

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TEST REPORT				
Report No. ······	······: CTC20231598E04			
FCC ID······:	2A2C7-MC07A			
IC:	27313-MC07A			
Applicant:	Clear Touch Solutions, Inc.			
Address	1100 Thousand Oaks Blvd. Greenville, SC 29607, United States			
Manufacturer	Clear Touch Solutions, Inc.			
Address	1100 Thousand Oaks Blvd. Greenville, SC 29607, United States			
Product Name······:	: CM100 Microphone Kit			
Trade Mark······	Clear Touch			
Model/Type reference······:	CTS-CM100-245G			
Listed Model(s) ······	/			
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 RSS 247 Issue 2			
Date of receipt of test sample:	Jul. 24, 2023			
Date of testing	Jul. 25, 2023 ~ Aug. 18, 2023			
Date of issue	Aug. 19, 2023			
Result:	PASS			
Compiled by: (Printed name+signature)	Terry Su Eric Zhang			
Supervised by: (Printed name+signature)				
Approved by: (Printed name+signature)	Totti Zhao			
Testing Laboratory Name:	CTC Laboratories, Inc.			
Address	: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China			
This test report may be duplicated completely for legal use with the approval of the applicant. It should				

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1. TE	EST SUMMARY	
1.1.	Test Standards	3
1.2.	Report version	3
1.3.	TEST DESCRIPTION	4
1.4.	Test Facility	5
1.5.	Measurement Uncertainty	5
1.6.	Environmental conditions	6
2. GE	ENERAL INFORMATION	7
2.1.	CLIENT INFORMATION	7
2.2.	GENERAL DESCRIPTION OF EUT	7
2.3.	ACCESSORY EQUIPMENT INFORMATION	8
2.4.	OPERATION STATE	9
2.5.	Measurement Instruments List	
3. TE	EST ITEM AND RESULTS	12
3.1.	CONDUCTED EMISSION	
3.2.	RADIATED EMISSION	
3.3.	BAND EDGE EMISSIONS (RADIATED)	
3.4.	Band edge and Spurious Emissions (Conducted)	
3.5.	20DB Bandwidth	65
3.6.	CHANNEL SEPARATION	72
3.7.	NUMBER OF HOPPING CHANNEL	74
3.8.	Dwell Time	76
3.9.	PEAK OUTPUT POWER	81
3.10.	DUTY CYCLE	85
3.11.	. ANTENNA REQUIREMENT	

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

<u>RSS 247 Issue 2:</u> Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices. <u>RSS-Gen Issue 5</u>: General Requirements for Compliance of Radio Apparatus.

1.2. Report version

Revised No.	Date of issue	Description
01	Aug. 19, 2023	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247)/ RSS 247 Issue 2					
Test liter	Standard	I Section	Decult		
Test Item	FCC IC		Result	Test Engineer	
Antenna Requirement	15.203	/	Pass	Alicia Liu	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Eva Feng	
Restricted Bands	15.205	RSS-Gen 8.10	Pass	Alicia Liu	
Hopping Channel Separation	15.247(a)(1)	RSS 247 5.1 (b)	Pass	Alicia Liu	
Dwell Time	15.247(a)(iii)	RSS 247 5.1 (d)	Pass	Alicia Liu	
Peak Output Power	15.247(b)(1)	RSS 247 5.4 (b)	Pass	Alicia Liu	
Number of Hopping Frequency	15.247(a)(iii)	RSS 247 5.1 (d)	Pass	Alicia Liu	
Conducted Band Edge and Spu- rious Emissions	15.247(d)	RSS 247 5.5	Pass	Alicia Liu	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Alicia Liu	
Radiated Spurious Emission	15.247(d)&15.20 9	RSS 247 5.5& RSS-Gen 8.9	Pass	Alicia Liu	
20dB Bandwidth	15.247(a)	RSS 247 5.1 (b)	Pass	Alicia Liu	

Note: The measurement uncertainty is not included in the test result.

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
20dB Emission Bandwidth	±0.0196%	(1)
Carrier Frequency Separation	±1.9%	(1)
Number of Hopping Channel	±1.9%	(1)
Time of Occupancy	±0.028%	(1)
Max Peak Conducted Output Power	±0.743 dB	(1)
Band-edge Spurious Emission	±1.328 dB	(1)
Conducted RF Spurious Emission	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C ~ 27°C
Relative Humidity:	40% ~ 60%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Clear Touch Solutions, Inc.	
Address:	1100 Thousand Oaks Blvd. Greenville, SC 29607, United States	
Manufacturer:	Clear Touch Solutions, Inc.	
Address:	1100 Thousand Oaks Blvd. Greenville, SC 29607, United States	

2.2. General Description of EUT

Product Name:	CM100 Microphone Kit		
Trade Mark:	Clear Touch		
Model/Type reference:	CTS-CM100-245G		
Listed Model(s):	1		
Power supply:	5Vdc from USB Cable 3.8Vdc from 350mAh Li-ion Battery		
Hardware version:	D23241		
Software version:	V0.1.9		
Bluetooth 5.0/ BR, EDR			
Modulation:	GFSK, π/4-DQPSK, 8-DPSK		
Operation frequency:	2402MHz~2480MHz		
Channel number:	79		
Channel separation:	1MHz		
Antenna type:	FPC Antenna		
Antenna gain:	2.59dBi Max		

2.3. Accessory Equipment information

Equipment Information					
Name	Model	S/N	Manufacturer		
Notebook	ThinkBook 14G3 ACL	MP246QDR	Lenovo		
1	1	1	1		
Cable Information					
Name	Shielded Type	Ferrite Core	Length		
1	1	1	1		
Test Software Information					
Name	Versions	1	1		
SecureCRTPortable	7.0.0.326	1	/		

2.4. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2403
:	÷
38	2440
39	2441
40	2442
:	:
77	2479
78	2480

Note: The display in grey were the channel selected for testing.

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.5. Measurement Instruments List

Tonsce	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023	
2	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023	
3	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024	
4	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023	
5	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023	
6	Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024	
7	Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024	
8	Wideband Radio Com- munication Tester	R&S	CMW500	102414	Dec. 16, 2023	
9	High and low tempera- ture box	ESPEC	MT3035	/	Mar. 24, 2024	
10	JS1120 RF Test system	TONSCEND	v2.6	/	1	

Radiate	Radiated emission(3m chamber 2)					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Dec. 07, 2024	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 07, 2024	
3	Loop Antenna	LAPLAC	RF300	9138	Dec. 16, 2023	
4	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023	
5	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024	
6	Pre-Amplifier	SONOMA	310	186194	Dec. 16, 2023	
7	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 16, 2023	
8	Test Receiver	R&S	ESCI7	100967	Dec. 16, 2023	
9	3m chamber 2	Frankonia	EE025	/	Oct. 23, 2024	

Radiate	d emission(3m chamber 3))			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Anten- na	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023
4	Broadband Premplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023
6	Pre-Amplifier	R&S	SCU-26	10033	Dec. 16, 2023
7	Pre-Amplifier	R&S	SCU-40	10030	Dec. 16, 2023
8	Board-Band Horn Anten- na	Schwarzbeck	BBHA 9170	BBHA 9170-497	Dec. 16, 2023
9	3m chamber 3	YIHENG	EE106	/	Sep. 09, 2023

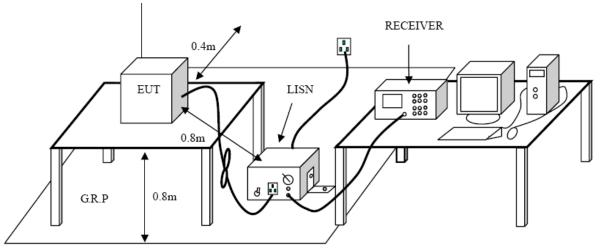
Condu	cted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	R&S	ENV216	101112	Dec. 16, 2023
2	LISN	R&S	ENV216	101113	Dec. 16, 2023
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023

Note: 1. The Cal. Interval was one year.

2. The Cal. Interval was three year of the chamber

3. The cable loss has calculated in test result which connection between each test instruments.

3.1. Conducted Emission

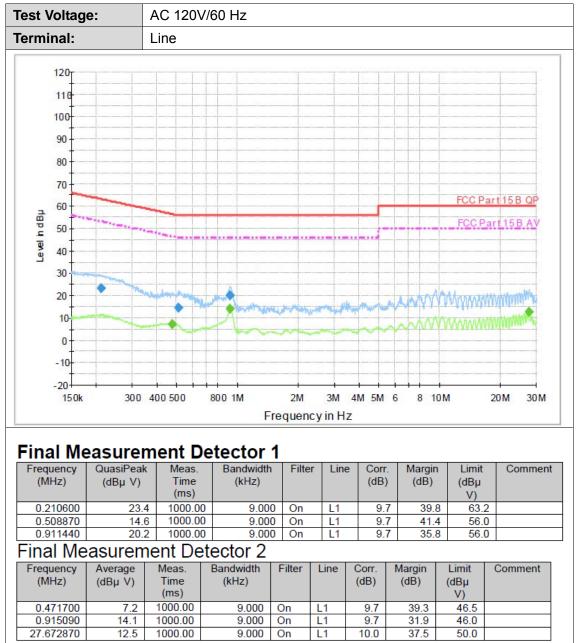

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

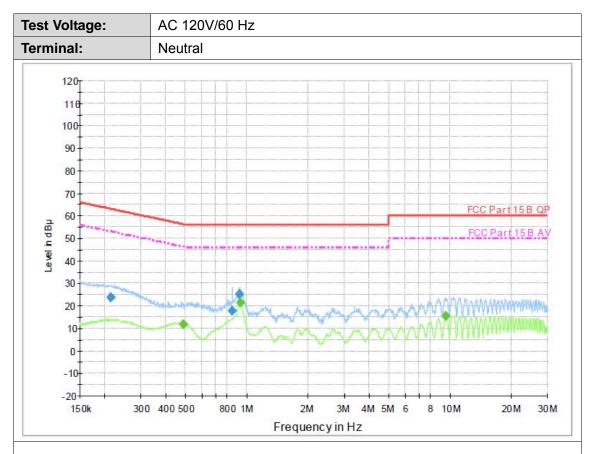
* Decreases with the logarithm of the frequency.

Test Configuration


Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode


Please refer to the clause 2.4.

Emission Level= Read Level+ Correct Factor

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.213990	23.7	1000.00	9.000	On	N	10.0	39.3	63.0	
0.844870	17.8	1000.00	9.000	On	Ν	10.0	38.2	56.0	
0.915090	25.3	1000.00	9,000	On	N	10.0	30.7	56.0	

Final Measurement Detector 2

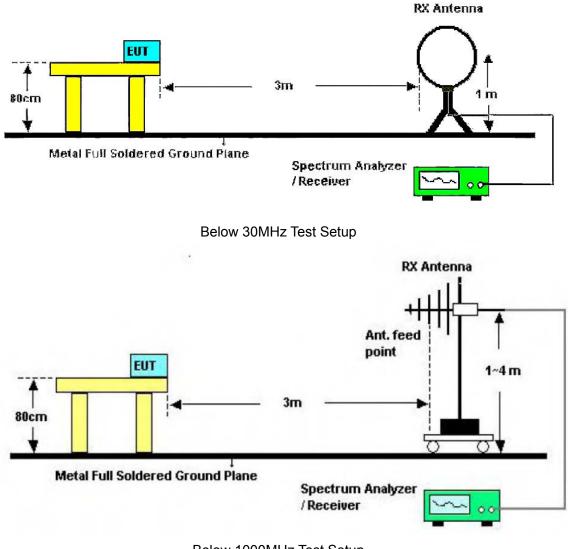
Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.483140	12.0	1000.00	9.000	On	Ν	10.0	34.3	46.3	
0.922420	21.5	1000.00	9.000	On	Ν	10.0	24.5	46.0	
9.455520	15.5	1000.00	9.000	On	Ν	10.0	34.5	50.0	

Emission Level= Read Level+ Correct Factor

3.2. Radiated Emission

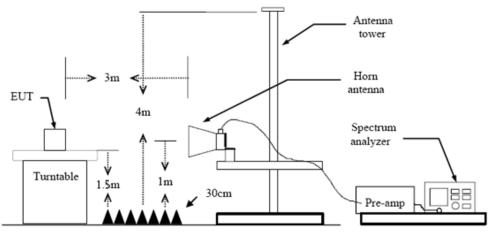
<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS – Gen 8.9


Frequency	Limit (dBuV/m @3m)	Value
30 MHz ~ 88 MHz	40.00	Quasi-peak
88 MHz ~ 216 MHz	43.50	Quasi-peak
216 MHz ~ 960 MHz	46.00	Quasi-peak
960 MHz ~ 1 GHz	54.00	Quasi-peak
Above 1 GHz	54.00	Average
	74.00	Peak

Note:

(1) The tighter limit applies at the band edges.


(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - Span shall wide enough to fully capture the emission being measured; (1)
 - (2) Below 30 MHz:

9kHz – 150kHz, RBW=200Hz, VBW≥RBW, Sweep=auto, Detector function=peak, Trace=max hold; 150kHz – 30MHz, RBW=9kHz, VBW≥RBW, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) 30 MHz - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(4) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW≥1/T Peak detector for Average value.

Note 1: For the 1/T& Duty Cycle please refer to clause 3.10 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

CTC Laboratories, Inc.

nt. Po	l	Hori	zontal					
est Mo	de:	тх с	GFSK Moo	de 2402MHz				
emark		Only	/ worse ca	ise is reported	1			
0.0 dBu	V/m							
0								
0								
o							FCC Part	15.0
0							Margin -	
0					3			
0				www.dawhahahahahahahah	2 45 \$			
o				- Melun	MANNAN	why the	ANA ANA	manage the top
		Λ		Mar appr	100	where have	A MANUTAN AND A MANUTAN	
+MM W	manu	www	Munderenter	√w~*				
0								
30.000		60.00		(MHz)	300.	.00		1000.0
No.	Freque (MHz	-	Reading (dBuV)	•	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
1	191.74	50	47.15	-19.74	27.41	43.50	-16.09	QP
2	213.76	34	47.89	-19.92	27.97	43.50	-15.53	QP
_	233.34	86	56.93	-19.21	37.72	46.00	-8.28	QP
3 *			48.33	-18.12	30.21	46.00	-15.79	QP
3 * 4	266.60	89	10.00					
-	266.60 277.09		48.17	-17.82	30.35	46.00	-15.65	QP

An	t. Pol		Verti	cal					
Tes	st Mo	de:	TX C	GESK Mode	2402MHz				
Re	mark:		Only	worse case	e is reported	1			
90.0)dBu\	//m							
80									
70									
60									
50								FCC Par Margin -	
40						3			
30					2				56
20			Å	Vicealussius and a second second		With a with the full	Warnesson	www.withestyp.white	R/PMAANUUM
10	de la la section de la section	Malada Managha Madaya	may and a	Walder Here with the stands of	Water				
0									
-10									
. 3	30.000		60.00		(MHz)	300.	.00		1000.000
	No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	71.330	00	42.01	-20.69	21.32	40.00	-18.68	QP
	2	133.15	11	43.98	-18.25	25.73	43.50	-17.77	QP
	3 *	233.34	87	50.87	-19.21	31.66	46.00	-14.34	QP
	4	299.31	58	45.88	-17.19	28.69	46.00	-17.31	QP
	4								
	5	813.11		35.60	-7.12	28.48	46.00	-17.52	QP

nt. Po	l	Hori	zontal					
est Mo	de:	ТХ С	GFSK Mode	2402MHz				
Remark	:		eport for the bed limit.	e emission v	vhich more t	han 10 dB l	pelow the	e pre-
10.0 dBu	ıV/m	SCIL						
00								
0								
0								
						FCC Part15	C - Above 1	G PK
0								
0						FCC Part15	C - Above 1	GAV
0								
	ş							
0	1							
	×							
20								
0.0	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	.00 26000
No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4803.5	13	25.93	2.16	28.09	54.00	-25.91	AVG
2	4804.2	22	40.99	2.16	43.15	74.00	-30.85	peak
Remark		Anten	na Factor (c	IB/m)+Cabl	e Factor (dE	3)-Pre-ampli	fier Facto	or

Ant	. Pol		Vert	ical								
Tes	t Mo	de:	ТХ (GFS	K Mode	2402MI	Ηz					
Rer	nark			epoi bed l		e emissio	on v	vhich	more t	han 10 dB	below the	e pre-
110.) dBu	V/m										
100												
90												
80										FCC Part15	C - Above 1	G PK
70												
60										FCC Part15	C - Above 1	G AV
50		1										
40		x					-					
30		ş					-					
20							-					
10.0 10	00.000	3500.00	6000.00	850)0.00 11	000.00 (N	(Hz)	160	00.00 1	8500.00 2100	0.00 23500	.00 26000.0
								I				
N	lo.	Freque (MH:	-		ading BuV)	Facto (dB/m			vel iV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	4803.9	69	4	1.05	2.16		43	.21	74.00	-30.79	peak
2	*	4804.6	652	2	5.69	2.16		27	.85	54.00	-26.15	AVG
Rer	narks	S:										

Page 20 of 89

nt. Po	l. 🗌	Hori	zonta	al									
est Mo	de:	тх с	GFSł	K Mode	2441M⊦	lz							
emark	:	No r scrib			emissio	n w	/hich	more t	han 10 d	Βb	elow the	e pre-	
10. <u>0</u> dB	uV/m									_			
0													
)										+			
, 📖													
									FCC Par	t15 (C - Above 1	G PK	
										+			
)									500 D-			<u> </u>	
, 📛									FUC Par		C-Above 1	GAV	
	Š												
										+			
)	1 ×	_								-			
, 📖													
0.0													
1000.00	0 3500.00 6	000.00	850	0.00 11	000.00 (M	Hz)	160	00.00 1	8500.00 2	1000	0.00 23500	0.00 260	00
No.	Freque (MHz			ading BuV)	Facto (dB/m			vel IV/m)	Limit (dBuV/r	n)	Margin (dB)	Detecto	or
1 *	4881.3	31	20	6.15	2.31		28	.46	54.00		-25.54	AVG	3
2	4882.6	10	4	1.45	2.32		43	.77	74.00		-30.23	peak	<

No	GFSK Mode report for the ibed limit.		vhich more t	FCC Part1 5 (C - Above 10	<u>3 PK</u>
scri		e emission v	vhich more t	FCC Part1 5 (C - Above 10	<u>3 PK</u>
ŝ.						
ŝ.						
<u>Å</u>						
ŝ.						
č.				FCC Part15 (C - Above 10) AV
ŝ				FCC Part15 (C - Above 10	à AV
ŝ						
*						
1×						
0 6000.00	0 8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	00 23500	.00 26000.0
quency MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
31.061	25.20	2.31	27.51	54.00	-26.49	AVG
32.434	40.23	2.31	42.54	74.00	-31.46	peak
	о 6000.00 quency ИНz) 31.061	0 6000.00 8500.00 11 quency Reading //Hz) (dBuV) 81.061 25.20	0 6000.00 8500.00 11000.00 (MHz) quency Reading (dBuV) Factor (dB/m) 81.061 25.20 2.31	0 6000.00 8500.00 11000.00 (MHz) 16000.00 1 quency Reading Factor Level (dBuV) (dB/m) (dBuV/m) 31.061 25.20 2.31 27.51	Quency Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) 31.061 25.20 2.31 27.51 54.00	Quency Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) 31.061 25.20 2.31 27.51 54.00 -26.49

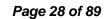
Page 22 of 89

Remarks:

nt. Pol	•	Horiz	zontal					
est Mo	de:	TX G	SFSK Mode	2480MHz				
emark	:		eport for the ed limit.	e emission v	vhich more t	han 10 dB t	pelow the	e pre-
10.0 dBu	V/m							
00								
						FCC Part15 (C - Above 1	G PK
						FCC Part15	C - Above 1	GAV
	1×							
	Š							
).0 1000.000	3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	0.00 23500	.00 26000
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4959.2	02	40.22	2.48	42.70	74.00	-31.30	peak
	4960.7	28	26.90	2.48	29.38	54.00	-24.62	AVG

		Verti	cal						
est Mo	ode:	TX C	FSK Mode	2480MHz					
Remark	(:		eport for the ed limit.	emission w	hich more t	han 10 dB b	nan 10 dB below the pre-		
10.0 dB	uV/m								
00									
10									
0									
'o 📃						FCC Part15 (C-Above 10	i PK	
io									
io						FCC Part15 (C-Above 10	AV .	
10	ş								
10	1								
20	×								
0.0	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)					
	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
No.	(1911)2				-				
No.	4959.7	47	24.44	2.48	26.92	54.00	-27.08	AVG	

Ant. Po	I.	Hori	zontal					
Test Mo	ode:	TX 1	π/4-DQPS	K Mode 2402	2MHz			
Remark			eport for th bed limit.	e emission v	vhich more t	han 10 dB b	elow the	pre-
110.0 dB	uV/m							
100								
90								
30						FCC Part15 (0.4614	
70						FCC Partis	C-ADOVE I	JPK
60								
50						FCC Part15 (C - Above 1	GAV
10	* *							
30	2							
20	ş							
10.0								
1000.00	0 3500.00	6000.00	8500.00	11000.00 (MHz)	16000.00 1	8500.00 21000).00 23500	.00 26000.0
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4804.1	54	41.40	2.16	43.56	74.00	-30.44	peak
2 *	4804.9	925	25.69	2.16	27.85	54.00	-26.15	AVG

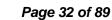

	l.	Verti	cal								
est Mo	de:	TX 1	π/4-D	QPSK	Mode 2	402	MHz				
lemark	:		eport bed lin		emissio	n w	/hich	more t	han 10 dE	B below the	e pre-
10.0 dBu	ıV/m										
00											
I											
ı									ECC Dest	15 C - Above 1	C DK
									FUC Part	IS C - ADOVE I	GPK
)									FCC Part	15 C - Above 1	G AV
ı	1										
ı	×					_					
, 📃	ş										
	×										
		_									
0.0 1000.000	0 3500.00 6	000.00	8500.	.00 11	000.00 (M	IHz)	160	00.00 1	8500.00 21	000.00 23500	.00 26000
No.	Freque (MHz	-	1	ading 8uV)	Facto (dB/m			evel iV/m)	Limit (dBuV/n	Margin n) (dB)	Detector
	+				0 40		42	.72	74.00	-31.28	peak
1	4804.2	65	40	.56	2.16						

2.Margin value = Level -Limit value

nt. Po	ol.	Horizo	ontal					
est Mo	ode:	ΤΧ π	/4-DQPSK	Mode 244	1MHz			
emarl	k:		port for the d limit.	emission v	which more t	han 10 dB b	elow the	pre-
0.0 dB	uV/m							
0								
I						FCC Part15 (C-Ahove 10	3 PK
						FCC Part15 (C-Above 10	AV
	1							
I	~							
	ž							
.0								
1000.00	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	.00 23500.	00 26000
No.	Frequer (MHz		Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
1	4881.7	87	40.47	2.31	42.78	74.00	-31.22	peak
2 *	4882.5	87	25.27	2.32	27.59	54.00	-26.41	AVG

nt. Po	ol.	Verti	cal					
est M	ode:	ΤΧ τ	t/4-DQPSK	Mode 244	1MHz			
emar		No re scrib	eport for the ed limit.	emission v	which more	than 10 dB l	below the	e pre-
10.0 dE	Bu∀/m							
00		_						
o								
,								
						FCC Part15	C - Above 1	G PK
						FCC Part15	C - Above 1	GAV
	2							
·	Š							
)	1. X							
).0	00 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1		0.00 23500	.00 26000
No.	Frequer	псу	Reading	Factor	Level	Limit	Margin	Detector
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1 *	4881.6	65	25.22	2.31	27.53	54.00	-26.47	AVG
2	4882.1	95	40.54	2.31	42.85	74.00	-31.15	peak
2	4882.1	95	40.54	2.31	42.85	74.00	-31.15	peak

nt. Po	ol.	Hori	zontal					
est Mo	ode:	TX [·]	π/4-DQPSK	Mode 248	0MHz			
emarl	K :		eport for the	e emission v	which more	than 10 dB t	pelow the	e pre-
0.0 dE	BuV/m							
00								
						FCC Part15	C - Above 1	G PK
۱ <u> </u>								
•						FCC Part15	C - Above 1	GAV
.	×							
	2							
	^							
).0								
1000.00	<u>00 3500.00 6</u>	000.00	<u>8500.00 1</u>	1000.00 (MHz)	16000.00	<u>18500.00 2100</u>	<u>0.00 23500</u>) <u>.00 26000</u>
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4960.0	39	39.93	2.48	42.41	74.00	-31.59	peak
2 *	4960.9	02	26.39	2.48	28.87	54.00	-25.13	AVG



nt. Pol	-	Verti	cal					
est Mo	de:	TX 1	π/4-DQPSk	(Mode 2480)MHz			
emark			eport for the	e emission v	which more t	han 10 dB t	pelow the	e pre-
10.0 dBu	iV/m							
00								
,								
,								
,						FCC Part15	C - Above 1	G PK
o								
						FCC Part15	C - Above 1	GAV
	ş							
)	_							
0	×							
D D.0								
	3500.00 6	000.00	8500.00 1	1000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	.00 26000
No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	4959.5	08	24.57	2.48	27.05	54.00	-26.95	AVG
1 *	1	08	40.34	2.48	42.82	74.00	-31.18	peak

		lorizontal									
de:	TX 8	-DPSK M	ode 2402MH	Z							
:			ne emission v	which more	than 10 dB t	pelow the	e pre-				
V/m											
					FCC Part15 (C-Above 10	G PK				
					ECC Part15 (C - Above 10					
×											
2											
^											
3500.00 6	000.00	8500.00	11000.00 (MHz)	16000.00	18500.00 21000	0.00 23500	.00 26000.				
				Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
4804.0	98	41.71	2.16	43.87	74.00	-30.13	peak				
4804.4	81	26.98	2.16	29.14	54.00	-24.86	AVG				
	V/m 1 1 3500.00 6 Frequence (MHz 4804.0	V/m	No report for the scribed limit.	No report for the emission viscribed limit. V/m V/m Image: limit li	No report for the emission which more scribed limit. V/m V/m Image: scribed limit. Image: scribed limit. V/m Image: scribed limit. Image: scribe lim	No report for the emission which more than 10 dB to scribed limit. V/m V/m FCC Part15 FCC Part15 1 <t< td=""><td>No report for the emission which more than 10 dB below the scribed limit. V/m FCC Part15 C - Above 10 FCC Part15 C - Above 10 FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part1</td></t<>	No report for the emission which more than 10 dB below the scribed limit. V/m FCC Part15 C - Above 10 FCC Part15 C - Above 10 FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part15 C - Above 10 Image: Scribed limit. FCC Part1				

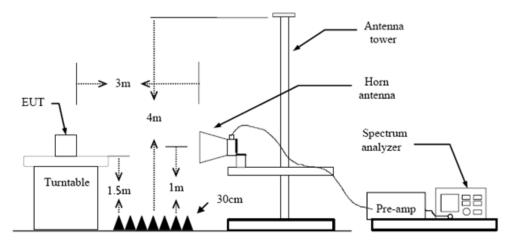
nt. Po	ol.	Verti	cal					
est Mo	ode:	TX 8	B-DPSK Mod	de 2402MH	Z			
emark			eport for the ed limit.	emission v	which more f	han 10 dB t	pelow the	e pre-
0.0 dB	uV/m							
0								
						FCC Part15	C - Above 1	G PK
						FCC Part15	C - Above 1	G AV
	1×							
	ş	_						
.0	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	0.00 26000
	1							
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4804.1	63	40.56	2.16	42.72	74.00	-31.28	peak
2 *	4804.7	83	25.73	2.16	27.89	54.00	-26.11	AVG

Ant.	Pol.		Hori	zontal					
Fest	Mode:		TX 8	B-DPSK M	lode 2441MH	z			
Rem	ark:			eport for t	he emission	which more	than 10 dB l	below the	e pre-
10.0	dBuV/m								
00									
0 -							FCC Part15	C - Above 1	G PK
ן ר									
╷┝									
,							FCC Part15	C - Above 1	G AV
		ş							
) -									
) -		×							
0 -									
).0 100	0.000 3500.	00 60	00.00	8500.00	11000.00 (MHz)	16000.00	18500.00 2100	0.00 23500).00 26000
No		quen MHz)		Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	* 48	81.52	23	25.15	2.31	27.46	54.00	-26.54	AVG
	48	82.17	73	39.94	2.31	42.25	74.00	-31.75	peak

-		cal					
de:	TX 8	-DPSK Mo	de 2441MH	Z			
			emission v	which more	than 10 dB t	below the	e pre-
V/m							
					FCC Part15 (C - Above 10	3 PK
					FCC Part15 (C-Above 10	3 AV
2	_						
8							
1							
2500.00 6	000.00	0500.00 11	000.00 (1411-)	16000.00 1	9500.00 21000	00 22500	.00 26000.1
		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
4881.20)9	24.90	2.31	27.21	54.00	-26.79	AVG
4881.92	20	39.82	2.31	42.13	74.00	-31.87	peak
	V/m	No roscrib	No report for the scribed limit. V/m V/m Image: Scribed limit. Imag	No report for the emission viscribed limit. V/m V/m V/m Image: Second limit. V/m Image: Second limit. V/m Image: Second limit. V/m Image: Second limit. Image: Second limit. V/m Image: Second limit. Image: Second limit.<	No report for the emission which more is scribed limit. V/m V/m Image: Scribed limit. V/m Image: Scribed limit. V/m Image: Scribed limit. V/m Image: Scribed limit. Image: Scribed limit. V/m Image: Scribed limit. Image: Scribe	No report for the emission which more than 10 dB is scribed limit. V/m FCC Part 5 (FCC Part 5 (FCC Part 5 (Å FCC Part 5 (Å </td <td>No report for the emission which more than 10 dB below the scribed limit. V/m FCC Part15 C - Above 10 FCC Part15 C - Above 10 FCC Part15 C - Above 10 Reading (MHz) Factor (dBuV) Level (dBuV/m) Margin (dB) 4881.209 24.90 2.31 27.21 54.00 -26.79</td>	No report for the emission which more than 10 dB below the scribed limit. V/m FCC Part15 C - Above 10 FCC Part15 C - Above 10 FCC Part15 C - Above 10 Reading (MHz) Factor (dBuV) Level (dBuV/m) Margin (dB) 4881.209 24.90 2.31 27.21 54.00 -26.79

Ant. Po	l.	Hori	zontal								
Test Mode: Remark:		TX 8-DPSK Mode 2480MHz No report for the emission which more than 10 dB below the pre- scribed limit.									
00											
0											
30						FCC Part15	C - Above 10	3 PK			
'0 											
50						FCC Part15	C - Above 10	A V			
50	1×										
10	×										
0	ş										
20											
0.0	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	0.00 23500.	.00 26000.0			
No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1	4960.7	89	40.72	2.48	43.20	74.00	-30.80	peak			
	4960.8	~ -	24.85	2.48	27.33	54.00	-26.67	AVG			

Ant. Po	I.	Verti	cal							
Test Mode: Remark:		TX 8-DPSK Mode 2480MHz No report for the emission which more than 10 dB below the pre- scribed limit.								
00										
o										
0						FCC Part15 (C - Above 10	G PK		
0										
0						FCC Part15 (C-Above 10	GAV		
o	1×									
o	ž.									
o	×									
0.0	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	0.00 23500	.00 26000.1		
No.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	4959.1	99	40.87	2.48	43.35	74.00	-30.65	peak		
1	4960.7		24.58	2.48	27.06	54.00	-26.94	AVG		


3.3. Band Edge Emissions (Radiated)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

Restricted Frequency Band	(dBuV/m	n)(at 3m)
(MHz)	Peak	Average
2310 ~ 2390	74	54
2483.5 ~ 2500	74	54

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

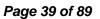
RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.10 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Tel.: (86)755-27521059 国家认证认可监督管理委员会 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>



Test Results

nt. Pol	•	Horiz	zontal					
est Mo	de:	GFS	K Mode 240	02MHz				
10.0 dBu	iV/m							
00								
D								0
o						FCC Part15	C - Ahove 1	GPK
0								
o						FCC Part15	C - Above 1	
0							×	Ê.
	and a second second	man		Element and the first the start for	an frank and the second and the seco		Junament	lun
) <u> </u>								
0								
0.0 2307.500) 2317.50	2327.50	2337.50 23	47.50 (MHz)	2367.50 2	2377.50 2387.	.50 2397.9	50 2407.9
No.	Freque		Reading	Factor	Level	Limit	Margin	Detector
	(MHz		(dBuV)	(dB/m)		(dBuV/m)	(dB)	Delector
1	2390.0	000	19.40	30.84	50.24	74.00	-23.76	peak
2 *	2390.0	1	5.99	30.84	36.83	54.00	-17.17	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

nt. Po	I.	Verti	cal					
est Mo	ode:	GFS	K Mode 240)2MHz				
10.0 dB	uV/m							
00								
0								
0						FCC Part15	C - Above 1	
						FCC Part15	C- <u>Above 1</u>	GAV
0								\mathcal{H}
	and an an and the second	hermon	an a	mmmm	and a second and a s	a had a marked a second	- Zerowan	m I
0.0								
	0 2315.00 2	325.00	2335.00 23	145.00 (MHz)	2365.00	2375.00 2385	.00 2395.1	<u>DO 2405.(</u>
No.	Frequer (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.0	00	22.53	30.84	53.37	74.00	-20.63	peak
2 *	2390.0	00	5.58	30.84	36.42	54.00	-17.58	AVG
emark	s:							

nt.	Pol	•	Hori	zontal					
est	Mo	de:	GFS	SK Mode 24	80 MHz				
10.0	dBu	V/m	_						
00									
0	Λ								
0							500 D	0.41.1	
							FCC Part15	C - Above 1	G PK
0	$\left[\right]$								
	f \;	k –					FCC Part15	C - Above 1	<u>G AV</u>
o	ļ	2 Kon under	makanakahash	ware and the second of	have been and have	an shiring a supering a supering and	which have been and a start	manuna	water
, -									
0 -									
0.0 247	77.000	2487.00	2497.00	2507.00 2	517.00 (MHz)	2537.00	2547.00 2557	.00 2567.0	0 2577.0
N	0.	Frequ (Mł		Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1		2483	.500	19.83	31.24	51.07	74.00	-22.93	peak
2	*	2483	.500	7.00	31.24	38.24	54.00	-15.76	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

nt.	Pol		Vert	ical										
est	Мо	de:	GFS	SK M	ode 24	80 MH	z							
0.0	dBu	V/m												_
0														
	Δ.													
	1													
										FCC F	Part15	C - Above	1G PK	
F														
	3	2								FCC F	^o art15	C - Above	1G AV	
Н	\square													-
∣∦		, 												
ľ	4	Knownon	anter der Martin Al	Malanter	monter	Whetherman	www.	- Marykar	www.	Marian	enter the second	www.wh	unan month	s.
							_							_
0.0														
247	7.000	2487.00 2	497.00	250	7.00 25	517.00	(MHz)	253	87.00 2	2547.00	2557	.00 2567	7.00 2	577.0
No	b .	Frequer (MHz	-		ading BuV)	Fac (dB/			vel iV/m)	Lim (dBu\		Margir (dB)	Dete	ector
1		2483.5	00	23	3.25	31.	24	54	.49	74.(00	-19.51	pe	ak
2	*	2483.5	00	6	.31	31.	24	37	.55	54.(00	-16.45	5 A\	/G
						-						-		
-	arks	s: (dB/m) =	• •	_										

nt. Po	I.	Horiz	zontal					
est Mo		π/4-	DQPSK Mod	de 2402MH	Z			
0.0 dBu	ıV/m							
10								
I						FCC Part15 C	- Above 10	ЛРК
						FCC Part15	- Above 10	
-	man water	mund	man and a second	man		manun	minun	han
,).0								
2307.500	2317.50 2	327.50	2337.50 234	17.50 (MHz)	2367.50 2	377.50 2387.9	50 2397.5	0 2407.50
	Freque		Reading	Factor	Level	Limit	Margin	
No.	(MHz		(dBuV)	(dB/m)		(dBuV/m)		Detector
1	2390.0	00	23.07	30.84	53.91	74.00	-20.09	peak
2 *	2390.0	00	6.08	30.84	36.92	54.00	-17.08	AVG
emark	s: (dB/m) = /							

nt. Po	Ι.	Verti	cal					
est Mo	de:	π/4-	DQPSK Mo	de 2402MH	Z			
10. <u>0</u> dB	uV/m		1					
00								
D								
						FCC Part15	C - Above 1	G PĶ,
0								
						FCC Part15	C-Above 1	GAV
		_					_	
) 	w.~	amorthus	underformer and the second	alerone and a series and a series of the ser		under für Seine der Seine seinen son	n to mark	~~ (
o								
2305.00	0 2315.00 2	325.00	2335.00 23	45.00 (MHz)	2365.00 2	2375.00 2385.	00 2395.0	0 2405.0
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.0	00	21.24	30.84	52.08	74.00	-21.92	peak
2 *	2390.0	00	5.76	30.84	36.60	54.00	-17.40	AVG
emark			na Factor (o					

nt.	Pol.			Hori	zoni	tal										
est	Мо	de:		π/4-	DQI	⊃SK M	ode 2	2480	ΜН	Z						
10.0	dBu\	//m							_							
00																
) -	Λ											FCC	Part15	C - Above	e 1G	PK
) 		_										FCC	Part15	C - Above	e 1G	AV
' †		•										_				
	Ş	in mark	Andrews	he have	~~~	an (hala an	yana ya kata ya	and the second	- tono	www.www	whiteness	laya - Antonia an Alaya	menne	ant naya. Maran	in an	montana
247	7 000	2487.0	1 24	97.00	25()7.00	2517.00	n (M	Hz)	25	37.00 2	547.00	2557.	00 256	57.00	2577.0
No) .	Free (N	luen 1Hz)			eading BuV)		Facto			evel uV/m)	Lir (dBu		Margi (dB)		Detector
1		248	3.50	0	2	0.77	3	31.24	1	52	2.01	74.	00	-21.9	9	peak
2	*	248	3.50	0	ţ	5.96	3	31.24	1	37	7.20	54.	00	-16.8	0	AVG
	arks															

2.Margin value = Level -Limit value

No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Deternation 1 2483.500 23.74 31.24 54.98 74.00 -19.02 performance	nt. Po	I.	Vert	ical					
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Deter (dBuV/m) 1 2483.500 23.74 31.24 54.98 74.00 -19.02 pear	est Mo	ode:	π/4-	DQPSK Mo	de 2480MH	Z			
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Deter (dBuV/m)	10. <u>0</u> dB	uV/m							
No. Frequency (MHz) Reading (dBuV) Factor (dBm) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Deter 1 2483.500 23.74 31.24 54.98 74.00 -19.02 peak	00								
No. Frequency (MHz) Reading (dBuV) Factor (dBnM) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Dete 1 2483.500 23.74 31.24 54.98 74.00 -19.02 peak									
No. Frequency (MHz) Reading (dBuV) Factor (dBm) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Deter (dB) 1 2483.500 23.74 31.24 54.98 74.00 -19.02 peak							FCC Part15	C - Above 1	G PK
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) Deter (dBuV/m) 1 2483.500 23.74 31.24 54.98 74.00 -19.02 pear	۱Ħ								
A B) <u> </u>	ł					FCC Part15	C - Above 1	G AV
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Deter 1 2483.500 23.74 31.24 54.98 74.00 -19.02 peak)								
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Deter 1 2483.500 23.74 31.24 54.98 74.00 -19.02 pead	'	Barran	n territer and	matter weren	montoliment	markan	union and	we have the hard man	mm
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Deter 1 2483.500 23.74 31.24 54.98 74.00 -19.02 pead									
2477.000 2487.00 2497.00 2507.00 2517.00 (MHz) 2537.00 2547.00 2557.00 2567.00 25 No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Deter 1 2483.500 23.74 31.24 54.98 74.00 -19.02 pea									
No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Deter 1 2483.500 23.74 31.24 54.98 74.00 -19.02 pea		0 2487.00	2497.00	2507.00 25	517.00 (MHz)	2537.00	2547.00 2557.	.00 2567.	00 2577.
No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Deter 1 2483.500 23.74 31.24 54.98 74.00 -19.02 pea		1				1			Γ
	No.								Detector
2 * 2483.500 6.17 31.24 37.41 54.00 -16.59 AV		2483.	500	23.74	31.24	54.98	74.00	-19.02	peak
	1	24021	500	6.17	31.24	37.41	54.00	-16.59	AVG
		2403.3			1				

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

nt. Po	I.	Hori	zontal					
est Mo	de:	8-DF	PSK Mode 2	402MHz				
10. <u>0</u> dBu	uV/m							
00								
)								
,								
						FCC Part15	C - Above 1	GPK
)						500 D	0.41	
, ⊨						FCC Part15	X X	
) ••••••••••••••••••••••••••••••••••••	when performent of the	mann	km-roman-	alama whomas		an warman	3 monoral	hum
)								
,								
D.0								
2307.50	0 2317.50 2	327.50	2337.50 23	47.50 (MHz)	2367.50	2377.50 2387	.50 2397.	50 2407.9
No.	Frequer		Reading	Factor		Limit	Margin	Detector
	(MHz	, 	(dBuV)	(dB/m)	. ,	(dBuV/m)	(dB)	
1	2390.0	00	20.61	30.84	51.45	74.00	-22.55	peak
2 *	2390.0	00	<mark>6.11</mark>	30.84	36.95	54.00	-17.05	AVG
emark	s.							

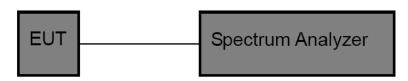
nt	. Pol	.	Vert	ical					
est	t Mo	de:	8-DI	PSK Mode 2	2402MHz				
10.0	dBu'	V/m							
00									
0									
0							FCC Part15	C - About 1	
0							FCC Parts	C-ADOVE T	
0							FCC Part15	C-Above 1	GAV
0								×	++
0	horande	uhumana	man	nen substantion from mus	Landerster	the August of State of States	an a	-	
0 0.0									
		2315.00 2	325.00	2335.00 23	345.00 (MHz)	2365.00	2375.00 2385.	.00 2395.(00 2405.0
N	o .	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1		2390.0	00	21.12	30.84	51.96	74.00	-22.04	peak
2	*	2390.0	00	6.29	30.84	37.13	54.00	-16.87	AVG
len	narks	:							

nt.	Pol	•	Hori	zontal					
est	Mo	de:	8-DF	PSK Mode 2	480MHz				
10.0	dBu	V/m	_						
00 -									
) -									
	Δ								
\cdot	 						FCC Part15 (C - Above 10	G PK
) -	11								
╹├	\mathbb{H}						FCC Part15	C - Above 1	S AV
0		k l							
, /	$ \langle \rangle$								
' [Ş	& man does not a marked a mark	mahababa	why	monormenante	and so the second s	nunananahala	monterestable	Murrow
ן י									
• -									
0.0		2487.00	2497.00	2507.00 25	17.00 (MHz)	2537.00 2	2547.00 2557.	00 2567.0	10 2577.1
N	o.	Freque		Reading	Factor	Level	Limit	Margin	Detecto
		(MH	Z)	(dBuV)	(dB/m)	(dBuV/m)		(dB)	
1		2483.	500	21.18	31.24	52.42	74.00	-21.58	peak
2	*	2483.	500	6.22	31.24	37.46	54.00	-16.54	AVG

2.Margin value = Level -Limit value

Ant. Pol.		Ver	Vertical							
Test Mode:			8-D	8-DPSK Mode 2480MHz						
10.0	dBu∨	//m								
00										
0										
	Δ						FCC Part15 (C - Above 1	G PK	
ו										
0	1						FCC Part15	C - Above 1	GAV	
0	×									
• 🗡	Ş	man	ang manal and	whenne	Ammonteman	wanner	minter and a marine start of the	ymennenen	annew	
• -										
0 0.0										
	7.000	2487.00	2497.00	2507.00 2	517.00 (MHz)	2537.00	2547.00 2557.	00 2567.0	0 2577.0	
No			uency Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1		2483	500	20.79	31.24	52.03	74.00	-21.97	peak	
2	*	2483	500	6.19	31.24	37.43	54.00	-16.57	AVG	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value



3.4. Band edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

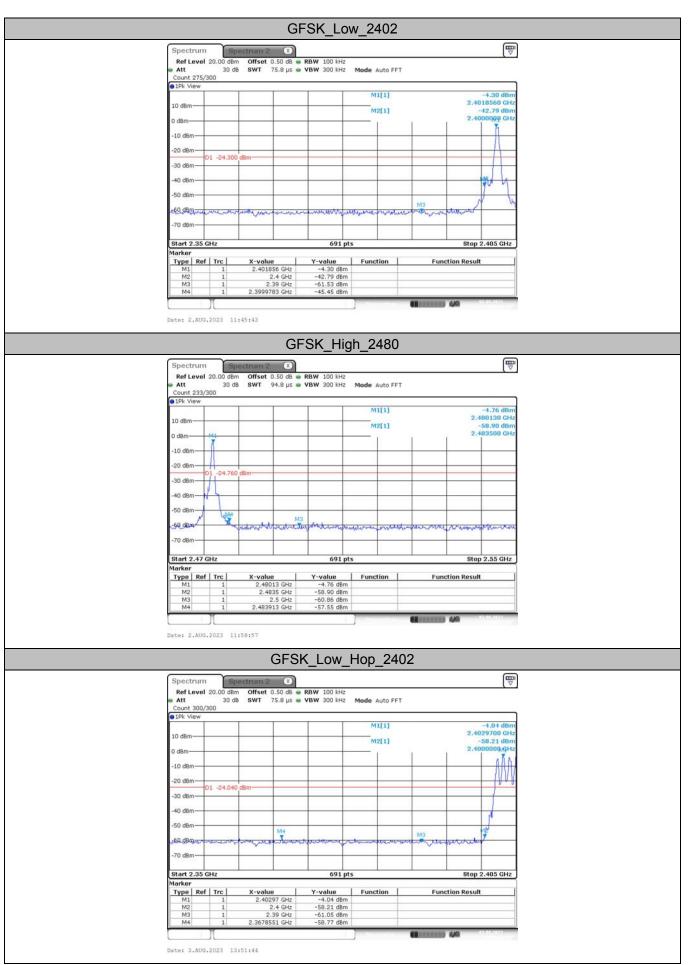
Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- Measure and record the results in the test report.

Test Mode

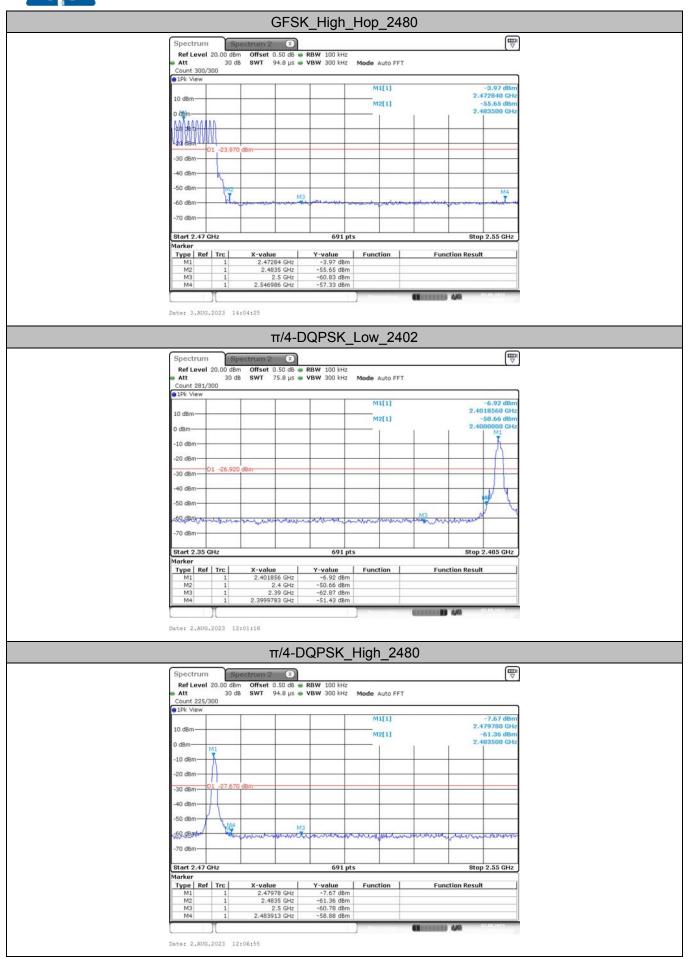
Please refer to the clause 2.4.


Test Results

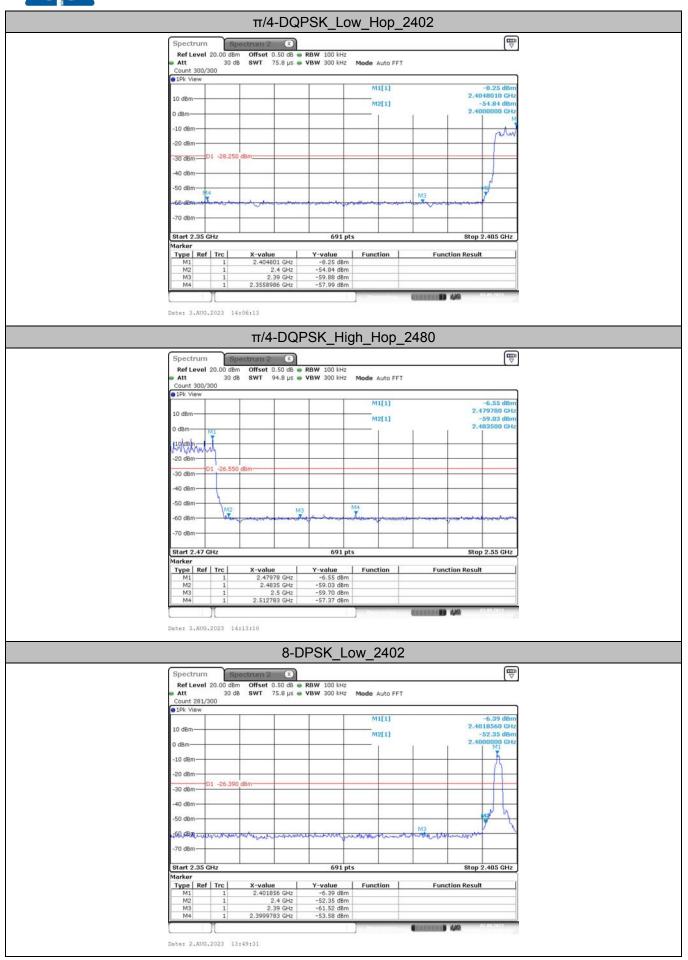
(1) Band edge Conducted Test

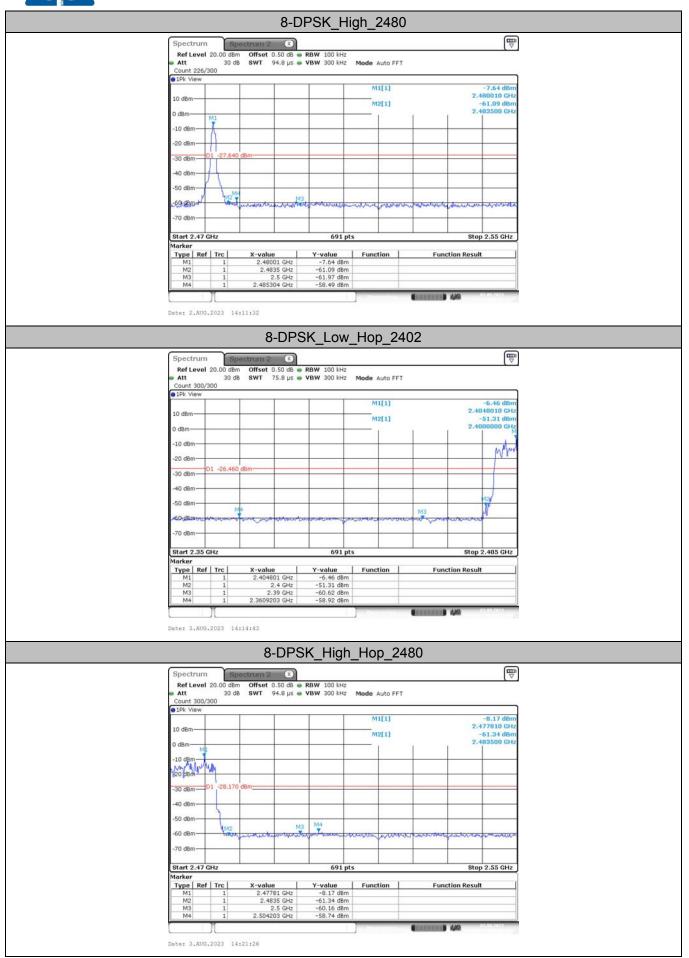
Test Mode	Frequency[MHz]	Ref Level[dBm]	Result[dBm]	Limit[dBm]	Verdict
	2402	-4.30	-45.45	≤-24.3	PASS
GFSK	2480	-4.76	-57.55	≤-24.76	PASS
GFSK	Hop_2402	-4.04	-58.77	≤-24.04	PASS
	Hop_2480	-3.97	-57.33	≤-23.97	PASS
	2402	-6.92	-51.43	≤-26.92	PASS
	2480	-7.67	-58.88	≤-27.67	PASS
π/4-DQPSK	Hop_2402	-8.25	-57.99	≤-28.25	PASS
	Hop_2480	-6.55	-57.37	≤-26.55	PASS
	2402	-6.39	-53.58	≤-26.39	PASS
8-DPSK	2480	-7.64	-58.49	≤-27.64	PASS
0-DH2K	Hop_2402	-6.46	-58.92	≤-26.46	PASS
	Hop_2480	-8.17	-58.74	≤-28.17	PASS

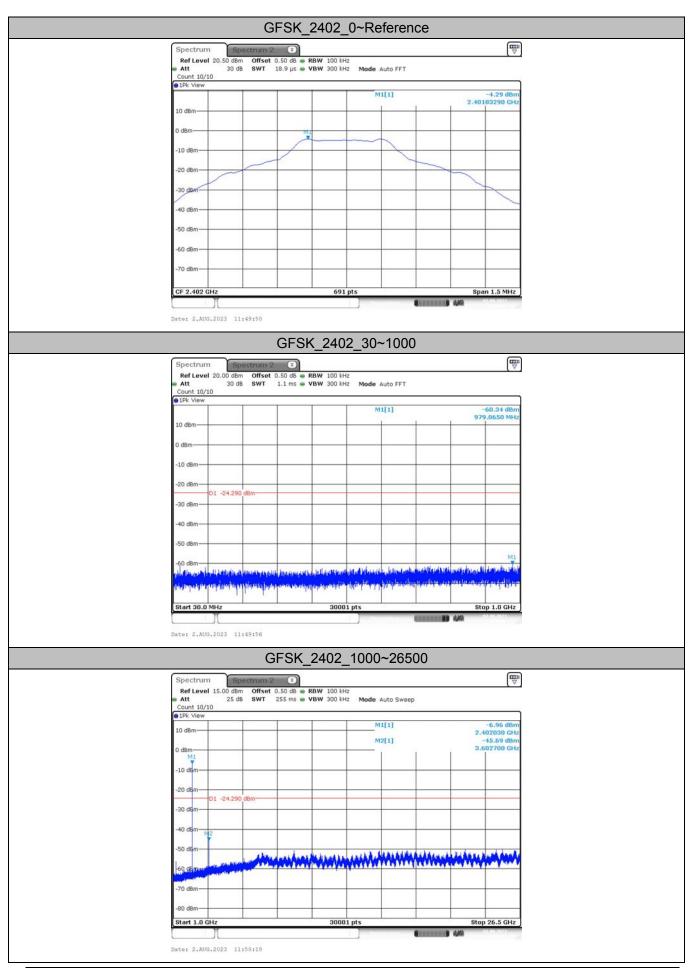
Page 51 of 89



CTC Laboratories, Inc.


1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

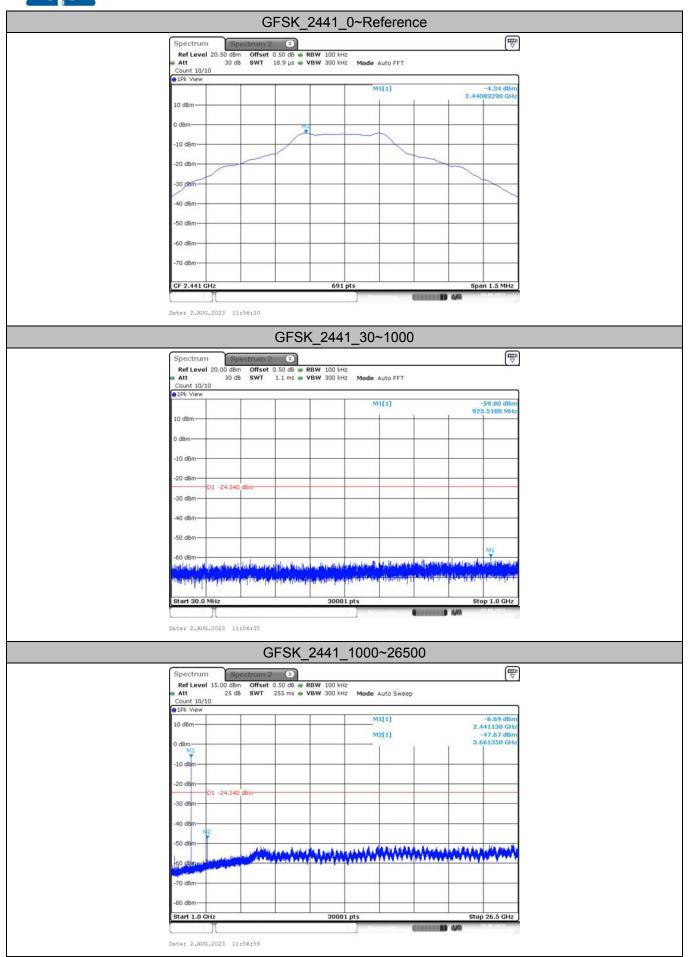


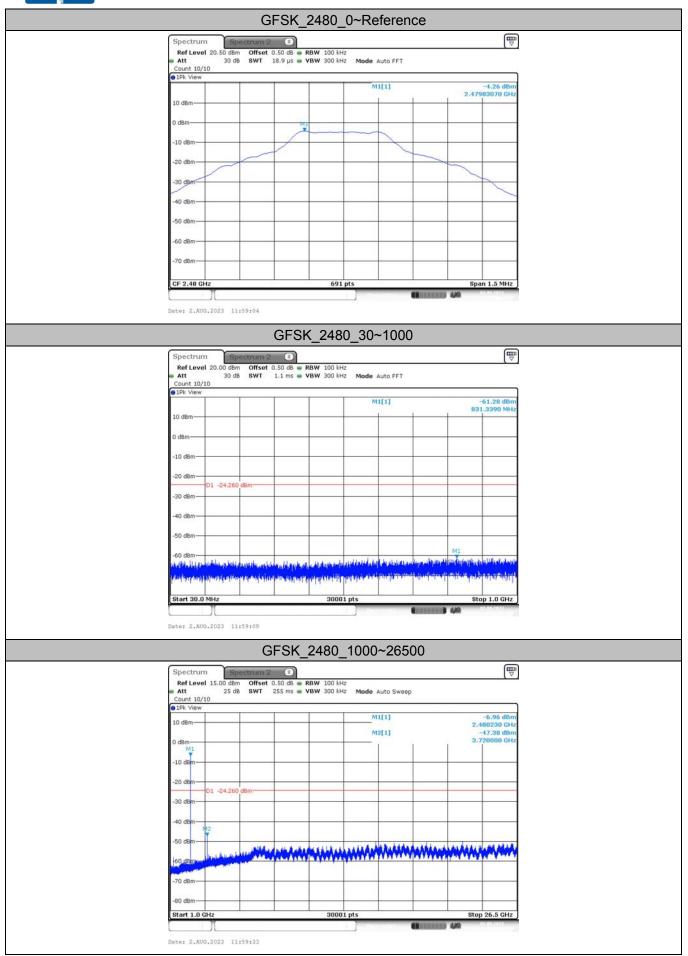


EN

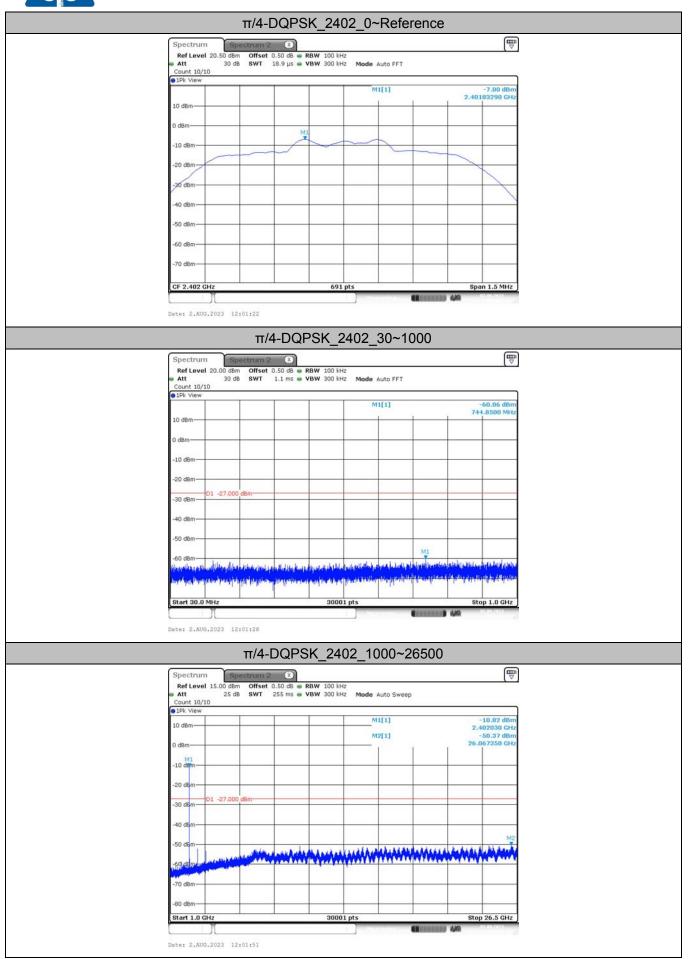
(2) Conducted Spurious Emissions Test

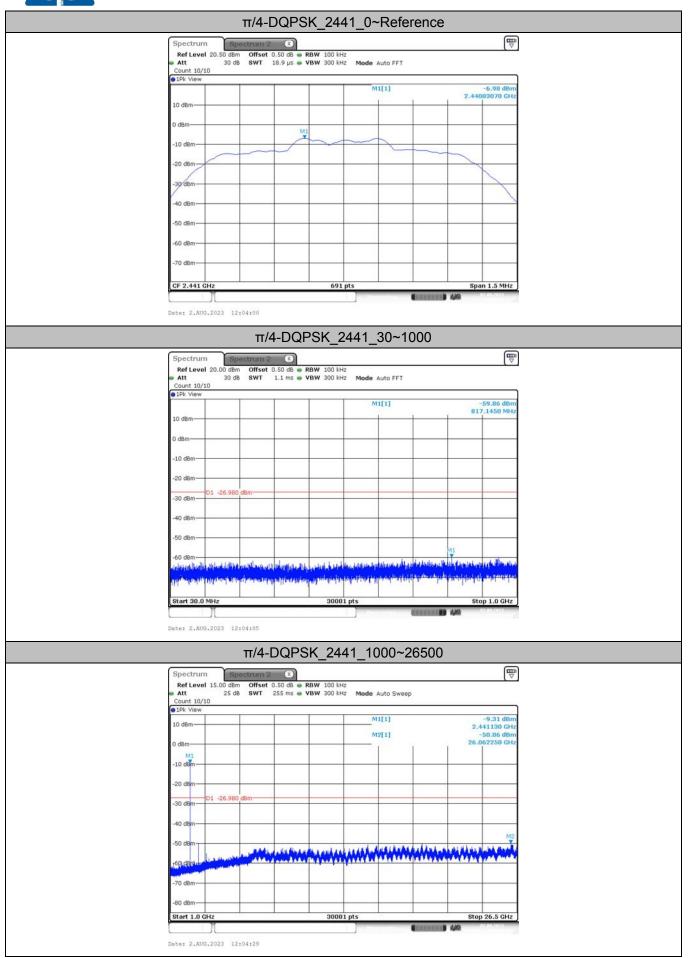
Test Mode	Frequency[MHz]	Freq Range [MHz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Reference	-4.29	-4.29		PASS
	2402	30~1000	-4.29	-60.34	≤-24.29	PASS
		1000~26500	-4.29	-45.69	≤-24.29	PASS
		Reference	-4.34	-4.34		PASS
GFSK	2441	30~1000	-4.34	-59.8	≤-24.34	PASS
		1000~26500	-4.34	-47.67	≤-24.34	PASS
		Reference	-4.26	-4.26		PASS
	2480	30~1000	-4.26	-61.28	≤-24.26	PASS
		1000~26500	-4.26	-47.38	≤-24.26	PASS
		Reference	-7.00	-7.00		PASS
	2402	30~1000	-7.00	-60.06	≤-27	PASS
		1000~26500	-7.00	-50.37	≤-27	PASS
	2441	Reference	-6.98	-6.98		PASS
π/4-DQPSK		30~1000	-6.98	-59.86	≤-26.98	PASS
		1000~26500	-6.98	-50.06	≤-26.98	PASS
	2480	Reference	-6.89	-6.89		PASS
		30~1000	-6.89	-59.64	≤-26.89	PASS
		1000~26500	-6.89	-46.37	≤-26.89	PASS
	2402	Reference	-6.50	-6.50		PASS
		30~1000	-6.50	-60.63	≤-26.5	PASS
		1000~26500	-6.50	-48.57	≤-26.5	PASS
	2441	Reference	-6.80	-6.80		PASS
8-DPSK		30~1000	-6.80	-59.52	≤-26.8	PASS
		1000~26500	-6.80	-50.31	≤-26.8	PASS
		Reference	-6.76	-6.76		PASS
	2480	30~1000	-6.76	-60.5	≤-26.76	PASS
		1000~26500	-6.76	-50.15	≤-26.76	PASS

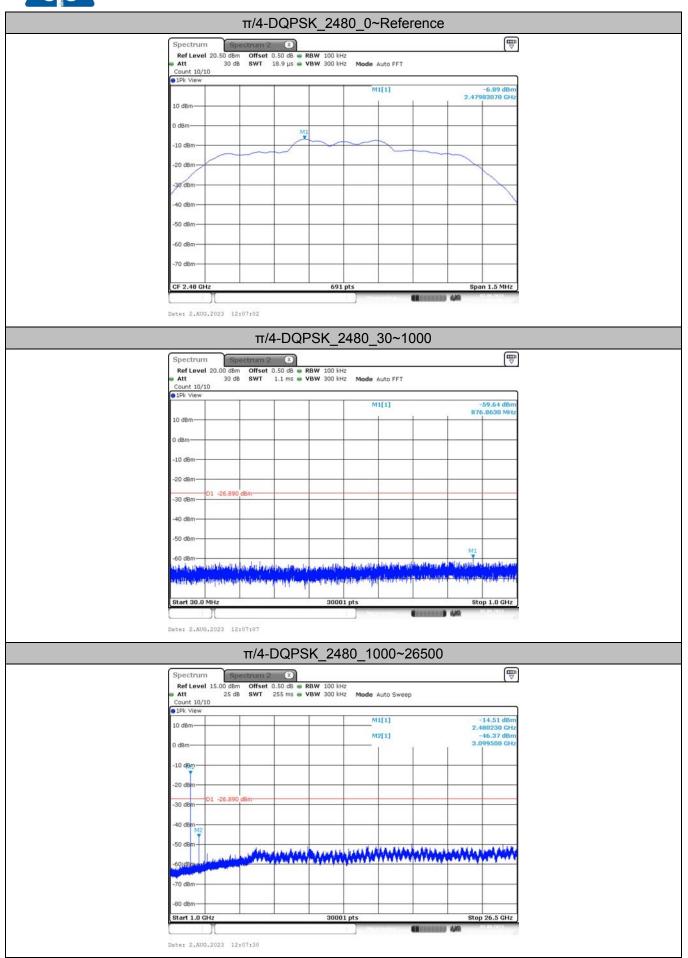


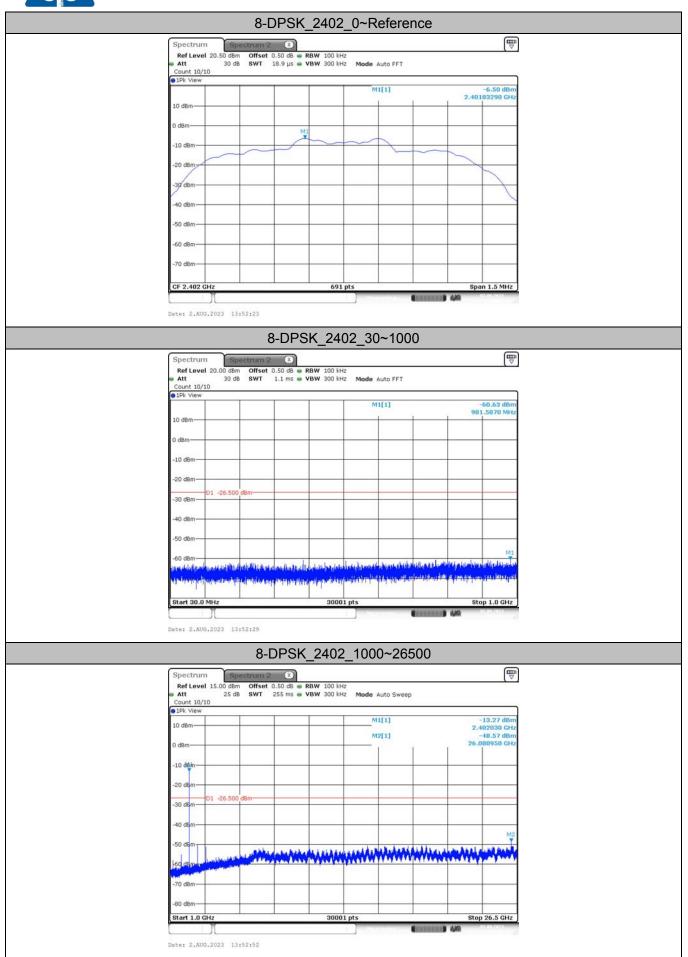


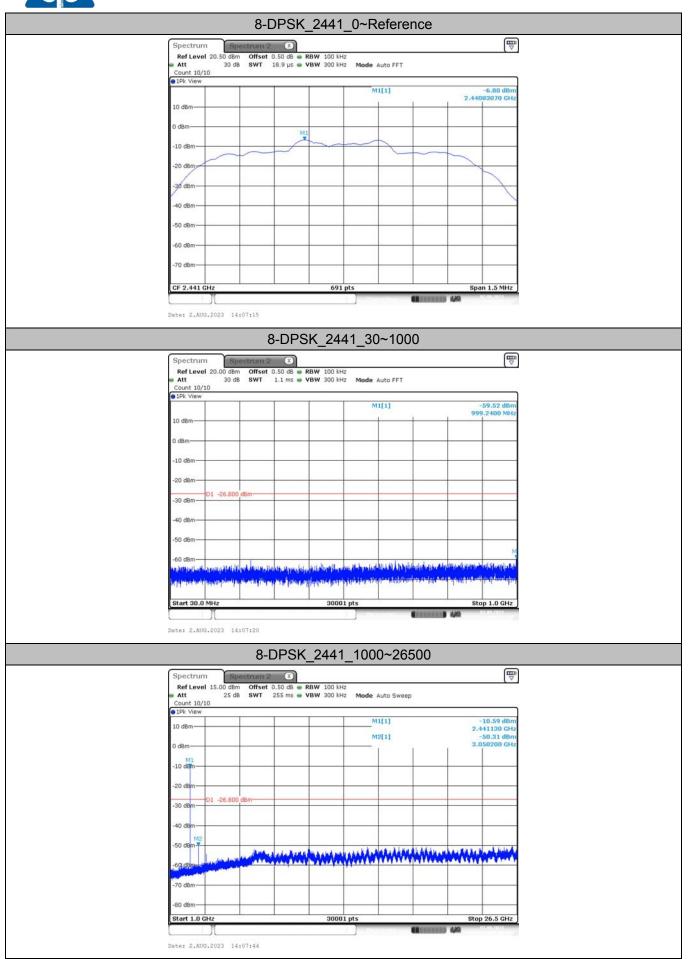
1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

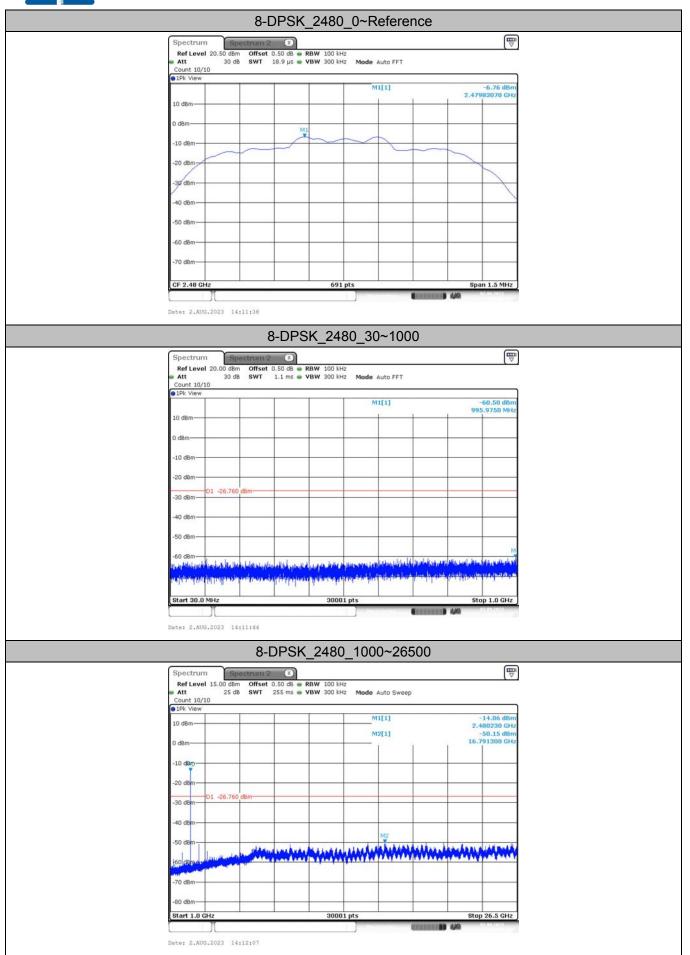


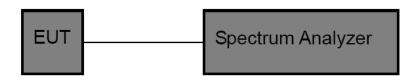












3.5. 20DB Bandwidth

<u>Limit</u>

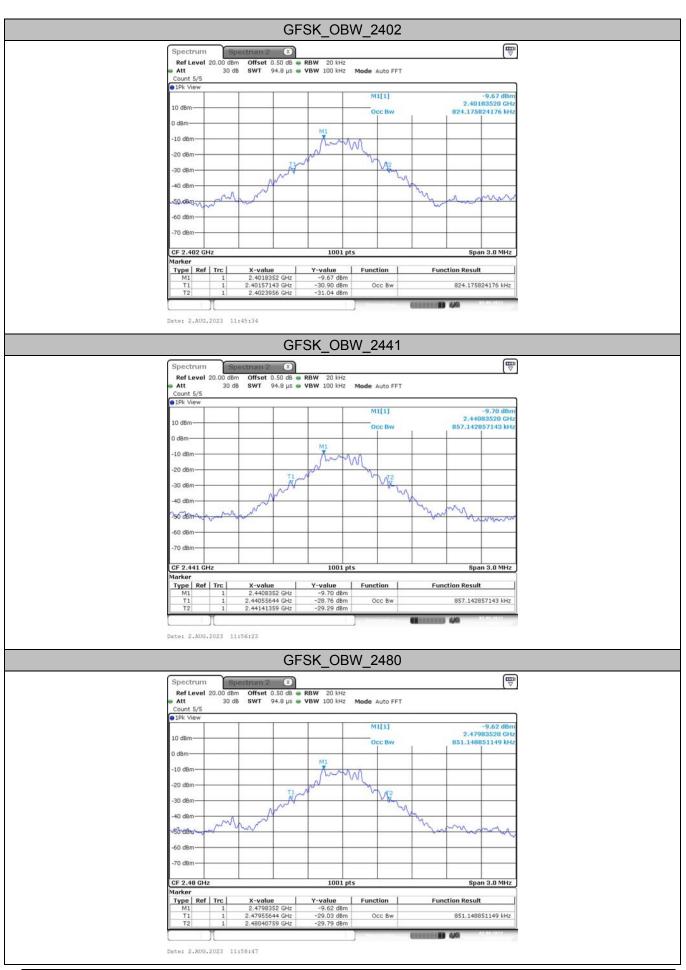
N/A

Test Configuration

Test Procedure

- 5. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 6. OCB and 20dB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

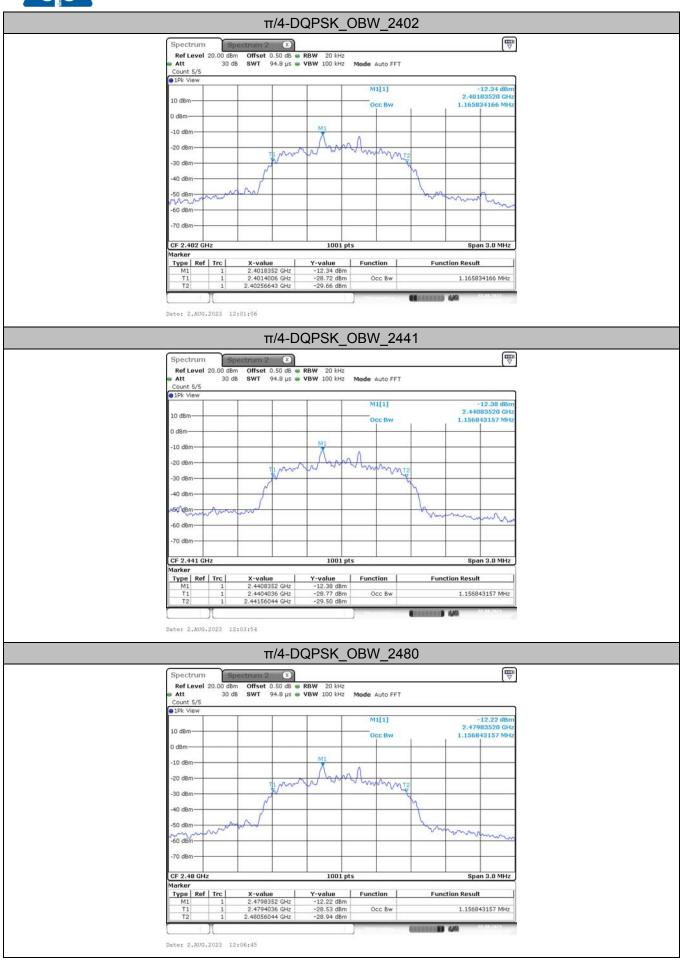
Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.


Test Mode

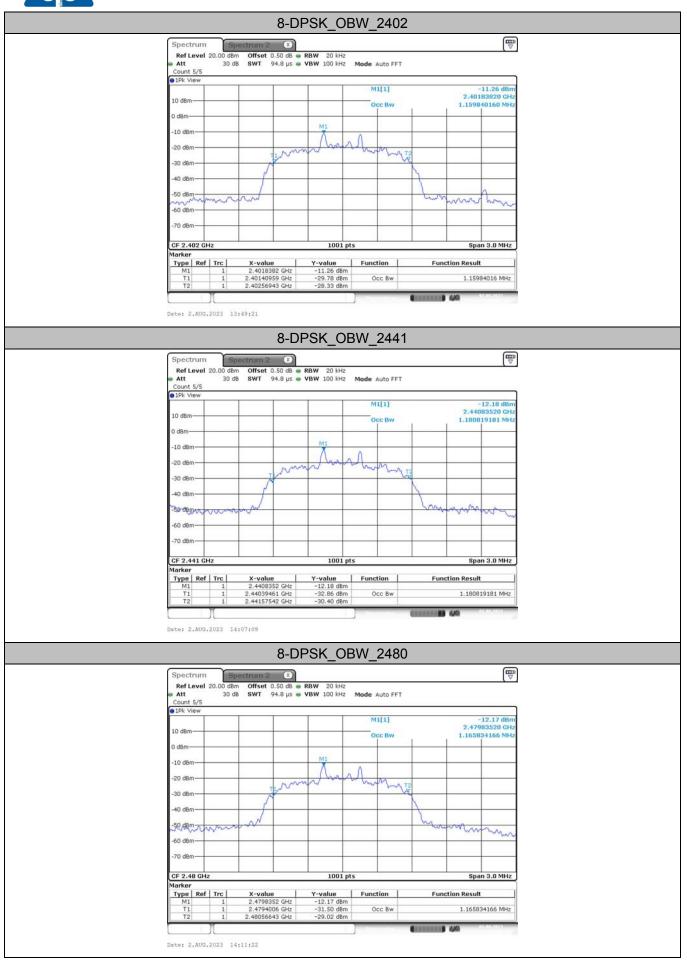
Please refer to the clause 2.4.

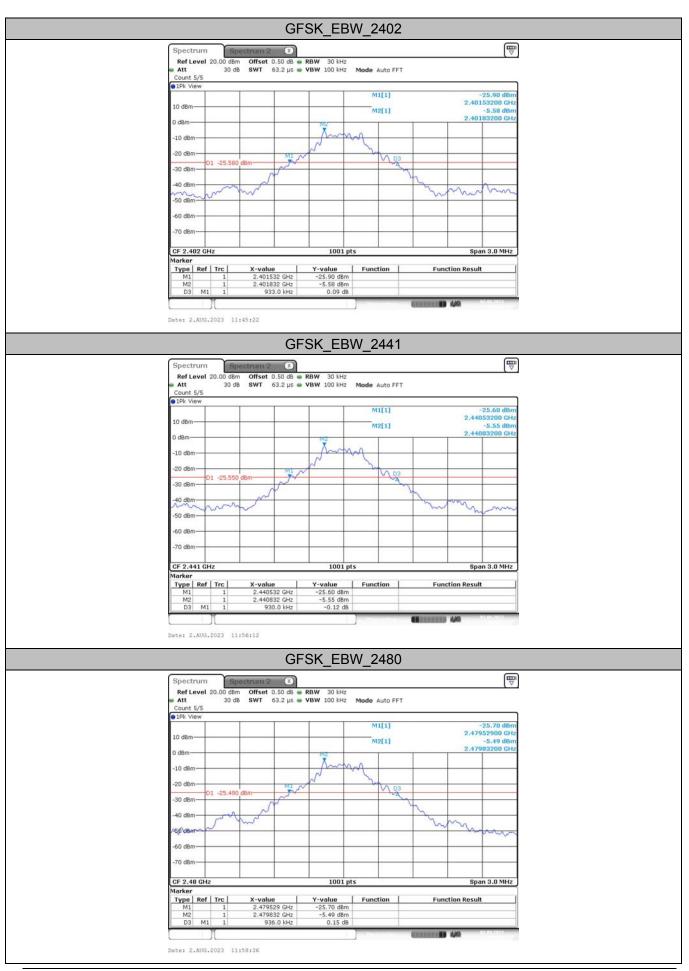
Test Results

Test Mode	Frequency[MHz]	OBW[MHz]	20db EBW[MHz]	20dB Bandwidth *2/3 (kHz)	Verdict
	2402	0.824	0.933	622	PASS
GFSK	2441	0.857	0.930	620	PASS
	2480	0.851	0.936	624	PASS
	2402	1.166	1.233	822	PASS
π/4-DQPSK	2441	1.157	1.224	816	PASS
	2480	1.157	1.227	818	PASS
	2402	1.160	1.245	830	PASS
8-DPSK	2441	1.181	1.251	834	PASS
	2480	1.166	1.248	832	PASS

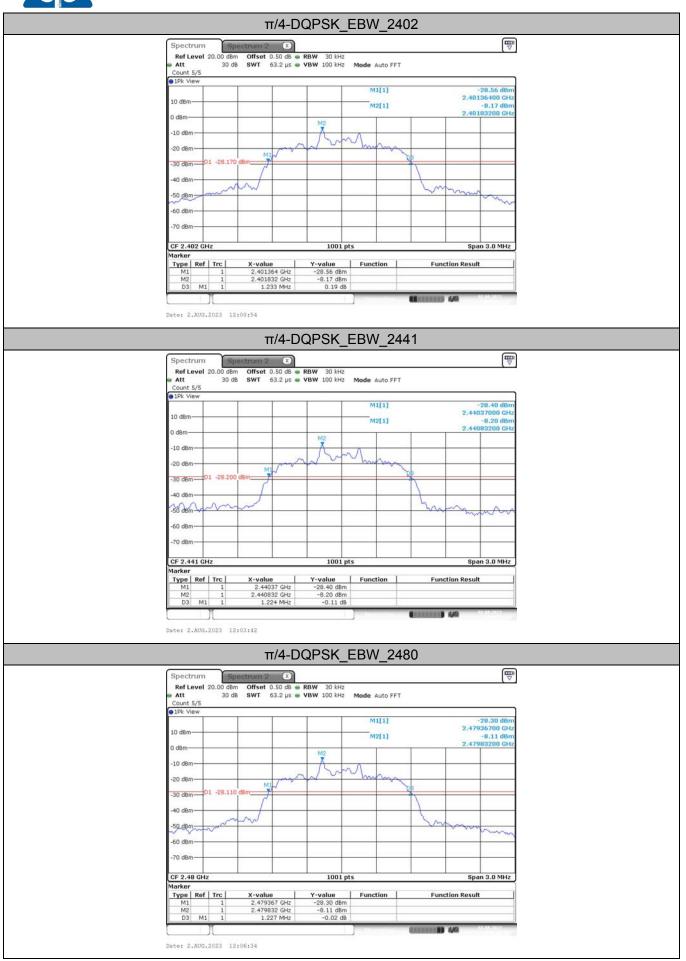


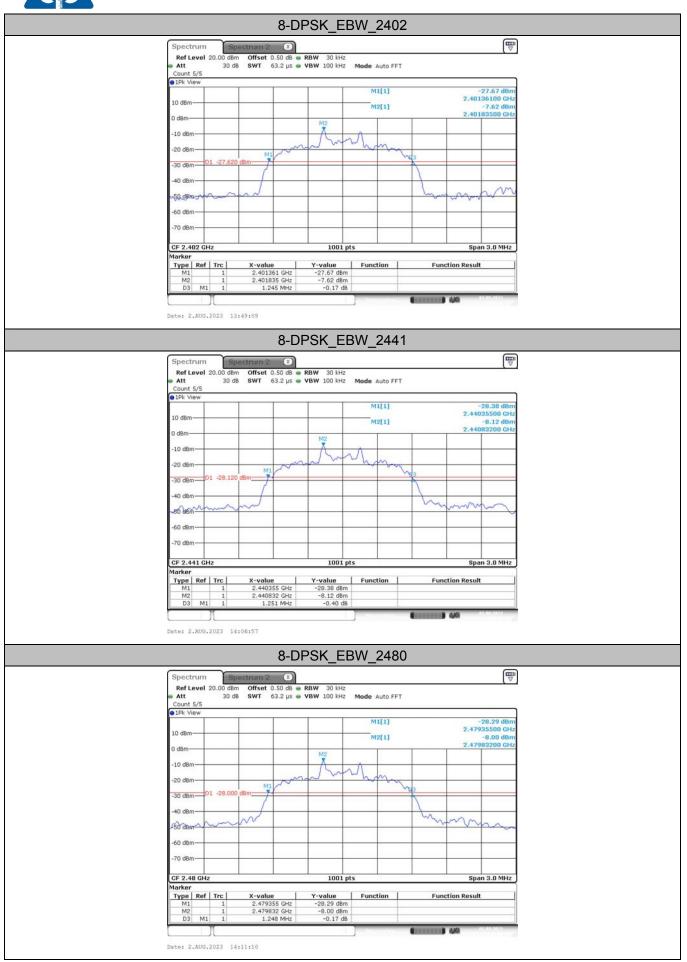
1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn


Page 67 of 89

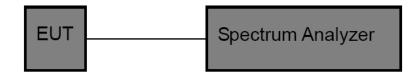


Page 68 of 89






1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn


3.6. Channel Separation

<u>Limit</u>

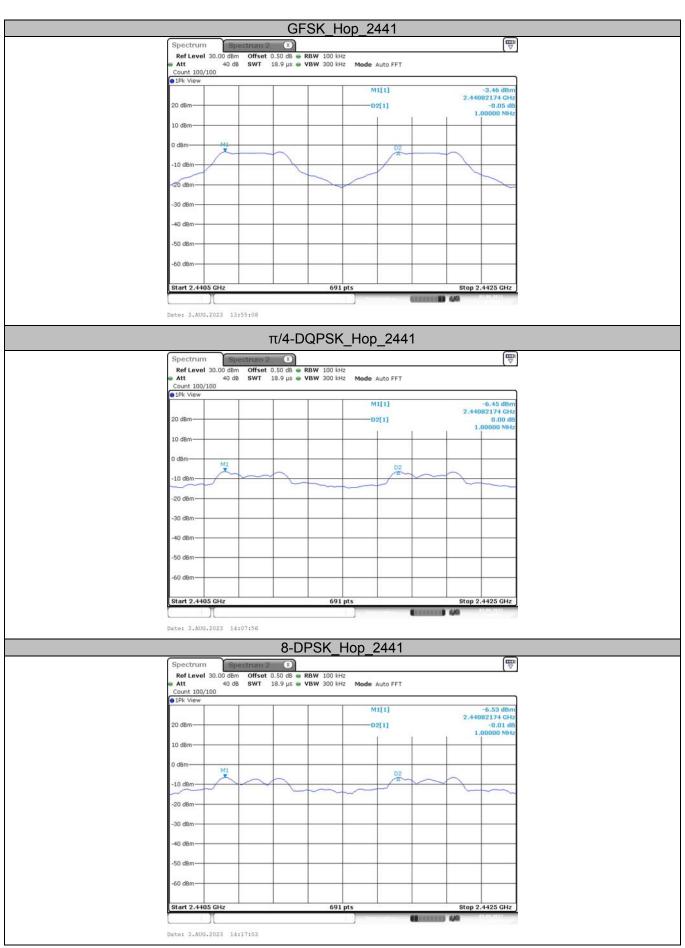
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1)/ RSS-247 5.1 b :

Test Item	Limit	Frequency Range(MHz)	
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5	

Test Configuration

Test Procedure

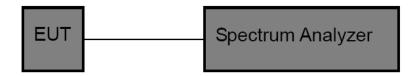
- 7. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 8. Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \ge 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.


Test Mode

Please refer to the clause 2.4.

Test Results

Test Mode	Frequency[MHz]	Result[MHz]	Limit[kHz]	Verdict
GFSK	Hop_2441	1.000	>620	PASS
π/4-DQPSK	Hop_2441	1.000	>816	PASS
8-DPSK	Hop_2441	1.000	>834	PASS


3.7. Number of Hopping Channel

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(iii)/ RSS-247 5.1 d:

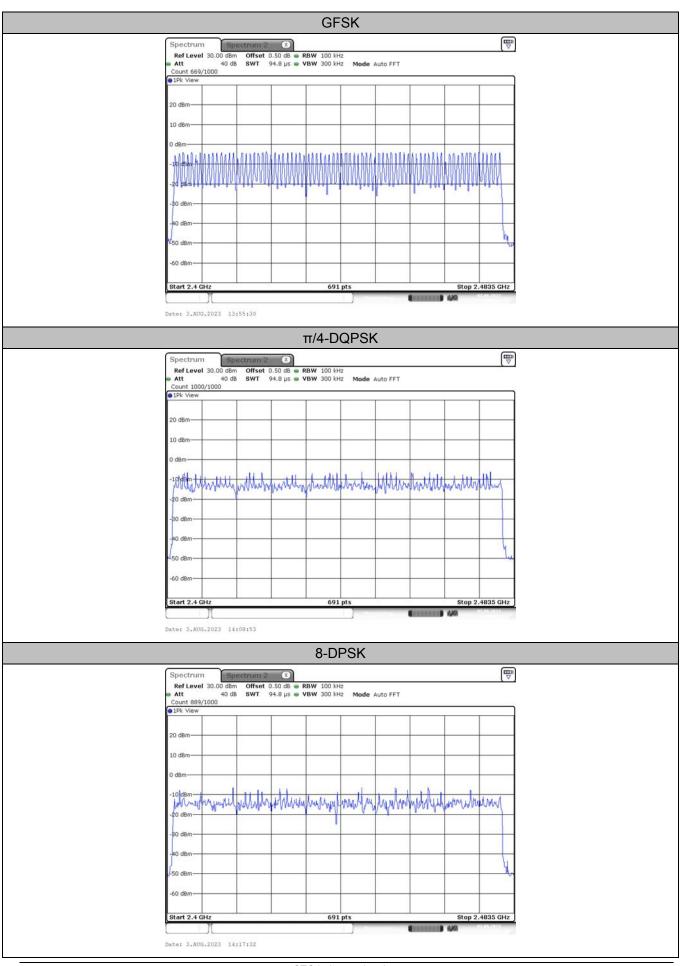
Section	Test Item	Limit
15.247 (a)(iii)/ RSS-247 5.1 d:	Number of Hopping Channel	>15

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

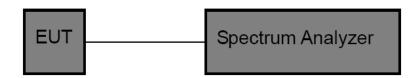
- 2. Spectrum Setting:
 - (1) Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.


Test Mode

Please refer to the clause 2.4.

Test Result

Modulation type	Channel number	Limit	Result	
GFSK	79			
π/4-DQPSK	79	≥15.00	Pass	
8DPSK	79			



3.8. Dwell Time

<u>Limit</u>

Section	Test Item	Limit
15.247(a)(iii)/ RSS-247 5.1 d Average Time of Occupa		0.4 sec

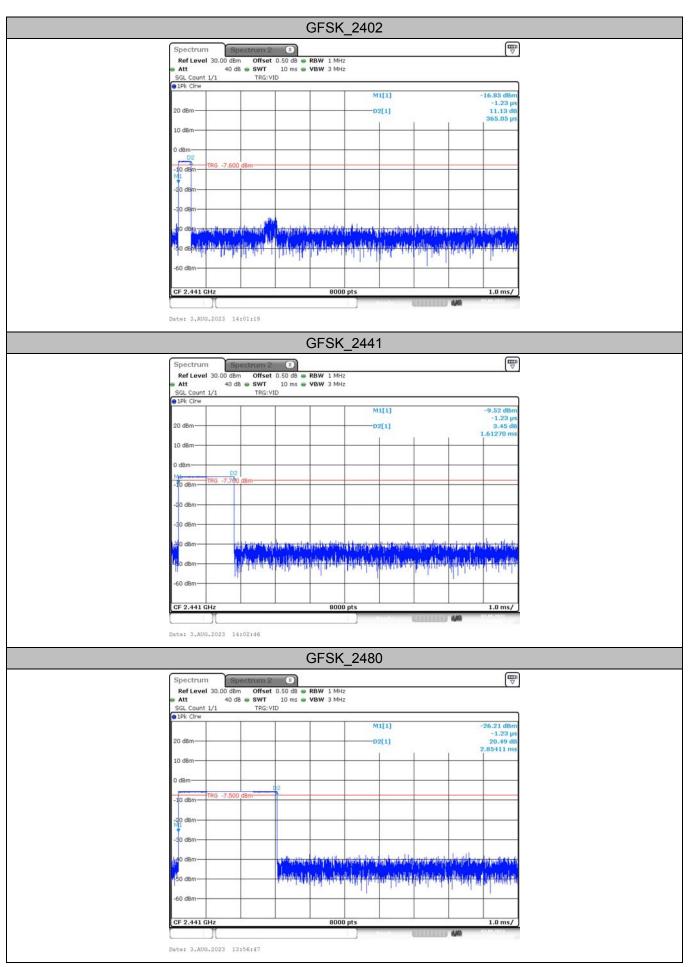
Test Configuration

Test Procedure

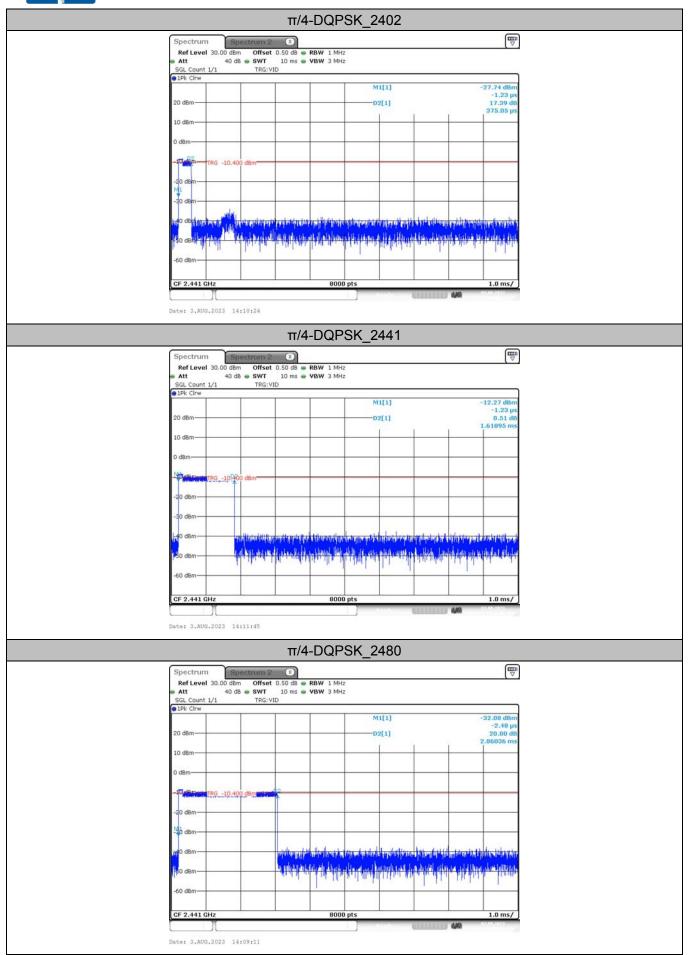
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
 - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
 - (3) Sweep Time is more than once pulse time.
- (4) Set the center frequency on any frequency would be measure and set the frequency span to zero.
 - (5) Measure the maximum time duration of one single pulse.
 - (6) Set the EUT for packet transmitting.

Test Mode

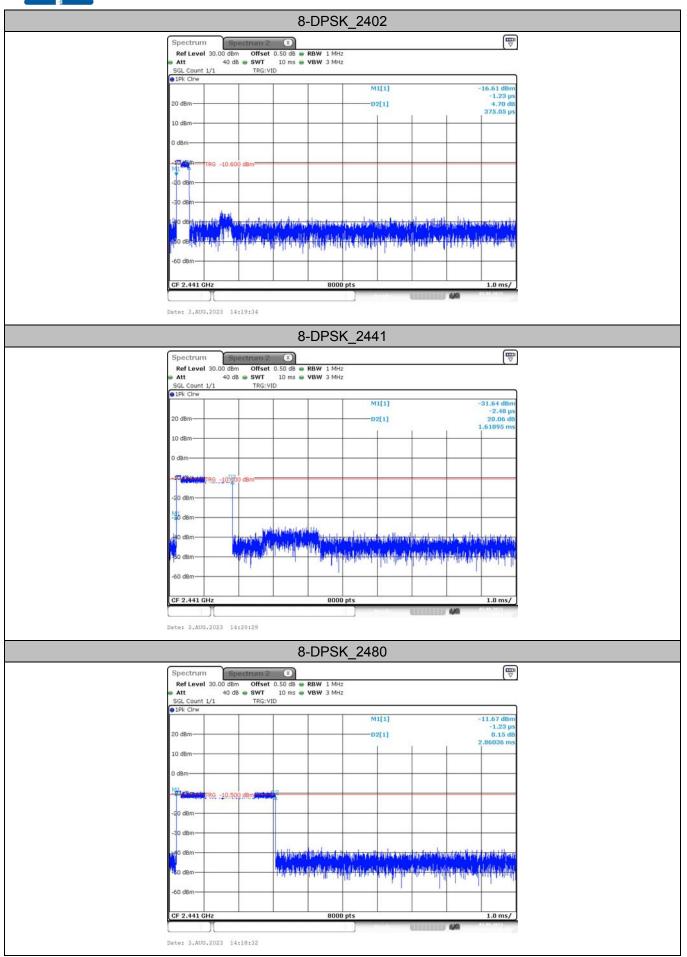
Please refer to the clause 2.4.



Test Result


Modulation type	Channel	Frequency [MHz]	Pulse Time (ms)	Total of Dwell (ms)	Period Time (ms)	Limit (Second)	Result
	DH1	2441	0.37	118.40	31.60		
GFSK	DH3	2441	1.61	257.60	31.60	≤ 0.40	Pass
	DH5	2441	2.85	304.00	31.60		
	2DH1	2441	0.38	121.60	31.60		
π/4-DQPSK	2DH3	2441	1.62	259.20	31.60	≤ 0.40	Pass
	2DH5	2441	2.86	305.07	31.60		
	3DH1	2441	0.38	121.60	31.60		
8-DPSK	3DH3	2441	1.62	259.20	31.60	≤ 0.40	Pass
	3DH5	2441	2.86	305.07	31.60		

Note: 1DH1/2DH1/3DH1Total of Dwell= Pulse Time*(1600/2)*31.6/79 1DH3/2DH3/3DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79 1DH5/2DH5/3DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79



3.9. Peak Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1) / RSS-247 5.4 b:

Test Item	Limit	Frequency Range(MHz)	
Maximum Conducted Peak Output Power	Hopping Channels>75 Pow- er<1W(30dBm) Other <125mW(21dBm)	2400~2483.5	
E.I.R.P	4 Watt or 36dBm	2400~2483.5	

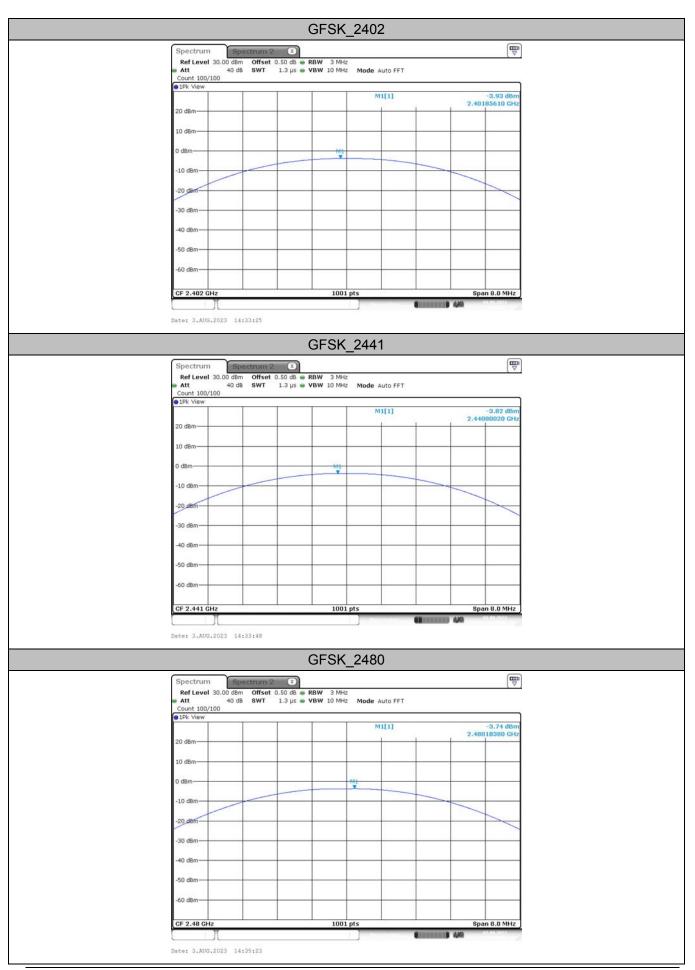
Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

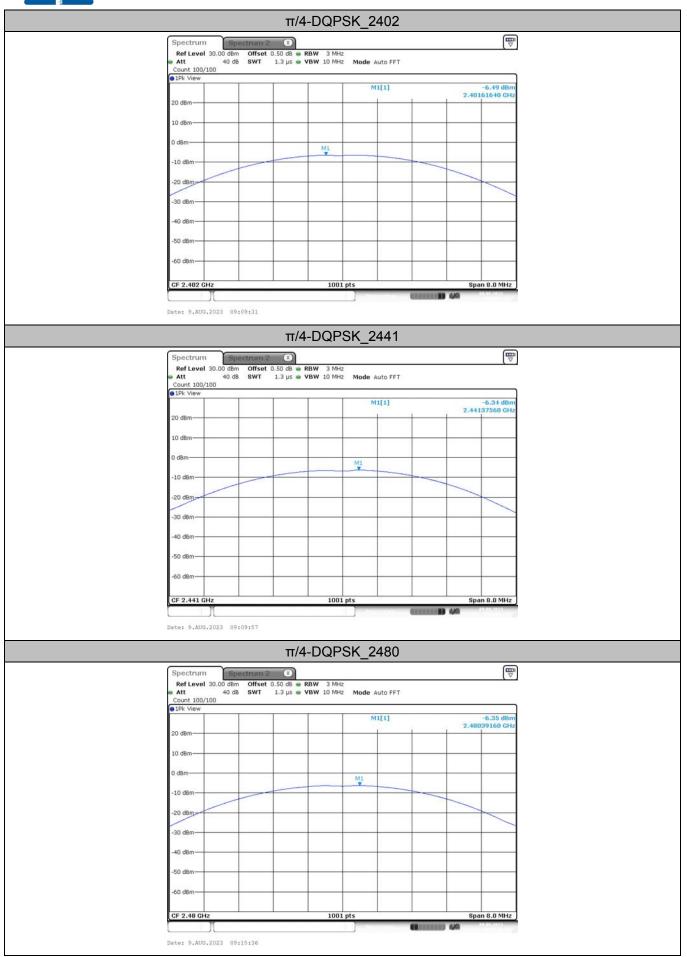
- 2. Spectrum Setting:
 - (1) Set RBW> 20DB Bandwidth.
 - (2) Set the video bandwidth (VBW) \ge RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

Test Mode

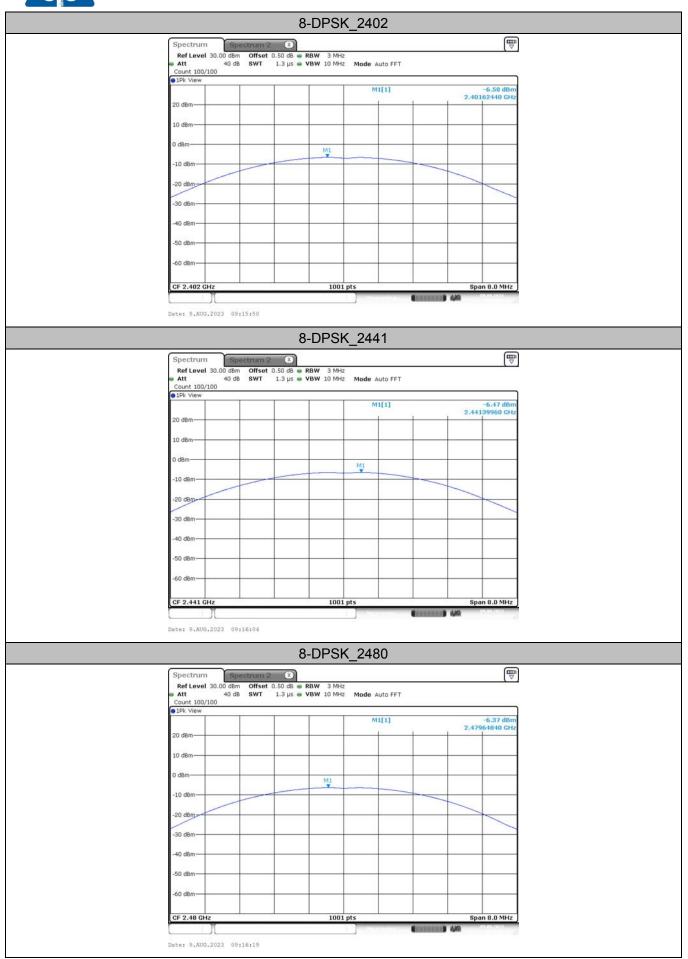

Please refer to the clause 2.4.

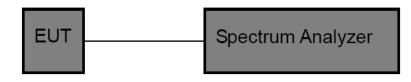
Test Result

Test Mode	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
	2402	-3.93	<=30	PASS
GFSK	2441	-3.82	<=30	PASS
	2480	-3.74	<=30	PASS
	2402	-6.49	<=30	PASS
π/4-DQPSK	2441	-6.34	<=30	PASS
	2480	-6.35	<=30	PASS
	2402	-6.58	<=30	PASS
8-DPSK	2441	-6.47	<=30	PASS
	2480	-6.37	<=30	PASS


Page 82 of 89

CTC Laboratories, Inc.





3.10. Duty Cycle

Limit

None, for report purposes only.

Test Configuration

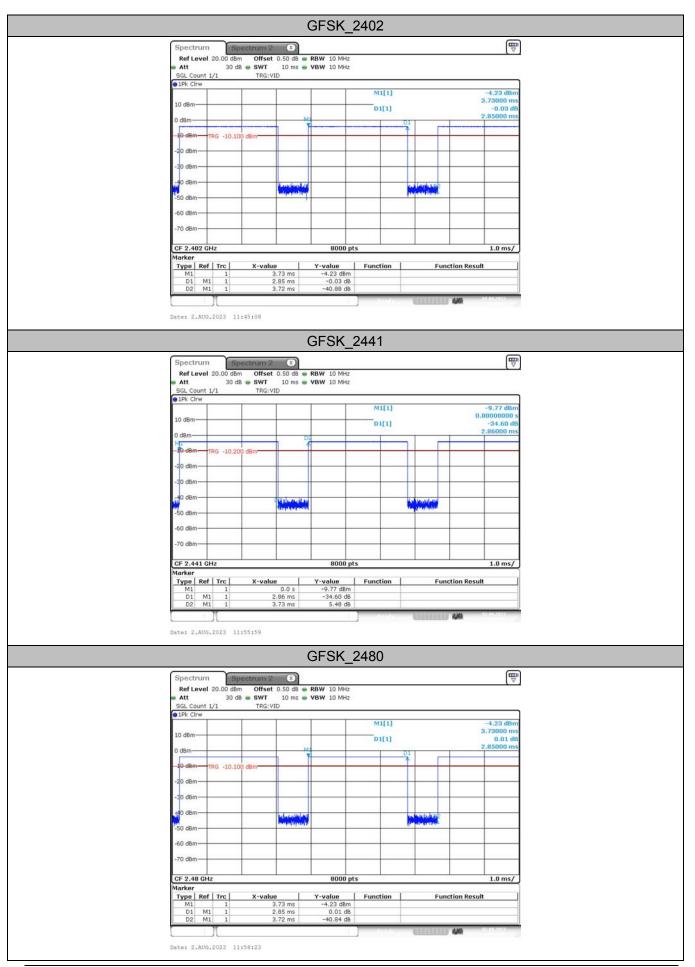
Test Procedure

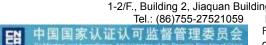
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

Spectrum Setting: 3.

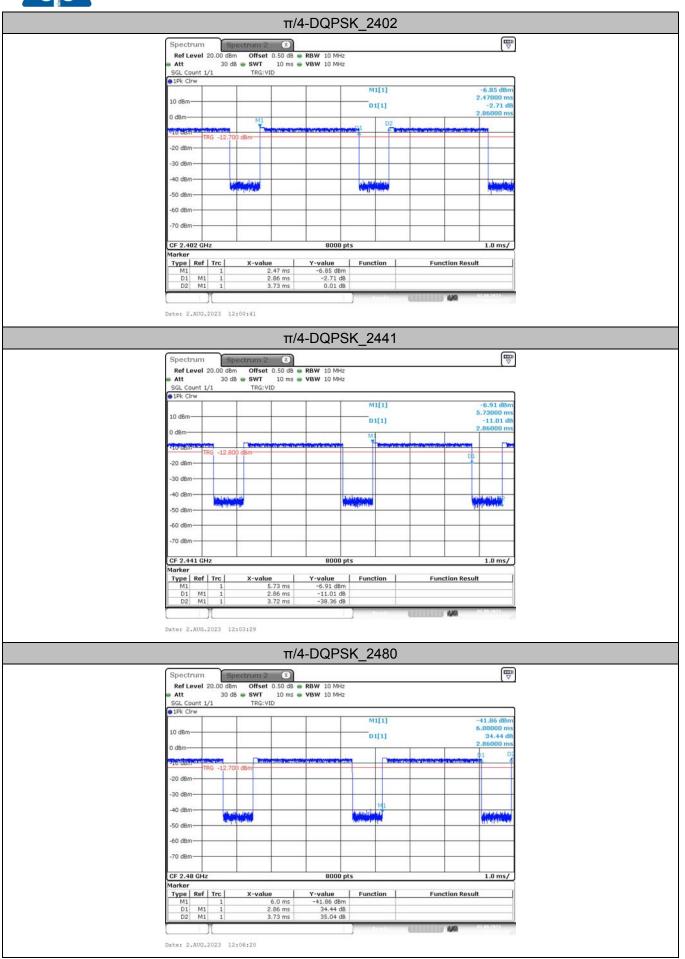
Set analyzer center frequency to test channel center frequency. Set the span to 0Hz Set the RBW to 10MHz Set the VBW to 10MHz Detector: Peak Sweep time: Auto

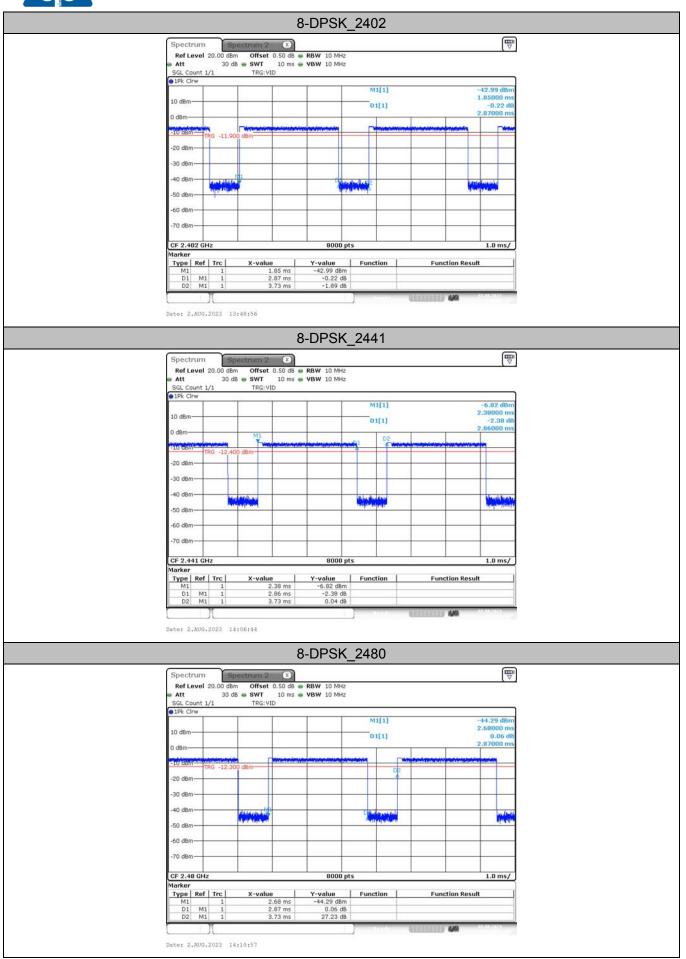
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.


Test Mode


Please refer to the clause 2.4.

Test Result


Test Mode	Frequency [MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
	2402	2.85	3.72	76.61	0.35	1
GFSK	2441	2.86	3.73	76.68	0.35	1
	2480	2.85	3.72	76.61	0.35	1
	2402	2.86	3.73	76.68	0.35	1
π/4-DQPSK	2441	2.86	3.72	76.88	0.35	1
	2480	2.86	3.73	76.68	0.35	1
	2402	2.87	3.73	76.94	0.35	1
8-DPSK	2441	2.86	3.73	76.68	0.35	1
	2480	2.87	3.73	76.94	0.35	1



3.11. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

<u>Test Result</u>

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.