GTS Global United Technology Services Co., Ltd.

Report No.: GTS202109000194F01

TEST REPORT

Applicant:	Wyrestorm Technologies LLC			
Address of Applicant:	23 Wood Rd, Round Lake, New York 12151, United States			
Manufacturer/Factory:	Shen Zhen Proitav Technology Co.,Ltd			
Address of Manufacturer/Factory:	301-401, Building 16, Hejing Industrial Park, No.87, Hexiu West Road, Heping Community, Fuhai St., Baoan District, Shenzhen, China			
Equipment Under Test (E	EUT)			
Product Name:	Speakerphone			
Model No.:	APO-200-UC(UAV-G708-A01)			
Trade Mark:	WyreStorm			
FCC ID:	2A2CW-APO200UC			
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of sample receipt:	September 22, 2021			
Date of Test:	September 23, 2021-February 17, 2022			
Date of report issued:	February 18, 2022			
Test Result :	PASS *			

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 41

Report No.: GTS202109000194F01

2 Version

Version No.	Date	Description		
00	February 18, 2022	Original		

Prepared By: Date: February 18, 2022 soully **Project Engineer** Houson Curt February 18, 2022 Check By: Date: Reviewer

Report No.: GTS202109000194F01

3 Contents

1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	
4 TEST SUMMARY	
5 GENERAL INFORMATION	
5.1 GENERAL DESCRIPTION OF EUT	
5.2 TEST MODE	
5.4 Deviation from Standards	
5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
5.6 TEST FACILITY	
5.7 TEST LOCATION	
6 TEST INSTRUMENTS LIST	8
7 TEST RESULTS AND MEASUREMENT DATA	10
7.1 ANTENNA REQUIREMENT	
7.2 CONDUCTED EMISSIONS	
7.3 CONDUCTED PEAK OUTPUT POWER	
7.4 CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
7.5 Power Spectral Density	
7.6 SPURIOUS EMISSION SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
7.6.1 Conducted Emission Method	
7.6.2 Radiated Emission Method	
8 TEST SETUP PHOTO	41
9 EUT CONSTRUCTIONAL DETAILS	41

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 Test according: KDB 662911 D01 Multiple Transmitter Output v02r01 Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz-30MHz	3.1dB	(1)
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

5 General Information

5.1 General Description of EUT

Product Name:	Speakerphone	
Model No.:	APO-200-UC(UAV-G708-A01)	
Serial No.:	WS2136000021	
Test sample(s) ID:	GTS202109000194-1	
Sample(s) Status	Engineer sample	
Operation Frequency:	802.11n(HT20): 2412MHz~2462MHz	
Channel numbers:	802.11n(HT20): 11	
Channel separation:	5MHz	
Modulation technology:	802.11n(HT20) :	
	Orthogonal Frequency Division Multiplexing (OFDM)	
Antenna Type:	Integral Antenna	
	ANT 1: 2dBi	
Antenna gain:	ANT 2: 2dBi	
Power supply:	SWITCH MODE POWER SUPPLY:	
	Model: S120-1A240500M2	
	Input: AC100-240V, 50/60Hz, 2.0A	
	Output: DC24.0V, 5.0A	

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
Test channel	802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

5.2 Test mode

0.1				
	Transmitting mode	Keep the EUT in continuously transmitting mode		
	We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:			
	Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.			
	Mode 802.11n(HT20)			
	Data rate 6.5Mbps			

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook PC	E40-80	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

	All tests were performed at:
122	Global United Technology Services Co., Ltd.
	Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang
	Road, Baoan District, Shenzhen, Guangdong, China 518102
	Tel: 0755-27798480
	Fax: 0755-27798960

6 Test Instruments list

Radi	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17 2021	Oct. 16 2022
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17 2021	Oct. 16 2022
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17 2021	Oct. 16 2022
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Con	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022		

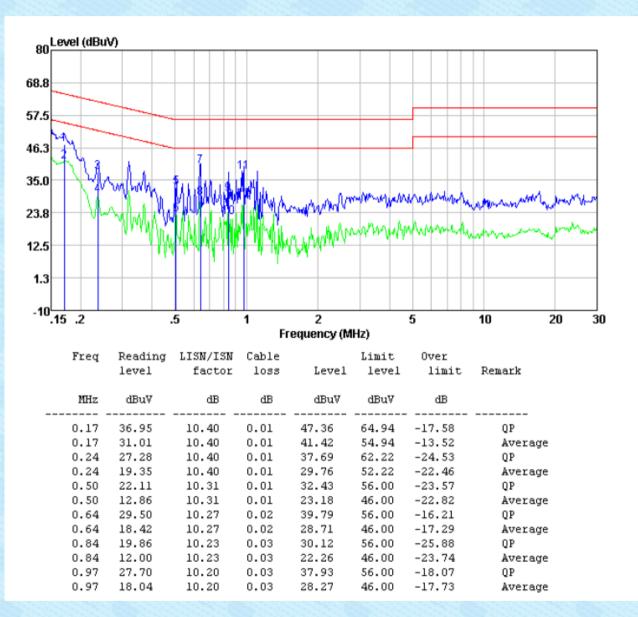
RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022			

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022		
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022		

7 Test results and Measurement Data

7.1 Antenna requirement

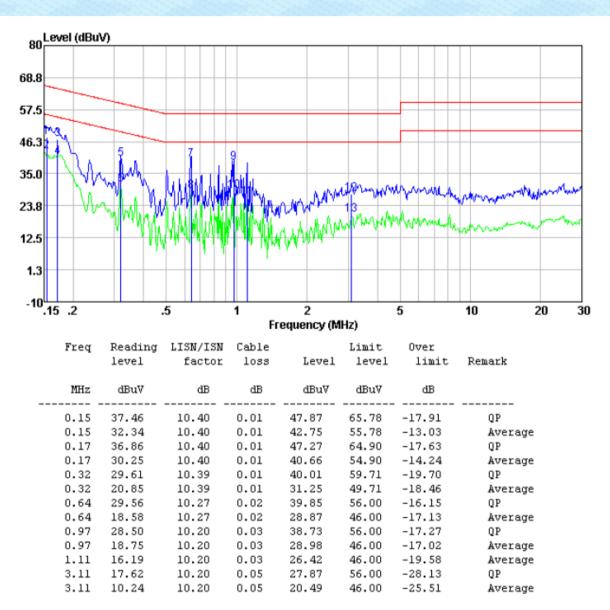
Standard requirement:	FCC Part15 C Section 15.203 /247(c)						
15.203 requirement:	15.203 requirement:						
responsible party shall be us antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.						
15.247(c) (1)(i) requiremen	15.247(c) (1)(i) requirement:						
operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.						
EUT Antenna:	EUT Antenna:						
The antenna is Integral antenna	, the best case gain of the antenna is 2dBi, reference to the appendix II for details						



7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto							
Limit:	Limit (dBuV)							
	Frequency range (MHZ) Quasi-peak Average							
	0.15-0.5 66 to 56* 56 to 46*							
	0.5-5 56 46							
	5-30 * Decreases with the logarithm	60	50					
Test setup:	Reference Plane	Tor the frequency.						
	Image: Construction of the construc							
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:20 	a network (L.I.S.N.). edance for the measu also connected to the n/50uH coupling imp the block diagram of the checked for maximur the maximum emis all of the interface ca	This provides a uring equipment. e main power through a edance with 500hm of the test setup and m conducted sion, the relative ables must be changed					
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.: 1012mbar					
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data Line:

Report No.: GTS202109000194F01

Neutral:

Report No.: GTS202109000194F01

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Test Requirement :	FCC Part15 C Section 15.247 (b)(3)					
Test Method :	KDB558074 D01 15.247 Meas Guidance v05r02					
Limit:	30dBm					
	36dBm(4W for e.i.r.p)					
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.4 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement :	FCC Part15 C Section 15.247 (a)(2)						
Test Method :	KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	>500KHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02					
Limit:	8dBm/3kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.6 Spurious Emission Spurious Emission in Non-restricted & restricted Bands

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer Image: E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.6.1 Conducted Emission Method

7.6.2 Radiated Emission Method

Test Requirement:

Test Method:

Report No.: GTS202109000194F01

VBW

600Hz

30KHz

300KHz

3MHz

10Hz

Measurement distance (meters)

Value

Quasi-peak

Quasi-peak

Quasi-peak

Peak

Average

300

30

30

Test Frequency Range: 9kHz to 25GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz 9KHz Quasi-peak 30MHz-1GHz Quasi-peak 120KHz Peak 1MHz Above 1GHz Peak 1MHz FCC Limit: Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 2400/F(kHz) 24000/F(kHz) 0.490-1.705 1.705-30.0 30 30-88 100** 150** 88-216 216-960 200** Above 960 500 The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. IC Limit: Table 5 – General field strength limits at frequencies above 30 MHz

FCC Part15 C Section 15.209

ANSI C63.10: 2013

Field strength Frequency (MHz) (µV/m at 3 m) 30 - 88100 150 88 - 216 216 - 960200

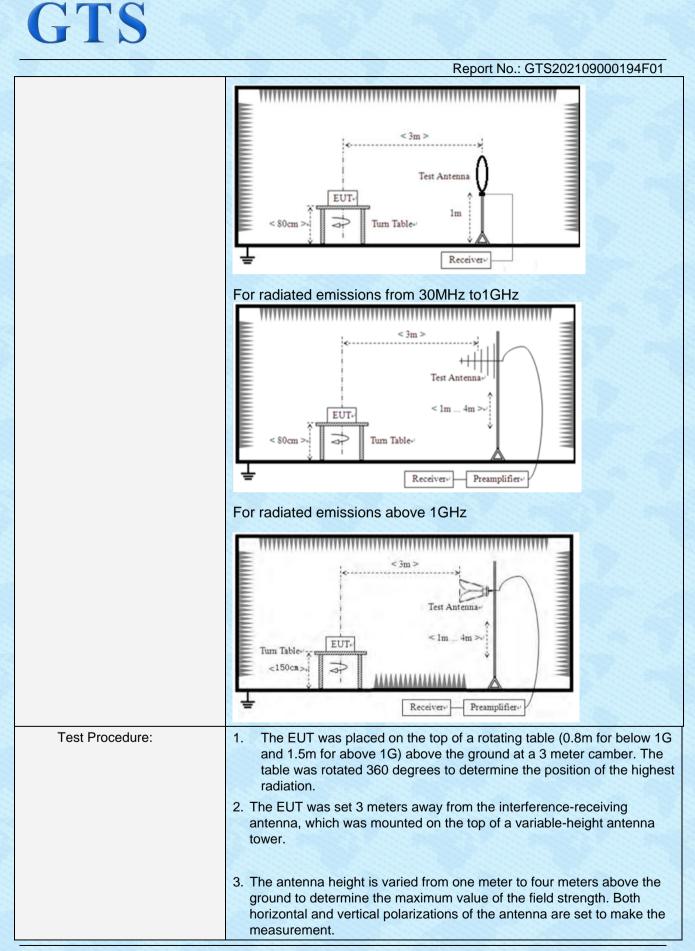

500

Table 6 – General field strength limits at frequencies below 30 MHz

	Frequency	Magnetic field strength (H- Field) (μA/m)	Measurement distance (m)	
3	9 - 490 kHz ¹	6.37/F (F in kHz)	300	
	490 - 1705 kHz	63.7/F (F in kHz)	30	
	1.705 - 30 MHz	0.08	30	

Above 960

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Report No.: GTS202109000194F0							
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to see	ction 5.2 for c	letails				
Test voltage:	AC120V 60	Hz					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

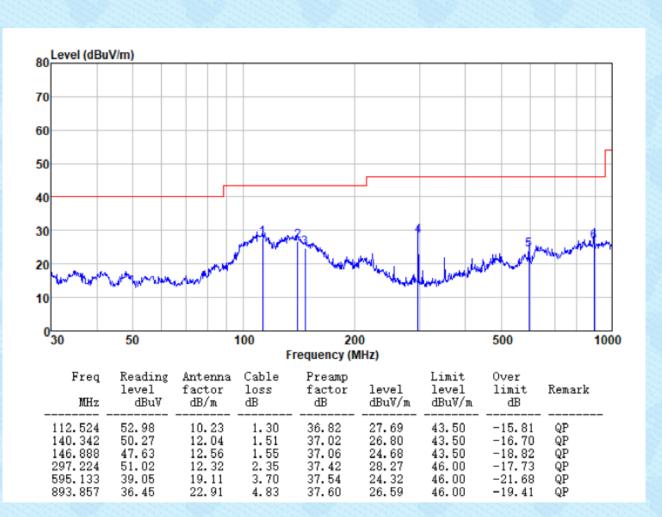
Remarks:

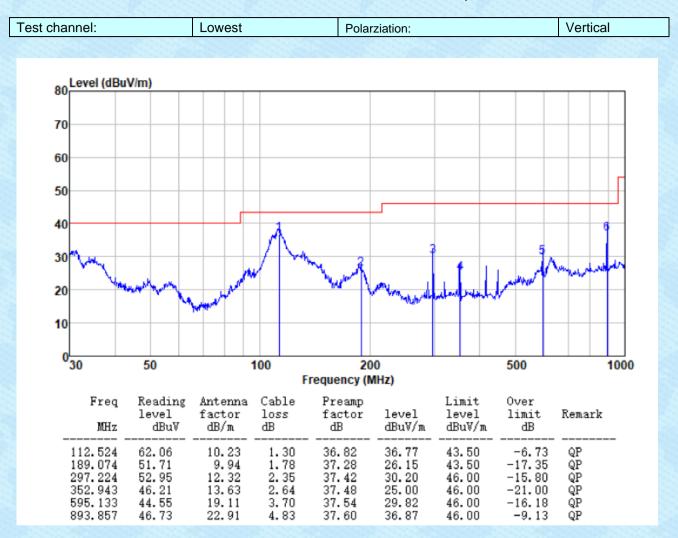
1. Only the worst case Main Antenna test data.

2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

9kHz~30MHz

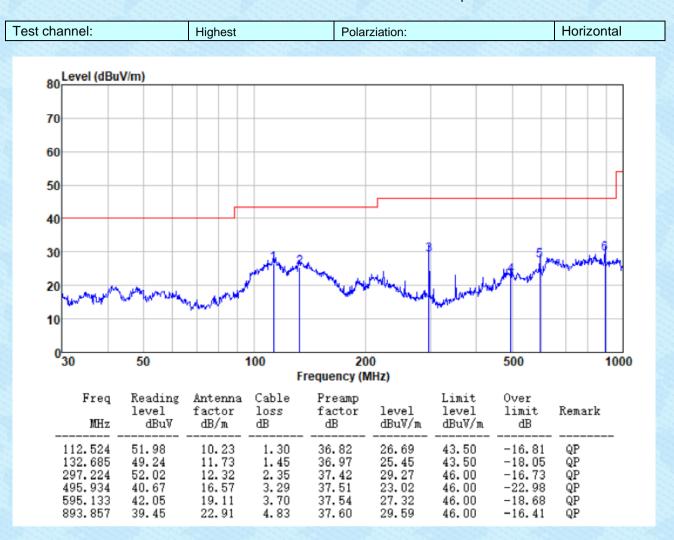

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


All antennas have test, only the worst case ANT 1 report.

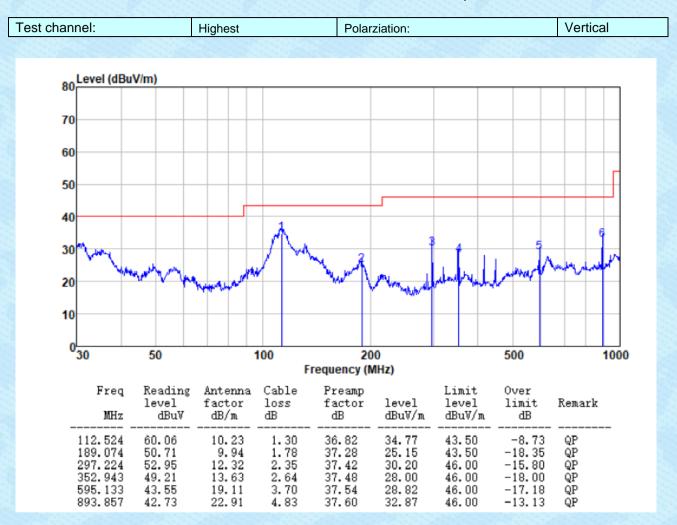
Below 1GHz

	Test channel:	Lowest	Polarziation:	Horizontal
--	---------------	--------	---------------	------------

Report No.: GTS202109000194F01

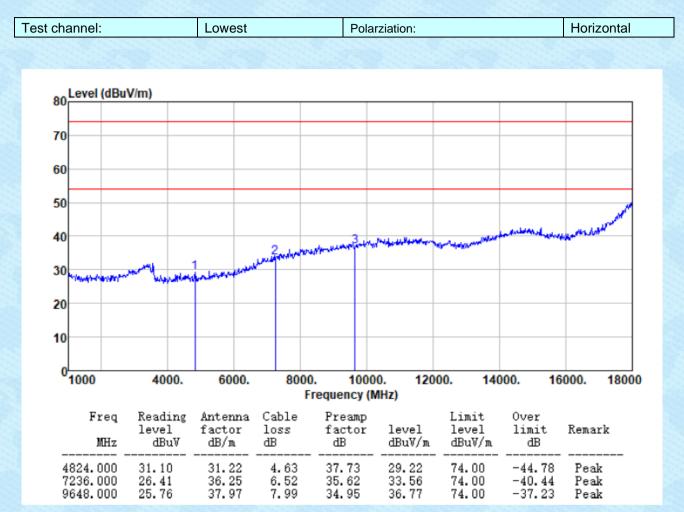

Report No.: GTS202109000194F01

t channel:		Middle		Pola	rziation:			Horizontal
80 Level (dBu	V/m)							
70								
10								
60								
50								
40								
			1					6
30			Whom	A.	1			
20		and the second		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	have a	. Unin	processor a	
10	Ch. Manadaran	and the second second			The All	Mar AMT		
0 ¹ 30	50		100	20			500	1000
			FI	requency (N	1871			
	D 1.					T · · · ·	~	
Freq	Reading level dBuW	Antenna factor dB/m	Cable loss	Preamp factor	level	Limit level dBu¥(m	Over limit dB	Remark
Freq MHz	level dBu∛	factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	level dBu∛/m	limit dB	
Freq MHz 110.569 155.364	level dBu∛ 56.90 51.74	factor dB/m 10.04 12.78	Cable loss dB 1.28 1.60	Preamp factor dB 36.81 37.11	level dBuV/m 31.41 29.01	level dBuV/m 43.50 43.50	limit dB -12.09 -14.49	 QP
Freq <u>MHz</u> 110.569	level dBu∛ 56.90	factor dB/m 	Cable loss dB 	Preamp factor dB 36.81	level dBuV/m 31.41	level dBuV/m 43.50	limit dB 	

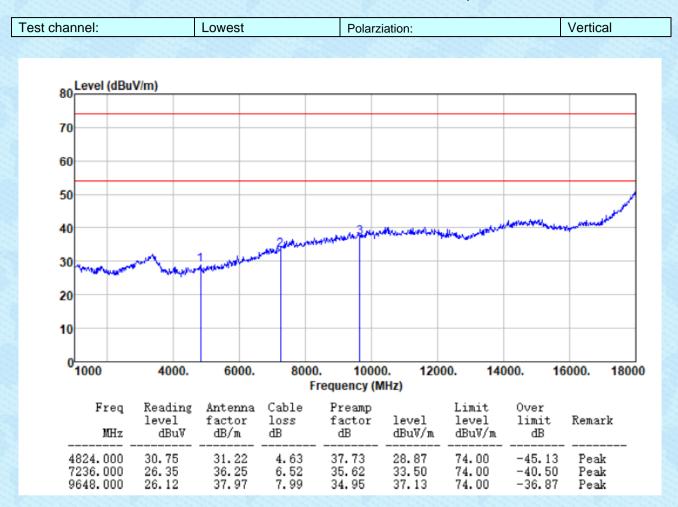

Report No.: GTS202109000194F01

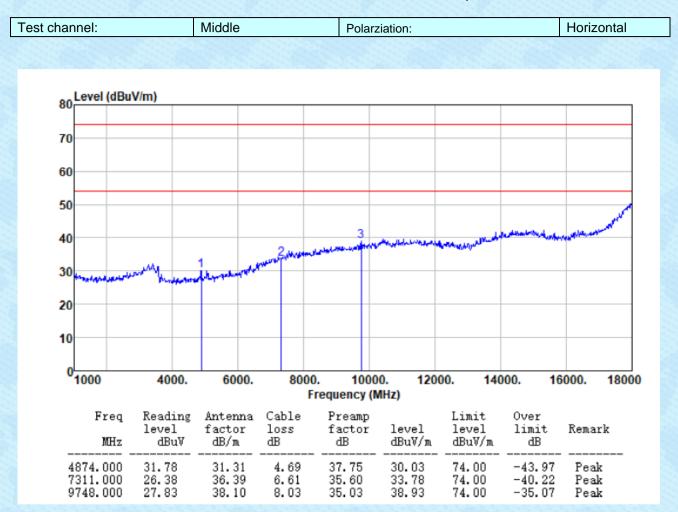
		Middle		Polar	ziation:			Vertical
80 Level (dBu	IV/m)							
70								
60								
50								
40								6
			1					- I Y I
30			1 march				- 5	
30 m	men			There and	, I		land	manun
20	working	www.		"haven	Mar James	pol-version	hand	Vous and and
20 10	have been and	winger		Mary	and an algorith	4	have	mana
20	50	Managara de	100 Fre	20 equency (N		yer - v ar and a start and	5 500	1000
20	50 Reading level dBuV	Antenna factor dB/m				Limit level dBuV/m	500 Over limit dB	hand hand hand hand hand hand hand hand

Report No.: GTS202109000194F01

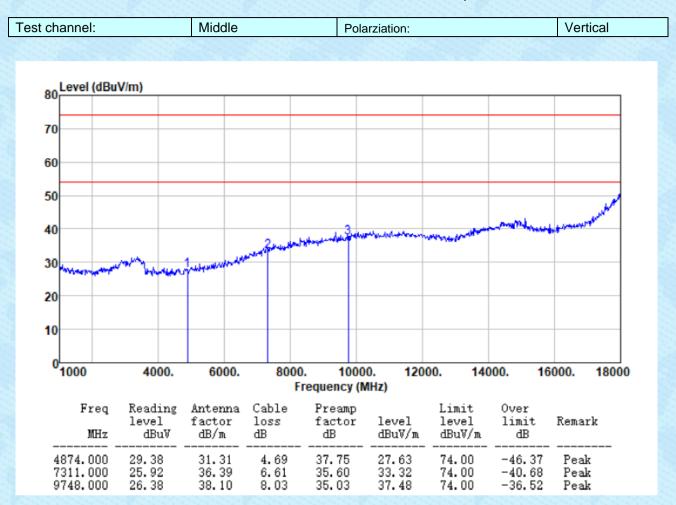


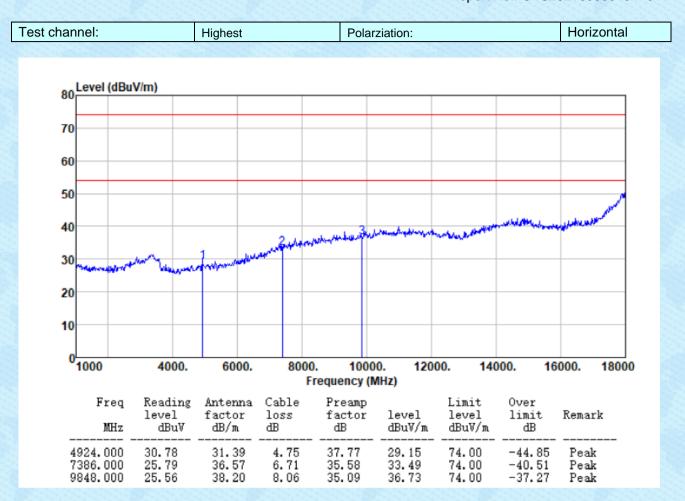
Report No.: GTS202109000194F01

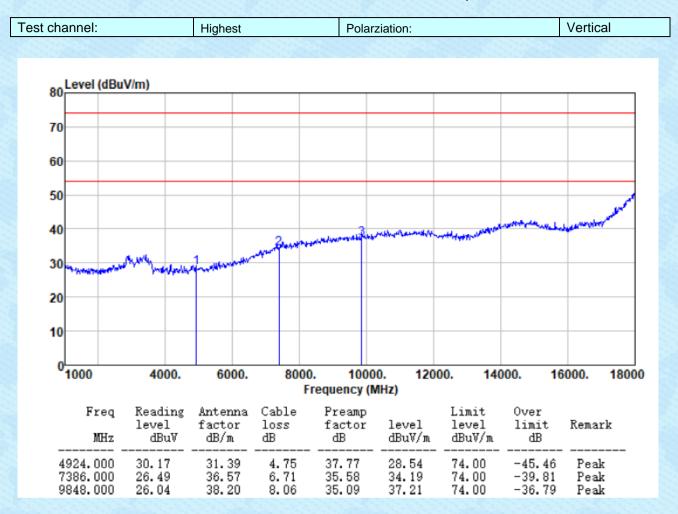



Report No.: GTS202109000194F01

Above 1GHz



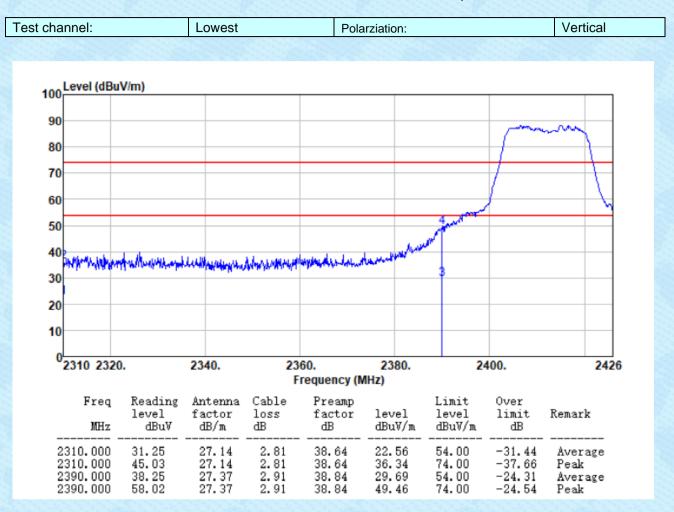

Report No.: GTS202109000194F01

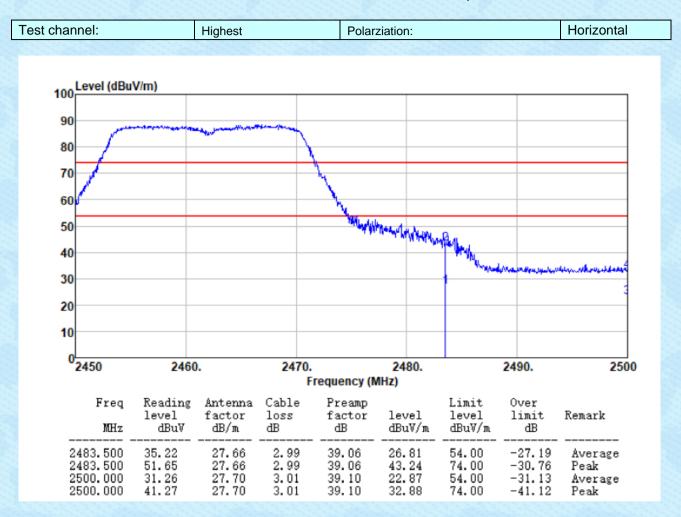


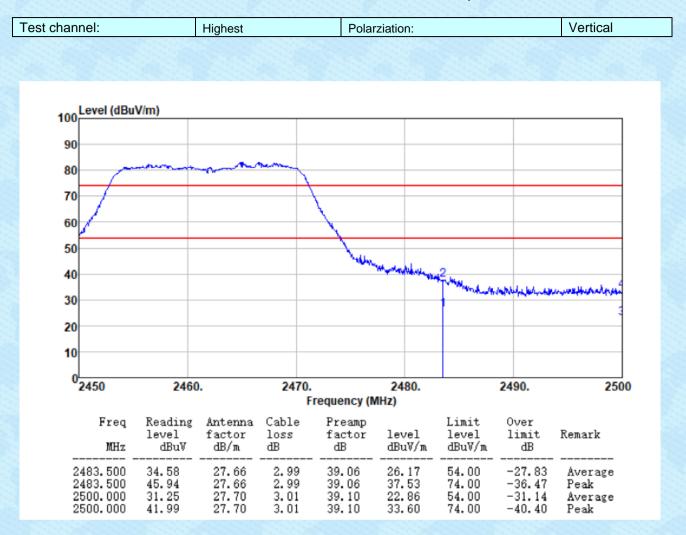
Report No.: GTS202109000194F01

Report No.: GTS202109000194F01

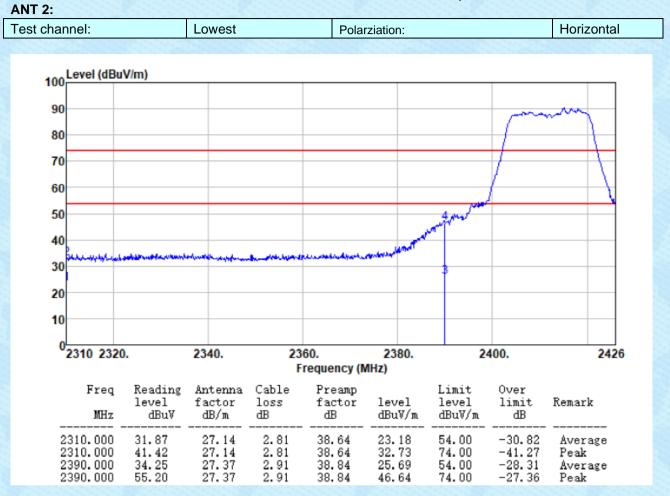
Remark:


- 1 Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2 "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

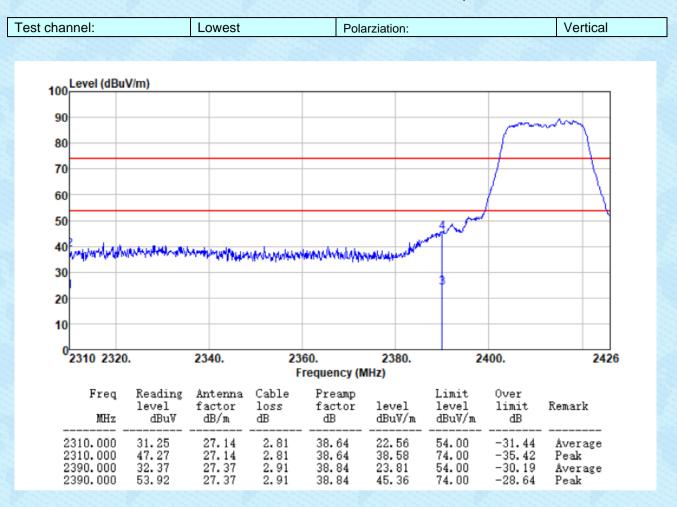

Unwanted Emissions in restricted Frequency Bands

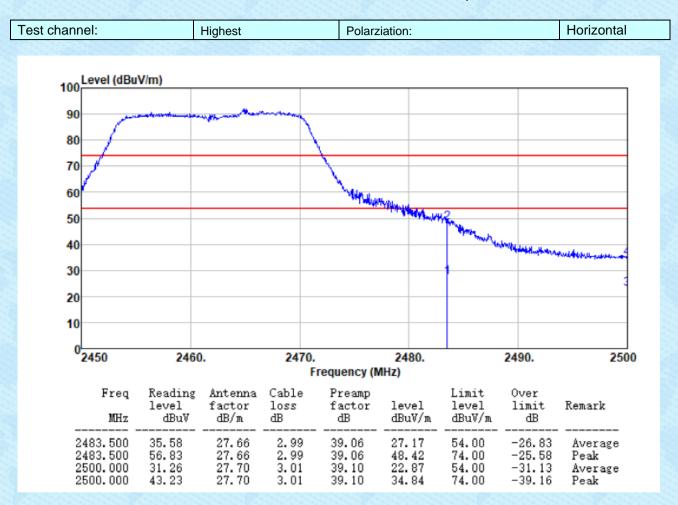

channel:		Lowest		Pol	arziation:			Horizontal
100 Level (dBi	IV/M)							
90							-	my
80								
70							1	
							h h	N.
60						4		
50								
40		u.d.,			and the second	3		
30	**************************************	an for a start with a	****	And a state of the				
20								
10								
0								
⁰ 2310 232	0.	2340.		60. requency (N	2380.	24	400.	2426
Freq	Reading	Antenna	Cable	Preamp		Limit	Over	
MHz	level dBuV	factor dB/m	loss dB	factor dB	level dBu∛/m	level dBuV/m	limit dB	Remark
2310.000 2310.000	31.25 41.63	27.14	2.81 2.81	38.64 38.64	22.56 32.94	54.00 74.00	-31.44 -41.06	Average Peak
2310.000	41.03	27.14 27.37	2.81	38.64 38.84	32.94 33.43	74.00 54.00	-41.06	Feak Average

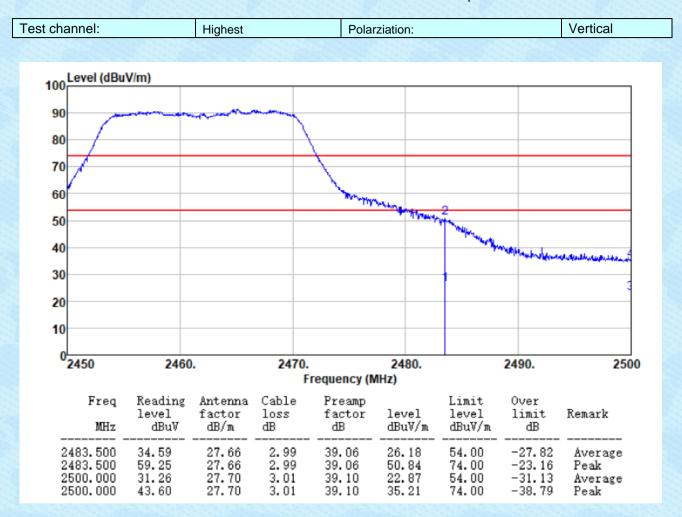
Report No.: GTS202109000194F01



Report No.: GTS202109000194F01




Report No.: GTS202109000194F01


Report No.: GTS202109000194F01

Report No.: GTS202109000194F01

Report No.: GTS202109000194F01

Remarks:

1. Only the worst case Main Antenna test data.

- 2. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: GTS202109000194F01

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----