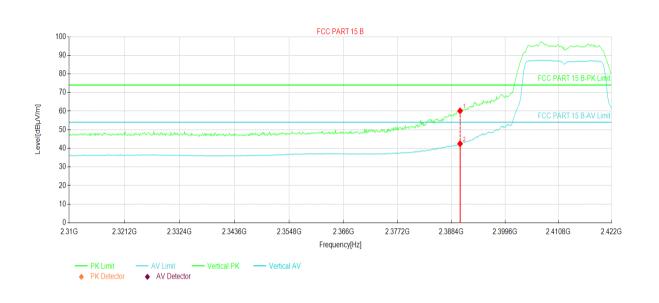
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 19 of 37

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Su	Suspected Data List∂								
NC).e	Freq.⊬ [MHz]⊬	Reading√ [dBµV/m]∞	Level√ [dBµV/m]	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace₽	Polarity₽
1	₽ 2	483.53	41.48₽	49.17₽	7.69₽	74.00₽	24.83₽	PK₽	Horizontal₽
2	₽ 2	483.53	31.11₽	38.80₽	7.69₽	54.00₽	15.20₽	AV₽	Horizontal₽

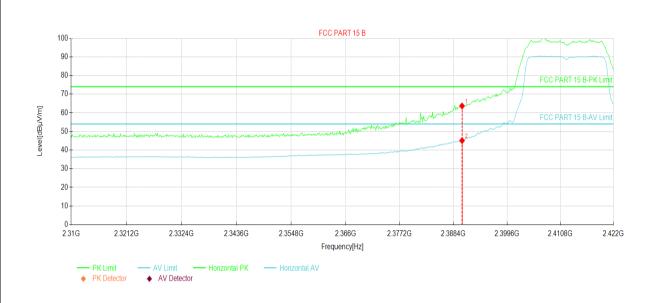
Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 20 of 37

802.11g mode:

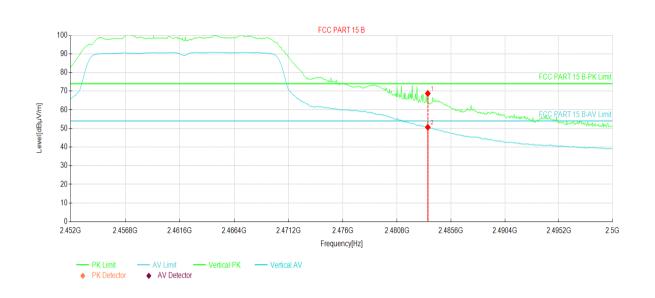
Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Suspected Data List								
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity₽
1₽	2390.19	53.03₽	60.11₽	7.08₽	74.00₽	13.89₽	PK₽	Vertical₽
2↩	2390.19	35.37₽	42.45₽	7.08₽	54.00₽	11.55₽	AV₽	Vertical₽

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

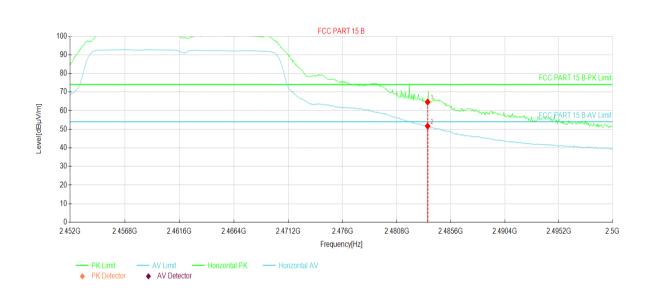
Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Suspected Data List⊮								
NO.∂	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level. [dBµV/m].	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity₽
1₽	2390.19	56.59₽	63.67₽	7.08₽	74.00₽	10.33₽	PK₽	Horizontal₽
2₽	2390.19	38.01₽	45.09₽	7.08₽	54.00₽	8.91₽	AV₽	Horizontal₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

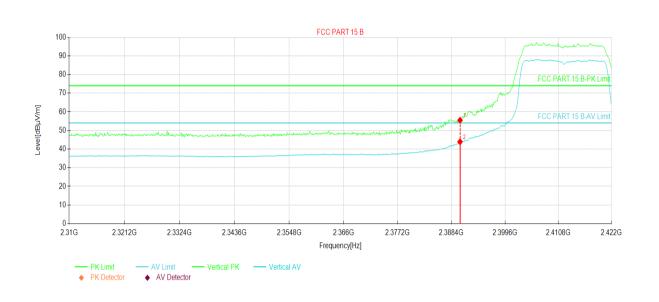

Suspected Data List								
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level√ [dBµV/m]	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity₽
1₽	2483.53	61.06₽	68.75₽	7.69₽	74.00₽	5.25₽	PK₽	Vertical₽
2₽	2483.53	42.96₽	50.65₽	7.69₽	54.00₽	3.35₽	AV₽	Vertical₽

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspected Data List								
NO.	Freq.⊬ [MHz]	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]₽	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]₄	Margin⊬ [dB]∉	Trace	Polarity∉
1₽	2483.53	56.93₽	64.62₽	7.69₽	74.00₽	9.38₽	PK₽	Horizontal₽
2₽	2483.53	43.97₽	51.66₽	7.69₽	54.00₽	2.34₽	AV₽	Horizontal₽

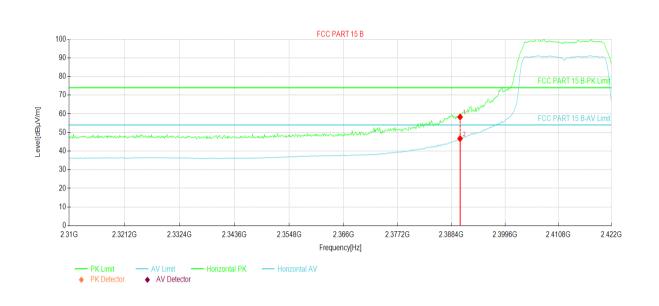

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT20):

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspected Data List								
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level [dBµV/m]∂	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity∂
1₽	2390.19	48.39₽	55.47₽	7.08₽	74.00₽	18.53₽	PK₽	Vertical₽
2₽	2390.19	36.84₽	43.92₽	7.08₽	54.00₽	10.08₽	AV₽	Vertical₽

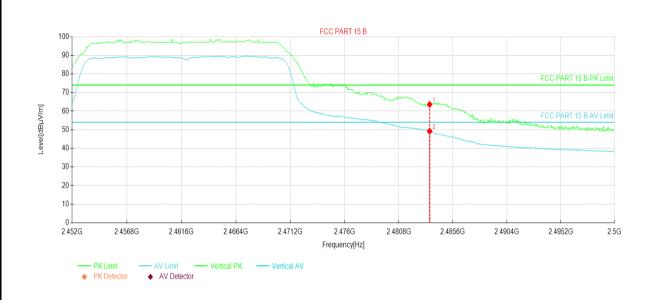

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

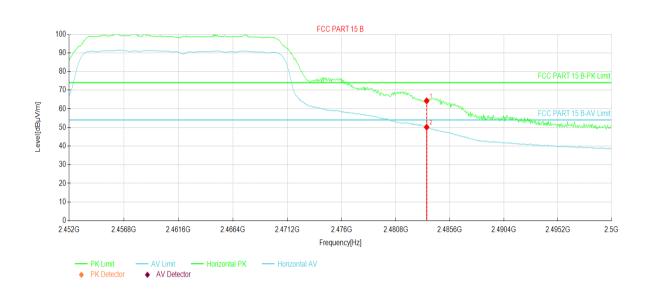
Suspected Data List								
NO.	Freq.⊌ [MHz]⊌	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]₽	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊬	Margin⊬ [dB]⊬	Trace	Polarity₽
1₽	2390.19	51.20₽	58.28₽	7.08₽	74.00₽	15.72₽	PK₽	Horizontal₽ +
2₽	2390.19	39.60₽	46.68₽	7.08₽	54.00₽	7.32₽	AV₽	Horizontal₽ +


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Tablet PC	Product Model:	Х7
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


•									
Suspected Data List⊮									4
NO.₽	Freq.⊌ [MHz]∂	Reading- [dBµV/m]-	Level⊬ [dBµV/m]₽	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊲	Margin⊬ [dB]∉	Trace	Polarity	4
1₽	2483.53	55.92₽	63.61₽	7.69₽	74.00₽	10.39₽	PK₽	Vertical₽	4
2₽	2483.53	41.54₽	49.23₽	7.69₽	54.00₽	4.77₽	AV₽	Vertical₽	4

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspected Data List⊲								
NO.₽	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]∞	Level√ [dBµV/m]	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]⊬	Trace₽	Polarity∂
1₽	2483.53	56.58₽	64.27₽	7.69₽	74.00₽	9.73₽	PK₽	Horizontal₽
2₽	2483.53	42.46₽	50.15₽	7.69₽	54.00₽	3.85₽	AV₽	Horizontal₽

Remark:

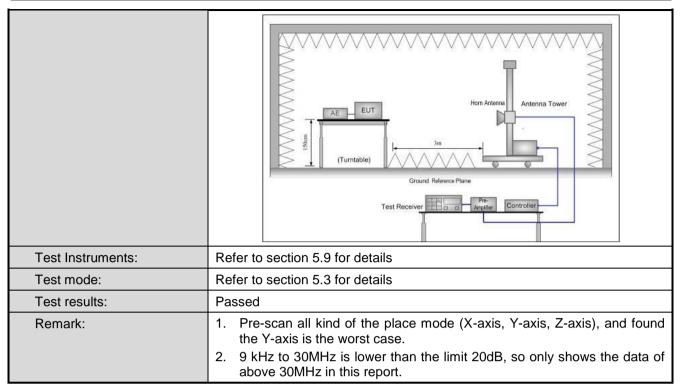
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7 Spurious Emission

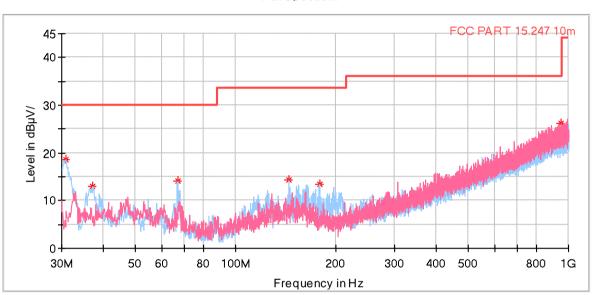
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.				
Test setup:	NS173B				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Measurement Data:	Refer to Appendix A - 2.4G WIFI				


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission Test Requirement:	FCC Part 15 C Se	ection 15.2	209 an	d 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detect	or	RBW	V	BW	Remark
	30MHz-1GHz	Quasi-peak		120KHz	300KHz		Quasi-peak Value
	Above 1GHz		(1MHz	3MHz		Peak Value
	Above IGIIZ	RMS 1MHz 3N		ИHz	Average Value		
Limit:	Frequency		Limit	(dBuV/m @10)m)		Remark
	30MHz-88MH			30.0			uasi-peak Value
	88MHz-216MH			33.5			uasi-peak Value
	216MHz-960M			36.0			uasi-peak Value
	960MHz-1GH	1Z	Limi	44.0	~\ ~\	Q	uasi-peak Value
	Frequency		LIIIIII	t (dBuV/m @3) 54.0	111)		Remark Average Value
	Above 1GHz	<u> </u>		74.0		,	Peak Value
Test Procedure:	1. The EUT w	as placed	d on		a rot	ating	table 0.8m(below
Took ookun.	(below 1GHz 360 degrees 2. The EUT wa away from the top of a v 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum reasonable of the EUT wou 10dB margin average meth	c) or 3 meters to determ is set 10 meters in the control of the co	er cha ine the meters ence-reight a varied e max polariz mission vas turned m was ith Ma the El ting conted. (re-tes	mber(above e position of the position of the school of the position of the school of the position of the posit	1GHz the hi z) or enna, ter to of the ante as arr ees to Dete Mode v ed ar e emis ne us	z). The ghest r 3 me which of four m field sinna are canged in 1 me to 360 cct Function the psisions ing pea	ters(above 1GHz) was mounted on neters above the trength. Both e set to make the to its worst case ter to 4 meters degrees to find the etion and dB lower than the peak values of that did not have ak, quasi-peak or
Test setup:	Below 1GHz EUT Turn Table Ground Pl. Above 1GHz	0.8m	Im A			Searce Anter	nna



Measurement Data (worst case):

Below 1GHz:

Product Name:	Tablet PC	Product Model:	X7
Test By:	Janet	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Critical_Freqs

•	Frequency↓ (MHz)∂	MaxPeak↓ (dB µ V/m)ℯ	Limit↓ (dB µ V/m)⊮	Margin↓ (dB)∂	Height↓ (cm)∂	Pol₽	Azimuth↓ (deg)∂	Corr.↓ (dB/m)⊬
•	30.873000₽	18.60₽	30.00₽	11.40₽	100.0₽	H₽	186.0₽	-17.1₽
•	37.275000₽	12.92₽	30.00₽	17.08₽	100.0₽	H₽	186.0₽	-16.1₽
•	67.054000₽	14.21₽	30.00₽	15.79₽	100.0₽	H₽	136.0₽	-18.1₽
•	144.460000₽	14.28₽	33.50∂	19.22₽	100.0₽	H₽	213.0₽	-15.6₽
•	178.410000₽	13.40₽	33.50∂	20.10₽	100.0₽	H₽	221.0₽	-16.2₽
•	952.955000₽	26.17₽	36.00₽	9.83∂	100.0₽	V₽	60.0₽	0.0₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz

Above 1GHz						
			802.11b			
		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	58.32	-9.46	48.86	74.00	25.14	Vertical
4824.00	62.07	-9.46	52.61	74.00	21.39	Horizontal
		Dete	ctor: Average Va	alue		_
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	52.91	-9.46	43.45	54.00	10.55	Vertical
4824.00	55.40	-9.46	45.94	54.00	8.06	Horizontal
		Test ch	annel: Middle ch	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	58.60	-9.11	49.49	74.00	24.51	Vertical
4874.00	62.27	-9.11	53.16	74.00	20.84	Horizontal
101 1100	<u> </u>		ctor: Average Va			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	52.63	-9.11	43.52	54.00	10.48	Vertical
4874.00	55.52	-9.11	46.41	54.00	7.59	Horizontal
		Toot ob	annali Llighaat a	hannal		
			annel: Highest cl tector: Peak Valu			
	Dood Lovel	l De			Morain	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	58.49	-8.74	49.75	74.00	24.25	Vertical
4924.00	62.26	-8.74	53.52	74.00	20.48	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	52.65	-8.74	43.91	54.00	10.09	Vertical
4924.00	55.02	-8.74	46.28	54.00	7.72	Horizontal
						· · · · · · · · · · · · · · · · · · ·

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11g			
		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	58.03	-9.46	48.57	74.00	25.43	Vertical
4824.00	62.03	-9.46	52.57	74.00	21.43	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	53.23	-9.46	43.77	54.00	10.23	Vertical
4824.00	55.24	-9.46	45.78	54.00	8.22	Horizontal
4824.00	55.24	-9.46	45.78	54.00	8.22	Horizonta

		Test ch	annel: Middle ch	annel		
		De	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	57.78	-9.11	48.67	74.00	25.33	Vertical
4874.00	62.43	-9.11	53.32	74.00	20.68	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	53.40	-9.11	44.29	54.00	9.71	Vertical
4874.00	55.49	-9.11	46.38	54.00	7.62	Horizontal
		•	•	•		

Test channel: Highest channel								
		De	tector: Peak Valu	ie				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	57.54	-8.74	48.80	74.00	25.20	Vertical		
4924.00	62.09	-8.74	53.35	74.00	20.65	Horizontal		
		Dete	ctor: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
4924.00	53.11	-8.74	44.37	54.00	9.63	Vertical		
4924.00	55.03	-8.74	46.29	54.00	7.71	Horizontal		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11n(HT20)			
			annel: Lowest ch			
_	T	Det	tector: Peak Valu		1	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	57.86	-9.46	48.40	74.00	25.60	Vertical
4824.00	62.19	-9.46	52.73	74.00	21.27	Horizontal
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4824.00	52.96	-9.46	43.50	54.00	10.50	Vertical
4824.00	54.77	-9.46	45.31	54.00	8.69	Horizonta
		Test ch	annel: Middle ch	annel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4874.00	57.94	-9.11	48.83	74.00	25.17	Vertical
4874.00	62.20	-9.11	53.09	74.00	20.91	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4874.00	53.23	-9.11	44.12	54.00	9.88	Vertical
4874.00	55.31	-9.11	46.20	54.00	7.80	Horizonta
		Test cha	annel: Highest ch	nannel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4924.00	57.84	-8.74	49.10	74.00	24.90	Vertical
4924.00	62.64	-8.74	53.90	74.00	20.10	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4924.00	53.33	-8.74	44.59	54.00	9.41	Vertical
	54.81	-8.74	46.07	54.00	7.93	Horizonta

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.