

Global United Technology Services Co., Ltd.

Report No.: GTS202206000036F04

TEST REPORT

Applicant:	Wyrestorm Technologies LLC		
Address of Applicant:	23 Wood Rd, Round Lake, New York 12151, United States		
Manufacturer/Factory:	Shen Zhen Proitav Technology Co.,Ltd		
Address of Manufacturer/Factory:			
Equipment Under Test (E	EUT)		
Product Name:	Video Bar		
Model No.:	APO-VX20-UC(VB10-A00)		
Trade Mark:	WyreStorm		
FCC ID:	2A2CW-APO-VX20		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	June 06, 2022		
Date of Test:	June 07, 2022-August 29, 2022		
Date of report issued:	August 29, 2022		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 35

2 Version

Version No.	Date	Description
00	August 29, 2022	Original
		rate

Prepared By: Date: August 29, 2022 **Project Engineer** opinson (m) Check By: Date: August 29, 2022 Reviewer

Report No.: GTS202206000036F04

3 Contents

			Pa	ge
1	C	ov	ER PAGE	1
2	v	ER	SION	. 2
3	С	ON	TENTS	. 3
4	Т	EST	SUMMARY	. 4
5	G	EN	ERAL INFORMATION	. 5
	5.1		GENERAL DESCRIPTION OF EUT	E
	5.1		TEST MODE	
	5.2		DESCRIPTION OF SUPPORT UNITS	
	5.4		DEVIATION FROM STANDARDS	
	5.5		ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6		TEST FACILITY	
	5.7		TEST LOCATION	
	5.8		Additional Instructions	
	3.53			
6	Т	EST	INSTRUMENTS LIST	. 8
7	Т	EST	RESULTS AND MEASUREMENT DATA	10
	7.1		ANTENNA REQUIREMENT	10
	7.2		CONDUCTED EMISSIONS	
	7.3		CONDUCTED PEAK OUTPUT POWER	
	7.4		20DB EMISSION BANDWIDTH	
	7.5		CARRIER FREQUENCIES SEPARATION	16
	7.6		HOPPING CHANNEL NUMBER	17
	7.7		DWELL TIME	18
	7.8		SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	19
	7	.8.1	Conducted Emission Method	19
	7	.8.2	Radiated Emission Method	20
0	-	ECT	Г SETUP РНОТО	25
8	2020	23		30
9		шт	CONSTRUCTIONAL DETAILS	35
9		01		33

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes			
9kHz-30MHz	3.1dB	(1)			
30MHz-200MHz	3.8039dB	(1)			
200MHz-1GHz	3.9679dB	(1)			
1GHz-18GHz	4.29dB	(1)			
18GHz-40GHz	3.30dB	(1)			
AC Power Line Conducted 0.15MHz ~ 30MHz 3.44dB (1)					
	9kHz-30MHz 30MHz-200MHz 200MHz-1GHz 1GHz-18GHz 18GHz-40GHz	9kHz-30MHz 3.1dB 30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB			

5 General Information

5.1 General Description of EUT

Product Name:	Video Bar	
Model No.:	APO-VX20-UC(VB10-A00)	
Test sample(s) ID:	GTS202206000036-1	
Sample(s) Status: Engineer sample		
Serial No.:	WS1635000001	
Operation Frequency:	2402MHz~2480MHz	
Channel numbers:	79	
Channel separation:	1MHz	
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK	
Antenna Type:	PCB Antenna	
Antenna gain:	-0.28dBi(declare by applicant)	
Power supply:	Switch mode power supply:	
	Model: S120-1A240500M2	
	Input: AC 100-240V, 50/60Hz, 2.0A	
	Output: DC 24.0V, 5.0A, 120.0W	

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously tra	ransmitting mode.
--	-------------------

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook PC	E40-80	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

	None.
5.6	Test Facility
	The test facility is recognized, certified, or accredited by the following organizations: • FCC—Registration No.: 381383 Designation Number: CN5029 Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. • IC —Registration No.: 9079A CAB identifier: CN0091 The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing • NVLAP (LAB CODE:600179-0) Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).
5.7	Test Location
	All tests were performed at:
	Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Fax: 0755-27798960 5.8 Additional Instructions

Tel: 0755-27798480

Test Software	Special test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Rad	iated Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17, 2021	Oct. 16, 2022
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17, 2021	Oct. 16, 2022
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17, 2021	Oct. 16, 2022
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023

Con	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 15, 2022	April 14, 2023		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 20		

RF C	RF Conducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023

Ger	General used equipment:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023	
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

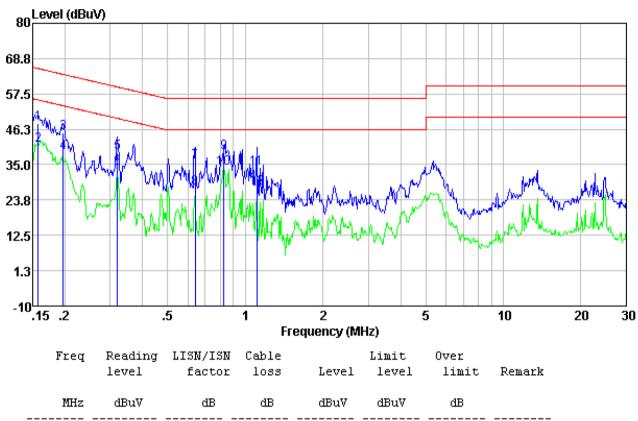
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, reference to the appendix II for details.

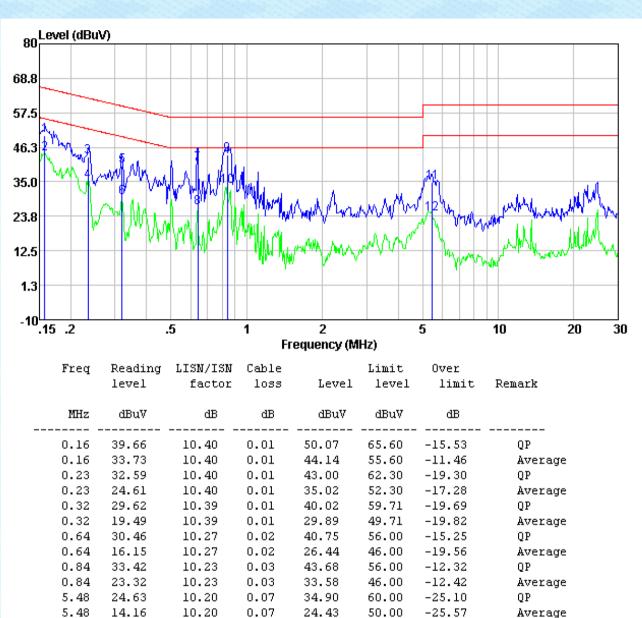
Report No.: GTS202206000036F04


7.2 Conducted Emission	5					
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sw	eep time=auto				
Limit:	Frequency range (MHz)	Limit	(dBuV)			
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 * Decreases with the logarithm	60 of the frequency	50			
Test setup:	Reference Plane	or the frequency.				
Test procedure:		network (L.I.S.N.). T dance for the measu also connected to the /50uH coupling impe- the block diagram of hecked for maximun the maximum emiss	main power through a This provides a ring equipment. e main power through a edance with 500hm of the test setup and n conducted sion, the relative			
Toot loote we as to	according to ANSI C63.10 of					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Humi	d.: 52%	Press.: 1012mbar			
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

Pre-scan all test modes, found worst case at GFSK, and so only show the test result of it Line:



0.16	37.59	10.40	0.01	48.00	65.60	-17.60	QP
0.16	30.80	10.40	0.01	41.21	55.60	-14.39	Average
0.20	34.56	10.40	0.01	44.97	63.76	-18.79	QP
0.20	28.33	10.40	0.01	38.74	53.76	-15.02	Average
0.32	28.55	10.39	0.01	38.95	59.71	-20.76	QP
0.32	23.42	10.39	0.01	33.82	49.71	-15.89	Average
0.64	25.49	10.27	0.02	35.78	56.00	-20.22	QP
0.64	17.15	10.27	0.02	27.44	46.00	-18.56	Average
0.83	28.65	10.23	0.03	38.91	56.00	-17.09	QP
0.83	23.65	10.23	0.03	33.91	46.00	-12.09	Average
1.11	23.61	10.20	0.03	33.84	56.00	-22.16	QP
1.11	17.23	10.20	0.03	27.46	46.00	-18.54	Average

Neutral:

Report No.: GTS202206000036F04

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10			
Limit:	21dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10				
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak				
Limit:	GFSK: 20dB bandwidth π /4-DQPSK, 8-DPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.5 Carrier Frequencies Separation

······································				
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)			
Test Method:	ANSI C63.10			
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak			
Limit:	15 channels			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

7.6 Hopping Channel Number

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)			
Test Method:	ANSI C63.10			
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak			
Limit:	0.4 Second			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

7.8 Spurious Emission in Non-restricted & restricted Bands

1.0.1 Conducted Limssion	
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.8.1 Conducted Emission Method

GTS

7.8.2 Radiated Emission N	ietnoa				Sector Sector	
Test Requirement:	FCC Part15 C Section	on 15	5.209			
Test Method:	ANSI C63.10					
Test Frequency Range:	9kHz to 25GHz					
Test site:	Measurement Distar	nce: 3	3m			
Receiver setup:	Frequency	E	Detector	RBV	V VBW	Value
	9KHz-150KHz	Qu	lasi-peak	200H	lz 600Hz	Quasi-peak
	150KHz-30MHz	Qu	lasi-peak	9KH	z 30KHz	Quasi-peak
	30MHz-1GHz	Qu	lasi-peak	120K	Hz 300KHz	Quasi-peak
	Above 1GHz		Peak	1MH	z 3MHz	Peak
			Peak	1MH	z 10Hz	Average
	Note: For Duty cyc cycle < 98%, avera			-		
Limit:	Frequency		Limit (u\	//m)	Value	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)	PK/QP/AV	300m
	0.490MHz-1.705M	Hz	24000/F(KHz)	QP	30m
	1.705MHz-30MH	z	30		QP	30m
	30MHz-88MHz		100		QP	
	88MHz-216MHz	2	150		QP	
	216MHz-960MH	z	200		QP	3m
	960MHz-1GHz		500		QP	·
	Above 1GHz		500		Average	
			5000		Peak	
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MHz	
	Tum Table	T		ntenna Im Receiver•		

7.8.2 Radiated Emission Method

GTS Report No.: GTS202206000036F04 For radiated emissions from 30MHz to1GHz < 3m Test Antenna < 1m ... 4m > EUT. Turn Table. < 80cm 3 Turn Table+ 1 Receiver+ Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna+ < 1m ... 4m > EUT Turn Table+ <150cm; <H Receiver+ Preamplifier+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. **Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

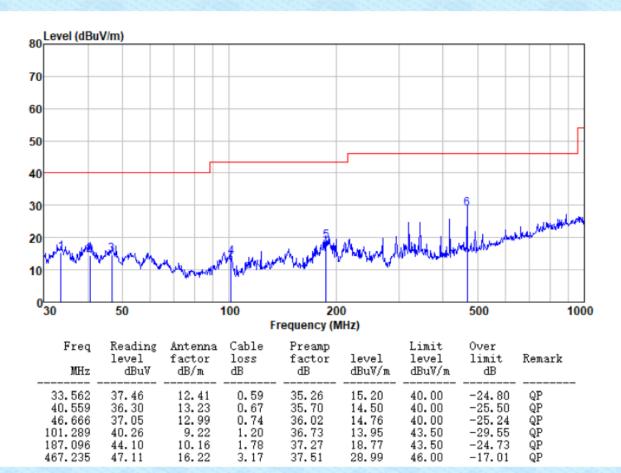
Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

				Report No.: (GTS2022060	00036F04
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

Measurement data:

Remarks:

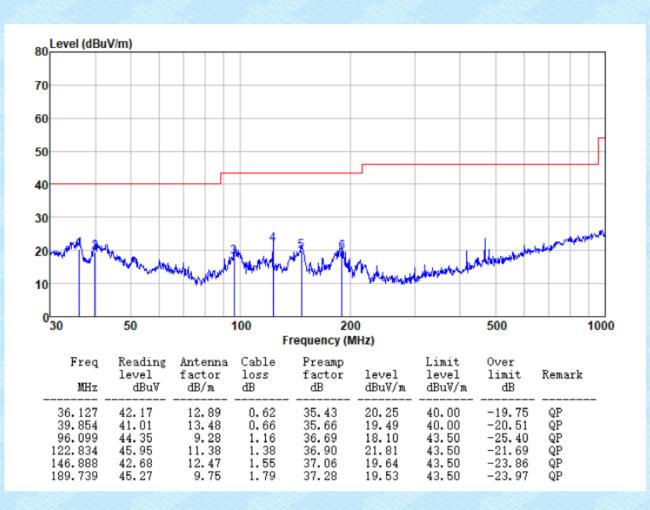
- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


9kHz~30MHz

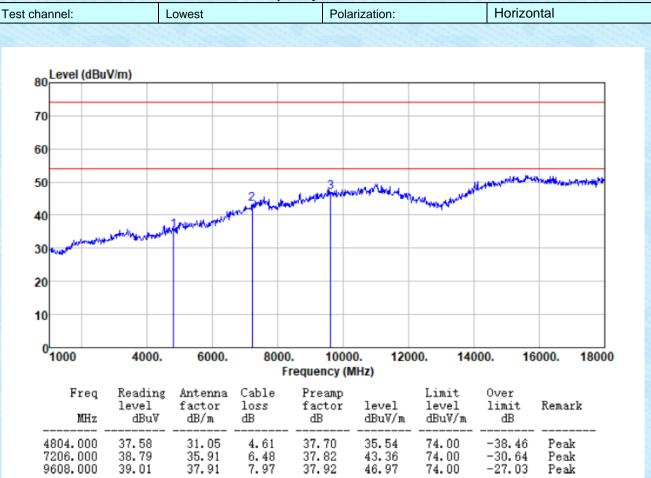
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

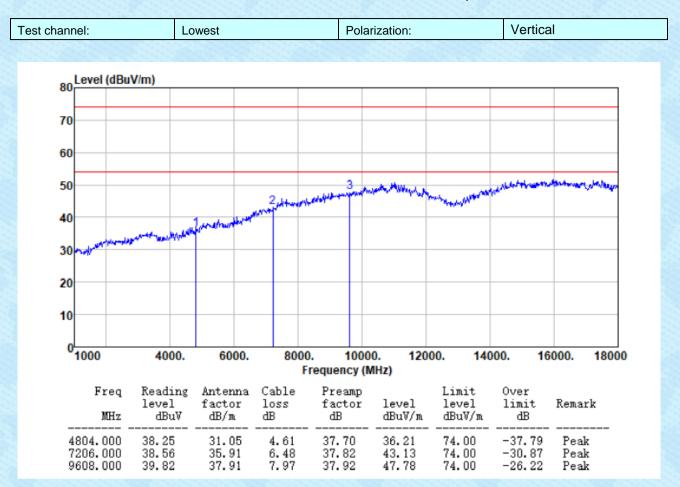
Report No.: GTS202206000036F04

Pre-scan all test modes, found worst case at GFSK, and so only show the test result of it

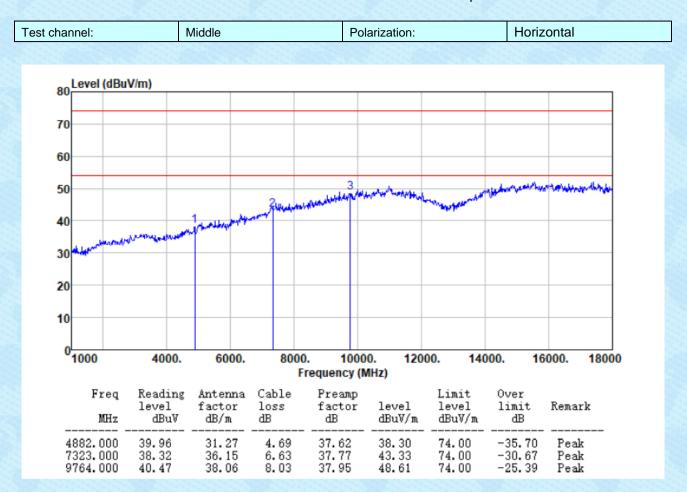

Below 1GHz Horizontal:

Vertical:


Report No.: GTS202206000036F04



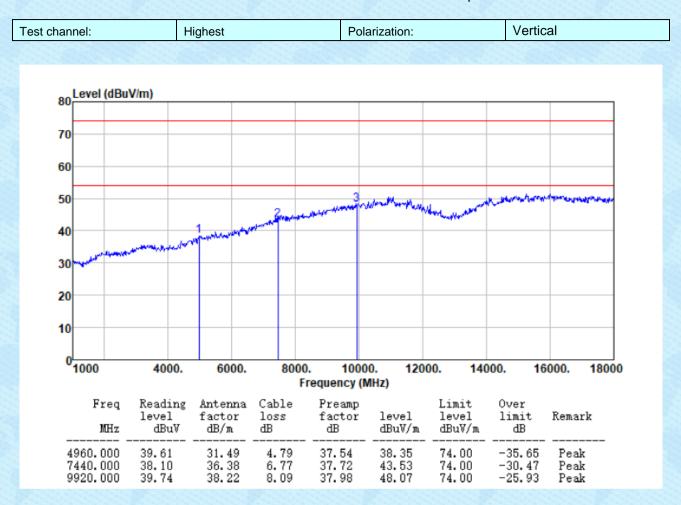
Above 1GHz


Unwanted Emissions in Restricted Frequency Bands

Report No.: GTS202206000036F04

Report No.: GTS202206000036F04

Report No.: GTS202206000036F04


channel:	Ν	/liddle		Pola	arization:		Vertic	al
Lough (dD)								
80 Level (dB	uv/m)							
70								
60								
50			2		Anter and the second second		NH CONTRACTOR	we we we have a second s
40			2 Contraction	aver and the		-bidenength and		
40		1	**					
20	and the second	and and the second s						
30	1	and the second						
30	hanne franke fake	and a second second						
	ternenterstoren og gader							
20								
20	4000.	6000.	800			00. 140	00. 16	6000. 1800
20	4000. Reading	6000. Antenna	l Cable	F requency (N Preamp	IHz)	Limit	Over	
20 10 0 1000	4000.	6000.	I	Frequency (N				6000. 1800 Remark
20 10 0 1000 Freq	4000. Reading level	6000. Antenna factor	F Cable loss	F requency (N Preamp factor	HHZ) level	Limit level	Over limit	

Report No.: GTS202206000036F04

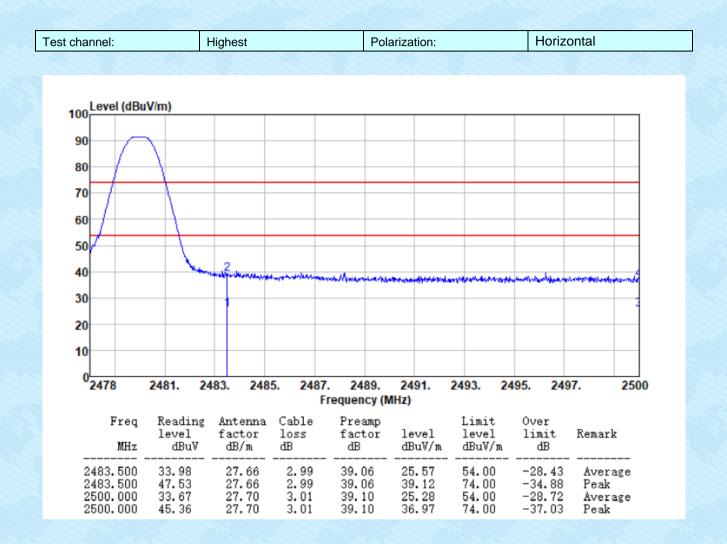
channel:	Hię	ghest		Polar	ization:		Horizor	ntal
80 Level (dBu	V/m)							
70								
10								
60								
50							- White and the second	AN
			2	ALCONTROL DAY	t-breen the marked	and the state of t		
40		and many manual						
30	Party and a second s							
	Party and P							
30 	water and before the							
20								
20	4000.	6000.	800	0. 1000 Frequency (N		00. 140	000. 16	000. 18000
20	Reading	Antenna	Cable	Frequency (N Preamp	/Hz)	Limit	Over	
20 10 0 1000			I	Frequency (N				000. 18000 Remark
20 10 0 1000 Freq	Reading level	Antenna factor	Cable loss	F requency (N Preamp factor	MHZ) level	Limit level	Over limit	

Report No.: GTS202206000036F04

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Lowest Polarization: Horizontal 100 Level (dBuV/m) 90 80 70 60 50 40 30 20 10 0<mark>_____</mark>2310 2320. 2330. 2340. 2370. 2350. 2360. 2380. 2390. 2404 Frequency (MHz) Freq Reading Antenna Cable Preamp Limit Over limit level factor loss factor level level Remark MHz dBu∛ dB/m dB dB dBu∛/m dBu∛/m dB 2.81 2.81 2.91 2.91 Average 2310.000 33.96 27.1438.64 25.27 54.00 -28.73 2310.000 2390.000 44.55 27.14 27.37 38.64 35.86 -38.14 -27.93 74.00 Peak 26.0734.63 38.84 54.00 Average 2390.000 45.89 27.37 38.84 37.33 74.00 -36.67Peak


Unwanted Emissions in Non-restricted Frequency Bands

Report No.: GTS202206000036F04

channel:	Lowest		Polarization	:	Vertical	
Level (dBuV/m)						
100						
90						0
80						
70						
60						
50						
406						
40 - Horndonium min	*****		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mantion	all in contract of the
40 	1961-1970-29 ⁶ 0-1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	aladdaaddillaragearg	******		recent the stand of the stand o	alancak ada
- the providential and the	njunan kulalunin kulanga	il,ada _{n an} aite <u>il</u> a' agé an an	1275-2155-2 8 750-2 8 550-2850-2		eren and an and an an	an a
30	ujunna u inferience interes	********	**************************************		3	enwel
30 20 10	2330. 234	40. 2350.			3	
30 20 10	2330. 234			2370. 2380.	2390.	2404
30 20 10 0 2310 2320. Freq Read leve	ling Antenna	Freq Cable P loss f	2360.	2370. 2380. Limit 1 level	2390. Over	

Report No.: GTS202206000036F04

st channel:	Highest	Polarization:	Vertical
100 Level (dBuV/m	1)		
90			
80			
70			
60			
50			
12			
40	Marchan 2	han war an	and an in the state of the section o
40 ⁷ 30	2 Martin Martin Martin Martin Martin	honormandrissansanananansansansansansansansa	us-tu-tu-tu-tu-tu-tu-tu-tu-tu-tu-tu-tu-tu-
	Marine and a second	honorman deiss aussenen anders son der	ujunten de la d C
30			up-de-signaling dilamentation and provide a state of the second st
30 20 10			
30	81. 2483. 2485. 24	487. 2489. 2491. 249	
30 20 10 0 2478 24		187. 2489. 2491. 2493 Frequency (MHz)	3. 2495. 2497. 2500
30 20 10 0 2478 24 Freq R 1	eading Antenna Cable evel factor loss	487. 2489. 2491. 2493 Frequency (MHz) e Preamp Li factor level le	3. 2495. 2497. 2500 mit Over evel limit Remark
30 20 10 0 2478 24 Freq R 1 MHz	eading Antenna Cable evel factor loss dBuV dB/m dB	487. 2489. 2491. 2493 Frequency (MHz) e Preamp Li factor level le dB dBuV/m dE	
30 20 10 0 2478 244 Freq R 1 <u>MHz</u> 2483,500 3	eading Antenna Cable evel factor loss	487. 2489. 2491. 2493 Frequency (MHz) e Preamp Li factor level le dB dBuV/m dE 39.06 24.84 54	3. 2495. 2497. 2500 mit Over evel limit Remark

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: GTS202206000036F04

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----