

TEST REPORT

Applicant:	Wyrestorm Technologies LLC		
Address of Applicant:	23 Wood Rd, Round Lake, New York 12151, United States		
Manufacturer/Factory:	Shen Zhen Proitav Technology Co.,Ltd		
Address of Manufacturer/Factory:	301-401, Building 16, Hejing Industrial Park, No.87, Hexiu West Road, Zhancheng Community, Fuhai St., Baoan District, Shenzhen, China		
Equipment Under Test (E	EUT)		
Product Name:	Video Bar		
Model No.:	APO-VX20-UC(VB10-A00)		
Trade Mark:	WyreStorm		
FCC ID:	2A2CW-APO-VX20		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	June 06, 2022		
Date of Test:	June 07, 2022-August 29, 2022		
Date of report issued:	August 29, 2022		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	August 29, 2022	Original
		rate

Prepared By: Date: August 29, 2022 **Project Engineer** opinson (m) Check By: Date: August 29, 2022 Reviewer

GTS

Report No.: GTS202206000036F05

3 Contents

		Pa	ge
1	COV	ER PAGE	1
2	VER	SION	. 2
			120
3	CON	ITENTS	. 3
4	TEO	T SUMMARY	4
4	TES		. 4
5	GEN	ERAL INFORMATION	. 5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	. 7
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	
	5.8	ADDITIONAL INSTRUCTIONS	.7
6	TES	T INSTRUMENTS LIST	. 8
7	TES	T RESULTS AND MEASUREMENT DATA	
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5 7.6	POWER SPECTRAL DENSITY	
	7.6.1		
	7.6.2		
8	TEO	Т SETUP РНОТО	
ö	IES		55
9	EUT	CONSTRUCTIONAL DETAILS	33

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes
9kHz-30MHz 3.1dB		(1)
30MHz-200MHz	3.8039dB	(1)
200MHz-1GHz	3.9679dB	(1)
1GHz-18GHz 4.29dB		(1)
18GHz-40GHz	3.30dB	(1)
0.15MHz ~ 30MHz	3.44dB	(1)
	9kHz-30MHz 30MHz-200MHz 200MHz-1GHz 1GHz-18GHz 18GHz-40GHz	9kHz-30MHz 3.1dB 30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB

5 General Information

5.1 General Description of EUT

Product Name:	Video Bar
Model No.:	APO-VX20-UC(VB10-A00)
Test sample(s) ID:	GTS202206000036-1
Sample(s) Status:	Engineer sample
Serial No.:	WS1635000001
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	-0.28dBi(declare by applicant)
Power Supply:	Switch mode power supply:
	Model: S120-1A240500M2
	Input: AC 100-240V, 50/60Hz, 2.0A
	Output: DC 24.0V, 5.0A, 120.0W

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook PC	E40-80	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Test software provided by manufacturer
Power level setup	Default

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023		
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023		
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023		
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023		
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023		
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023		
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023		
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023		
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023		
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023		
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022		
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023		
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17, 2021	Oct. 16, 2022		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17, 2021	Oct. 16, 2022		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17, 2021	Oct. 16, 2022		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023		
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023		

Con	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 15, 2022	April 14, 2023		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 20		

RF C	RF Conducted Test:											
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)						
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023						
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023						
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023						
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023						
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023						
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023						
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023						
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023						

Ger	neral used equipment:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023

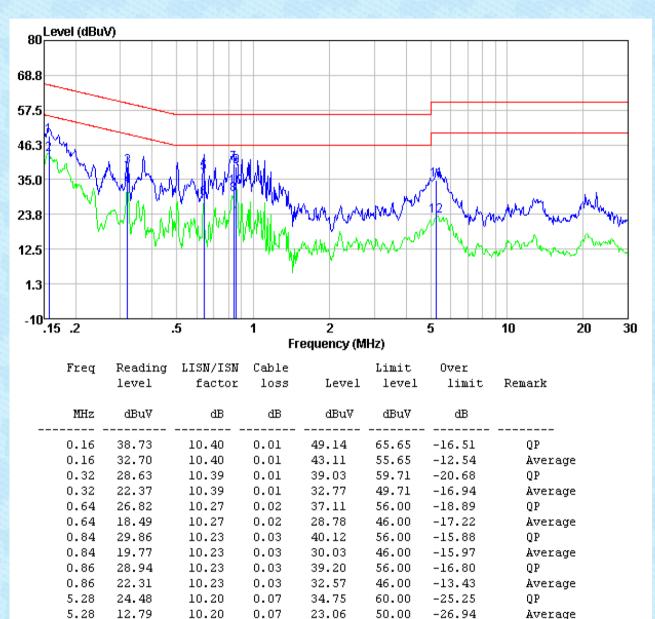
7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be us antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.
15.247(c) (1)(i) requirement	t:
operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.
E.U.T Antenna:	
The antenna is PCB antenn	a, reference to the appendix II for details

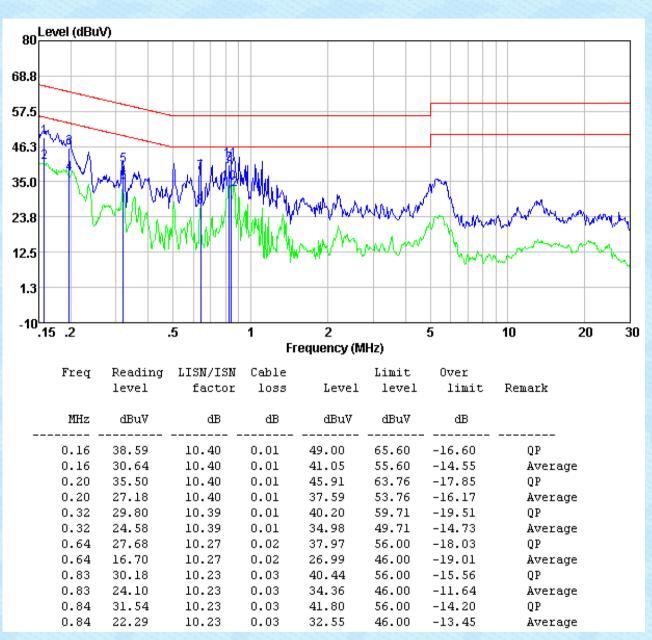
7.2 Conducted Emissions

Test Deguirement	ECC DarthE C Section 15 003							
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10							
Test Frequency Range:	150KHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto						
Limit:	Frequency range (MHz)	Limit	(dBuV)					
		Quasi-peak	Aver					
	0.15-0.5	66 to 56*	56 to					
	0.5-5 5-30	56 60	4					
	* Decreases with the logarithr		J	0				
Test setup:	Reference Plane		and the second					
Test procedure:	LISN 40cm 80cm AUX Equipment E.U.T Test table/Insulation plane E.U.T Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a	EMI Receiver		through a				
	 Ine impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2009 on conducted measurement. 							
Test Instruments:	Refer to section 6.0 for details	3						
Test mode:	Refer to section 5.2 for details	6						
Test environment:	Temp.: 25 °C Hur	nid.: 52%	Press.:	1012mbar				
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							
	1 035							


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data

Report No.: GTS202206000036F05


Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz, **Line:**

Neutral:

Report No.: GTS202206000036F05

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Report No.: GTS202206000036F05

7.3 Conducted Output	ut Power
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Report No.: GTS202206000036F05

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.5 Power Spectral Dei	nsity
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10 and KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.6 Spurious Emission in Non-restricted & restricted Bands

7.6.1 Conducted Emission Method


GTS

To at De avria and						
Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10 and KDB558074 D01 15.247 Meas Guidance v05r02					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	radiated measurement.					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.6.2 Radiated Emission Meth	100							
Test Requirement:	FCC Part15 C Section	on 15.2	209					
Test Method:	ANSI C63.10							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3r	m					
Receiver setup:	Frequency	De	etector	RBV	V	VBW	Value	
	9KHz-150KHz	Qua	asi-peak	200H	Ηz	600Hz	Quasi-peak	
	150KHz-30MHz	Qua	asi-peak	9KH	z	30KHz	Quasi-peak	
	30MHz-1GHz	Qua	asi-peak	120K	Hz :	300KHz	Quasi-peak	
	Above 1GHz	F	Peak	1MH	lz	3MHz	Peak	
	Above TGHZ	F	Peak	1MH	lz	10Hz	Average	
	Note: For Duty cycle < 98%, average dete						veFor Duty cycle	
Limit:	Frequency		Limit (uV	//m)	Va	alue	Measurement Distance	
	0.009MHz-0.490M	IHz	2400/F(K	(Hz)	QP/F	PK/AV	300m	
	0.490MHz-1.705M	IHz	24000/F(I	KHz)	C	QP	30m	
	1.705MHz-30MH	lz	30		C	QΡ	30m	
	30MHz-88MHz		100		C	QΡ		
	88MHz-216MHz	z	150		C	QΡ		
	216MHz-960MH	z	200		C	QΡ	3m	
	960MHz-1GHz		500		C	ΩP	om	
	Above 1GHz		500		Average			
			5000		Pe	eak		
Test setup:	For radiated emiss	sions f	from 9kHz	z to 30	MHz			
	************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111111	*****	*****		
	<3m>							
	Tum Table		Test A n Table+	ntenna 1m)			
	÷ 🛛 i		-	⇒ ⁄∆				
	÷		L	Receiver	-			
A CALL STOLEN AND A CALL STOLEN AND A CALL STOLEN AND A CALL STOLEN.		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					the second s	

7.6.2 Radiated Emission Method

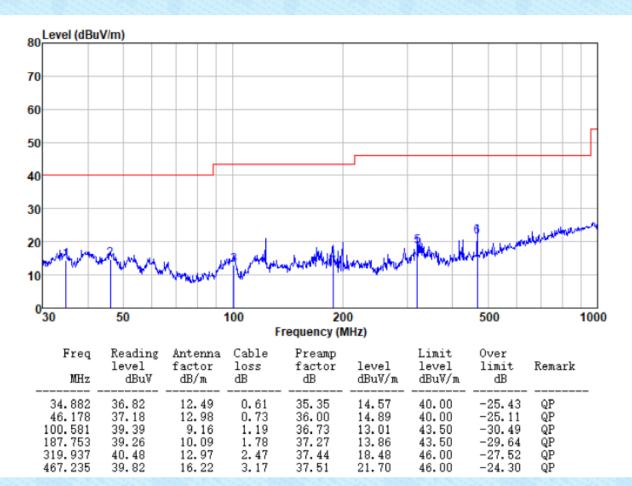
Global United Technology Services Co., Ltd. No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Report No.: (GTS2022060	00036F05					
Test Instruments:	Refer to see	ction 6.0 for c	letails					
Test mode:	Refer to section 5.2 for details							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							

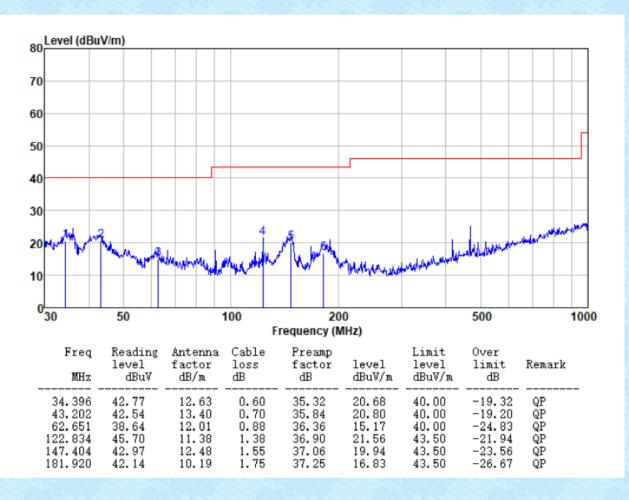
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Below 1GHz

Pre-scan all test modes, found worst case at 2480MHz, and so only show the test result of 2480MHz **Horizontal:**

Vertical:

Report No.: GTS202206000036F05

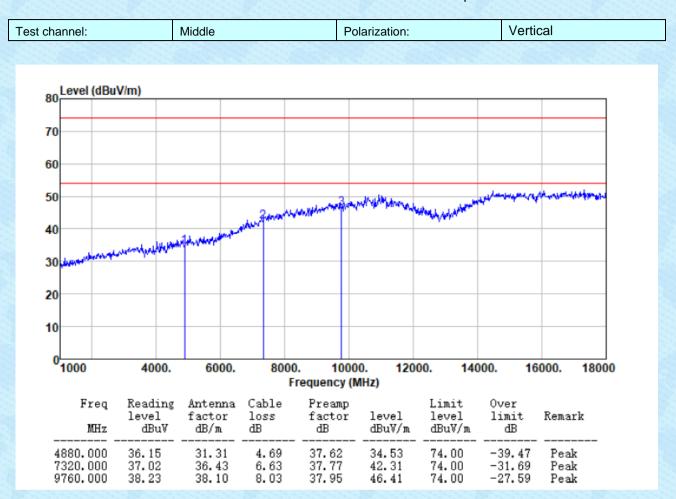
Above 1GHz

Unwanted Emissions in Restricted Frequency Bands

channel:	L	owest		Pola	rization:		Horizo	ntal
80 Level (dBu	V/m)							
70								
60								
50			2	medanibury	an whether way	والمعر فليطحه بالإسراء والملج	porter and the second	provident state of the state of
40		1 ANT AND ANT AND		and always damy				
30 miles	second and all all all all all all all all all al							
20								
20								
10								
01000	4000.	6000.	8000). 1000). 1200)0. 140	00. 16	000. 18000
				requency (N				
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛/m	Limit level dBuV/m	Over limit dB	Remark
4804.000	39.05	31.20	4.61	37.70	37.16	74.00	-36.84	Peak

Report No.: GTS202206000036F05

t channel:	L	owest		Pola	arization:		Vertic	al
80 Level (dBu	V/m)							·
70								
60								
50				And and a start	and the second	and a share want	whether we with the p	mandenersturk
40		ليعقبون والمعادية	- Ingentingen	A ODATION OF A		and the second		
30	un der abniker	Arrest and a second		nogenhoresidenter				
20								
10								
0 <mark>1000</mark>	4000.	6000.	8000 F). 1000 requency (M		0. 140	00. 16	000. 18000
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
 4804.000	37.89 37.83	31.20 36.16	4.61 6.48	37.70 37.82	36.00 42.65	74.00	-38.00 -31.35	 Peak Peak

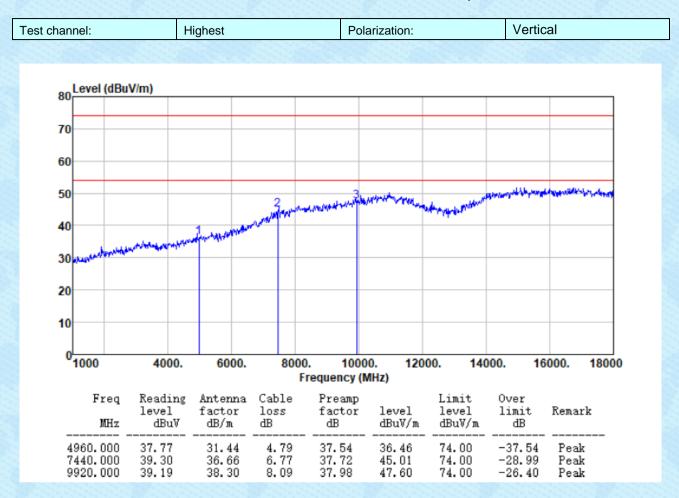


Report No.: GTS202206000036F05

st channel:	Ν	liddle		Pola	arization:		Horizo	ontal
80 Level (dB	uV/m)							
70								
60								
50			2	When shappy and	Mark way	مناميع المراجع	وبالارديان والمراجع	al warman the hard and and and and and and and and and an
40		1	or we apply the	Marcan		a a la a a a a a a a a a a a a a a a a		
shut	whenthe manager the last	e gallent						
30								
20								
10								
⁰ 1000	4000.	6000.	8000			0. 140	00. 16	000. 18000
				requency (N	IHZ)			
Freq	Reading level	Antenna factor	Cable loss	Preamp factor	level	Limit level	Over limit	Remark
MHz	dBu∛	dB/m	dB	dB	dBu∛/m	dBu∛/m	dB	
4880.000 7320.000	38.24 39.42	31.31 36.43	4.69 6.63	37.62 37.77	36.62 44.71	74.00 74.00	-37.38 -29.29	Peak Peak
9760.000	39.42 39.39	38.10	8.03	37.95	44.71	74.00	-29.29	Peak Peak

GTS

Report No.: GTS202206000036F05

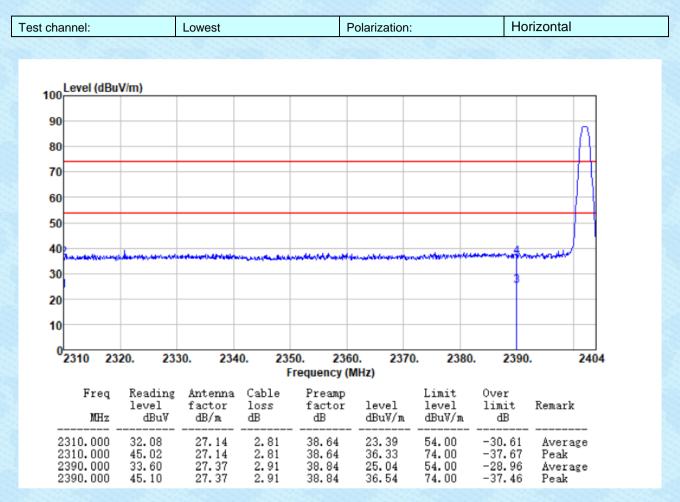


Report No.: GTS202206000036F05

channel:	Н	ighest		Pol	arization:		Horiz	contal
80 Level (dBu)	//m)							
70								
60								
60								
50			2	3	AN WOW WITH US	المحمد المتعا	(All and the second sec	and the state of the second
40		1	ALT A CALL	equive the second				
30 man all an other	and the second second second	and a start of the		3 erlum-g-galifes/y ^{ang}				
30								
20								
10								
0								
°1000	4000.	6000.	800	0. 1000 Frequency (N		00. 140	00. 16	000. 18000
Freq	Reading	Antenna	Cable	Preamp		Limit	Over	
MHz	level dBu∛	factor dB/m	loss dB	factor dB	level dBu∛/m	level dBu∛/m	limit dB	Remark
4960.000 7440.000	37.04 37.19	31.44 36.66	4.79 6.77	37.54 37.72	35.73 42.90	74.00 74.00	-38.27 -31.10	Peak Peak

GTS

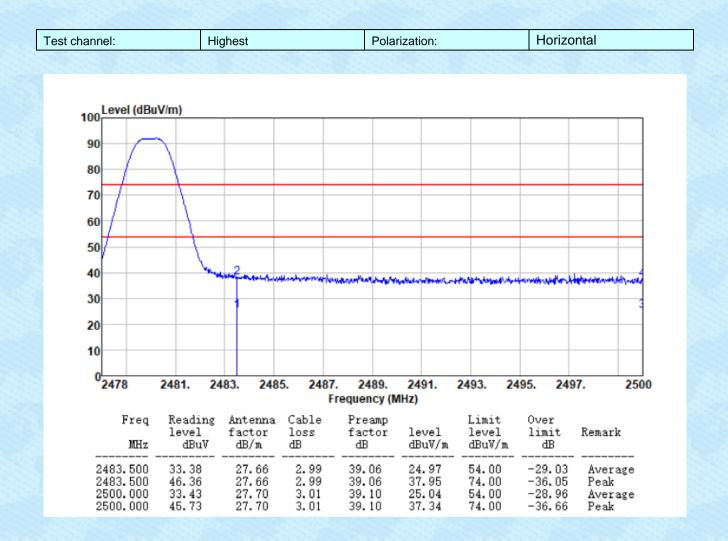
Report No.: GTS202206000036F05



Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Unwanted Emissions in Non-restricted Frequency Bands



Report No.: GTS202206000036F05

channel:		Lowest		Pol	larization:		Vertic	al
00 Level (dBi	uV/m)							
90								
30								Λ
70								
								11
50								
50								
10	-	dere bereiten die gester van de		-	Manhard Stage	and the second second	monterenhanen	or-staff easy with
uning the design of the second s	-and a starting	dere birsteriler y dira ya	heij veren en e	unduces.madureda	Mandred States	ubburoinder, das der geme	wateren hanen 3	
30	~~&	สมอาจากที่กรุงอำจะส่ง	be∦vi4.ersexet	uniduse med med	the minimum season of the s	uddinistration of the second second	ynywellandy, dan ar S	
80 20	n fa a dhaoinn an a	dere hinn of synthesis of	hay an	Londuces Anaphyrida	*******		ynerthrend, genen 3	
60 20 0							3	
60 20 0	320. 23:		0. 23		0. 2370		3	
80 80 10	Reading	30. 234 Antenna	0. 23 F Cable	50. 236 Frequency (N Preamp	0. 237(MHz)	0. 2380. Limit	3 . 2390 Over). 2404
0 2310 23		30. 234	0. 23 I	50. 236 Frequency (N	0. 2370	0. 2380.	3 . 2390	
0 2310 2: Freq MHz 2310.000	Reading level dBuV 33.22	30. 234 Antenna factor dB/m 27.14	0. 23 F Cable loss dB 2.81	50. 236 Trequency (M Preamp factor dB 38.64	0. 237(MHz) 	0. 2380. Limit level dBuV/m 	0ver limit dB -29.47). 2404 Remark Average
30 20 10 0 2310 2: Freq MHz	Reading level dBuV	30. 234 Antenna factor dB/m	0. 23 F Cable loss dB	50. 236 Trequency (M Preamp factor dB	0. 237(MHz) level dBuV/m	0. 2380. Limit level dBuV/m	Over limit dB). 2404 Remark

Report No.: GTS202206000036F05

st channel:	Н	ighest		Pola	rization:		Vertical	l
100 Level (dBu)	//m)							
90								
80	\setminus							
70								
60								
50								
40	- Maria		-these the sector	water seven and	ومقادول وملاح واللاق	nina frankreno	enter an and a start of a	mahlamensh
30								3
30 20		1						3
20								
20	2481. 24	483. 248			2491. /Hz)	2493. 24	95. 249	
20	2481. 24 Reading	1 183. 248 Antenna		7. 2489. Frequency (N Preamp		2493. 24 Limit	95. 249 Over	
20 10 0 2478				Frequency (N				
20 10 02478 Freq <u>MHz</u> 2483.500	Reading level dBuV 33.86	Antenna factor dB/m 27.66	Cable loss dB 2.99	Frequency (M Preamp factor dB 39.06	1Hz) 1evel dBuV/m 25.45	Limit level dBuV/m 54.00	Over limit dB -28.55	7. 2500 Remark
20 10 0 2478 Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Frequency (N Preamp factor dB 	MHZ) level dBuV/m	Limit level dBuV/m	Over limit dB	97. 2500 Remark

Remarks:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.
 "*", means this data is the too weak instrument of signal is unable to test.

GTS

Report No.: GTS202206000036F05

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----