

# TEST REPORT

### For SAR

Report No. ....:: CHTEW23080045 Report vertification:

Project No....:: SHT2308030902EW

FCC ID.....:: 2A2C7-MC07A

IC .....:: 27313-MC07A

Applicant's name.....: Clear Touch Solutions, Inc.

1100 Thousand Oaks Blvd. Greenville, SC 29607 Address....:

Test item description ....: **CM100 Microphone Kit** 

Trade Mark .....: Clear Touch

Model/Type reference.....: CTS-CM100-245G

Listed Model(s) .....

Part 2.1093; IEEE Std C95.1: 1999 Edition; Standard .....::

IEEE Std 1528: 2013;

RSS-102,Issue 5; IEC/IEEE 62209-1528:2020

Date of receipt of test sample..... Aug. 10, 2023

Date of testing.....: Aug. 11, 2023- Aug. 18, 2023

Date of issue.....: Aug. 22, 2023

**PASS** Result.....:

Compiled by

( position+printedname+signature)...: File administrators:Xiaodong Zhao

Supervised by

( position+printedname+signature)...: Test Engineer: Xiaodong Zhao Xiaodony Zheo Xiaodony Zheo

Approved by

(position+printedname+signature)...: Manager: Xu Yang

Testing Laboratory Name .....: Shenzhen Huatongwei International Inspection Co., Ltd

Address.....: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW23080045 Page: 2 of 30 Issued: 2023-08-22

# **Contents**

| <u>l.</u>  | Statement of Compilance                         | ა  |
|------------|-------------------------------------------------|----|
| <u>2.</u>  | Test Standards and Report version               | 4  |
| 2.1.       | Test Standards                                  | 4  |
| 2.2.       | Report version                                  | 4  |
| <u>3.</u>  | Summary                                         | 5  |
| 3.1.       | Client Information                              | 5  |
| 3.2.       | Product Description                             | 5  |
| 3.3.       | RF Specification Description                    | 5  |
| 3.4.       | Testing Laboratory Information                  | 6  |
| 3.5.       | Environmental conditions                        | 6  |
| <u>4.</u>  | Equipments Used during the Test                 |    |
| <u>5.</u>  | Measurement Uncertainty                         | 8  |
| <u>6.</u>  | SAR Measurement System Configuration            | 10 |
| 6.1.       | SAR Measurement Set-up                          | 10 |
| 6.2.       | DASY5 E-field Probe System                      | 11 |
| 6.3.       | Phantoms                                        | 12 |
| 6.4.       | Device Holder                                   | 12 |
| <u>7.</u>  | SAR Test Procedure                              | 13 |
| 7.1.       | Scanning Procedure                              | 13 |
| 7.2.       | Data Storage and Evaluation                     | 15 |
| <u>8.</u>  | Dielectric Property Measurements & System Check | 17 |
| 8.1.       | Tissue Dielectric Parameters                    | 17 |
| 8.2.       | System Check                                    | 19 |
| <u>9.</u>  | SAR Exposure Limits                             | 24 |
| <u>10.</u> | Conducted Power Measurement Results and Tune-up | 25 |
| <u>11.</u> | Measured and Reported SAR Results               | 25 |
| <u>12.</u> | Test Setup Photos                               | 27 |
| 13.        | External and Internal Photos of the EUT         | 28 |

Report No.: CHTEW23080045 Page: 3 of 30 Issued: 2023-08-22

# 1. Statement of Compliance

| Maximum Reported SAR (W/kg @1g) |              |           |         |       |              |  |
|---------------------------------|--------------|-----------|---------|-------|--------------|--|
| Туре                            | Test setting | WIFI 2.4G | WIFI 5G | ВТ    | Simultaneous |  |
| Head                            | Dist.= 0mm   | 0.418     | 0.784   | 0.007 | 0.791        |  |
| Body                            | Dist.= 0mm   | 0.703     | 0.342   | 0.008 | 0.711        |  |
| Limbs                           | Dist.= 0mm   | 1.296     | 0.481   | 0.016 | 1.312        |  |

### Note:

- 1. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and RSS-102.
- 2. This device had been tested in accordance with the measurement methods and procedures specified in IEC/IEEE 62209-1528:2020 and FCC KDB publications.

Report No.: CHTEW23080045 Page: 4 of 30 Issued: 2023-08-22

### 2. Test Standards and Report version

#### 2.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices.

<u>IEEE Std C95.1, 1999 Edition:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

<u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

RSS-102, lusse 5: Radio Standards Specification 102, Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), sets out the requirements and measurement techniques used to evaluate radio frequency (RF) exposure compliance of radiocommunication apparatus designed to be used within the vicinity of the human body.

<u>IEC/IEEE 62209-1528:2020:</u> Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices - Human models, instrumentation and procedures (Frequency range of 4 MHz to 10 GHz)

FCC published RF exposure KDB procedures:

865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

<u>865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

447498 D04 Interim General RF Exposure Guidance v01: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

248227 D01 802 11 Wi-Fi SAR v02r02: SAR Measurement Proceduresfor802.11 a/b/g Transmitters

TCB workshop April, 2019; Page 19, Tissue Simulating Liquids (TSL)

### 2.2. Report version

| Revision No. | Date of issue | Description |
|--------------|---------------|-------------|
| N/A          | 2023-08-22    | Original    |
|              |               |             |
|              |               |             |
|              |               |             |
|              |               |             |

Report No.: CHTEW23080045 Page: 5 of 30 Issued: 2023-08-22

# 3. Summary

## 3.1. Client Information

| Applicant:    | Clear Touch Solutions, Inc.                   |
|---------------|-----------------------------------------------|
| Address:      | 1100 Thousand Oaks Blvd. Greenville, SC 29607 |
| Manufacturer: | Clear Touch Solutions, Inc.                   |
| Address:      | 1100 Thousand Oaks Blvd. Greenville, SC 29607 |

# 3.2. Product Description

| Main unit                |                                               |
|--------------------------|-----------------------------------------------|
| Name of EUT:             | CM100 Microphone Kit                          |
| Trade Mark:              | Clear Touch                                   |
| Model No.:               | CTS-CM100-245G                                |
| Listed Model(s):         | -                                             |
| Power supply:            | 3.8Vdc from 350mAh Li-ion Battery             |
| Hardware version:        | D23241                                        |
| Software version:        | V0.1.9                                        |
| Device Dimension:        | Length x Width x Thickness (mm): 63 x 25 x 17 |
| Device Category:         | Portable                                      |
| Product stage:           | Production unit                               |
| RF Exposure Environment: | General Population/Uncontrolled               |
| HTW test sample No.:     | YPHT23080309001                               |

# 3.3. RF Specification Description

| Wi-Fi 2.4G         |           |           |             |             |
|--------------------|-----------|-----------|-------------|-------------|
| Support type:      | ⊠ 802.11b | ⊠ 802.11g | ⊠ 802.11n   | ⊠ 802.11ax  |
| Support bandwidth: | ⊠ 20MHz   | ☑ 40MHz   |             |             |
| Wi-Fi 5G           |           |           |             |             |
| Operation Band:    | ☑ U-NII-1 | U-NII-2A  | U-NII-2C    | ⊠ U-NII-3   |
| Support type:      | ⊠ 802.11a | ⊠ 802.11n | ⊠ 802.11ac  | ⊠ 802.11ax  |
| Support bandwidth: | ⊠ 20MHz   |           | ☐ 80MHz     | ☐ 160MHz    |
| Bluetooth          |           |           |             |             |
| Support type:      | ⊠ BR      | ⊠ EDR     | ☑ BLE-1Mbps | ☐ BLE-2Mbps |

Report No.: CHTEW23080045 Page: 6 of 30 Issued: 2023-08-22

# 3.4. Testing Laboratory Information

| Laboratory Name      | Shenzhen Huatongwei International Inspection Co., Ltd.                                       |        |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------|--------|--|--|--|
| Laboratory Location  | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China |        |  |  |  |
| Connect information: | Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn                         |        |  |  |  |
|                      | Type Accreditation Number                                                                    |        |  |  |  |
| Ovalitications       | FCC                                                                                          | 762235 |  |  |  |
| Qualifications       | Canada                                                                                       | 5377B  |  |  |  |
|                      | CAB identifier                                                                               | CN0027 |  |  |  |

### 3.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Ambient temperature | 18 °C to 25 °C |
|---------------------|----------------|
| Ambient humidity    | 30%RH to 70%RH |
| Air Pressure        | 950-1050mbar   |

Report No.: CHTEW23080045 Page: 7 of 30 Issued: 2023-08-22

## 4. Equipments Used during the Test

| Used  | Test Equipment                          | Manufacturer  | Equipment No. | Model No.         | Serial No. | Cal. date<br>(YY-MM-DD) | Due date<br>(YY-MM-DD) |
|-------|-----------------------------------------|---------------|---------------|-------------------|------------|-------------------------|------------------------|
| •     | Data Acquisition<br>Electronics DAEx    | SPEAG         | HTWE0313-05   | DAE4              | 1549       | 2023/03/27              | 2024/03/26             |
| •     | E-field Probe                           | SPEAG         | HTWE0313-06   | EX3DV4            | 7494       | 2023/04/17              | 2024/04/16             |
| •     | Universal Radio<br>Communication Tester | R&S           | HTWE0323      | CMW500            | 137681     | 2023/05/04              | 2024/05/03             |
| Tissu | e-equivalent liquids Va                 | alidation     |               |                   |            |                         |                        |
| •     | Dielectric Assessment<br>Kit            | SPEAG         | HTWE0315-02   | DAK-3.5           | 1267       | N/A                     | N/A                    |
| •     | Network analyzer                        | Keysight      | HTWE0331      | E5071C            | MY46733048 | 2022/08/29              | 2023/08/28             |
| Syste | m Validation                            |               |               |                   |            |                         |                        |
| •     | System Validation<br>Dipole             | SPEAG         | HTWE0314-07   | D2450V2           | 1009       | 2021/01/25              | 2024/01/24             |
| •     | System Validation<br>Dipole             | SPEAG         | HTWE0314-09   | D5GHzV2           | 1273       | 2021/01/26              | 2024/01/25             |
| •     | Signal Generator                        | R&S           | HTWE0276      | SMB100A           | 114360     | 2023/05/23              | 2024/05/22             |
| •     | Power Viewer for Windows                | R&S           |               | N/A               | N/A        | N/A                     | N/A                    |
| •     | Power sensor                            | R&S           | HTWE0278      | NRP18A            | 101010     | 2023/05/23              | 2024/05/22             |
| •     | Power sensor                            | R&S           | HTWE0389      | NRP18A            | 101386     | 2023/03/29              | 2024/03/28             |
| •     | Power Amplifier                         | BONN          | HTWE0336      | BLWA 0160-<br>2M  | 1811887    | 2022/11/10              | 2023/11/09             |
| •     | Dual Directional<br>Coupler             | Mini-Circuits | HTWE0335      | ZHDC-10-<br>62-S+ | F975001814 | 2022/11/10              | 2023/11/09             |
| •     | Attenuator                              | Mini-Circuits | HTWE0333      | VAT-3W2+          | 1819       | 2022/11/10              | 2023/11/09             |
| •     | Attenuator                              | Mini-Circuits | HTWE0334      | VAT-10W2+         | 1741       | 2022/11/10              | 2023/11/09             |

### Note:

- 1. The Probe, Dipole and DAE calibration reference to the Appendix E and F.
- 2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

Report No.: CHTEW23080045 Page: 8 of 30 Issued: 2023-08-22

# 5. Measurement Uncertainty

|                   | Measurement unce        | ertainty evalu<br>62209-1528( |                |            |              | R test        |                   |                    |
|-------------------|-------------------------|-------------------------------|----------------|------------|--------------|---------------|-------------------|--------------------|
| Symbol            | Error Description       | Uncert.<br>Value              | Prob.<br>Dist. | Div.       | (Ci)<br>(1g) | (Ci)<br>(10g) | Std. Unc.<br>(1g) | Std. Unc.<br>(10g) |
| Measurement Sys   | stem Errors             |                               |                |            |              |               |                   |                    |
| CF                | Probe Calibration       | ±12.7%                        | N              | 2          | 1            | 1             | ±6.35%            | ±6.35%             |
| CFdrift           | Probe Calibration Drift | ±1.7%                         | R              | $\sqrt{3}$ | 1            | 1             | ±1.0%             | ±1.0%              |
| LIN               | Probe Linearity         | ±4.7%                         | R              | $\sqrt{3}$ | 1            | 1             | ±2.7%             | ±2.7%              |
| BBS               | Broadband Signal        | ±2.8%                         | R              | $\sqrt{3}$ | 1            | 1             | ±1.6%             | ±1.6%              |
| ISO               | Probe Isotropy          | ±7.6%                         | R              | $\sqrt{3}$ | 1            | 1             | ±4.4%             | ±4.4%              |
| DAE               | Other Probe+Electronic  | ±0.8%                         | N              | 1          | 1            | 1             | ±0.8%             | ±0.8%              |
| AMB               | RF Ambient              | ±1.8%                         | N              | 1          | 1            | 1             | ±1.8%             | ±1.8%              |
| $\Delta$ sys      | Probe Positioning       | $\pm$ 0.006mm                 | N              | 1          | 0.14         | 0.14          | ±0.10%            | ±0.10%             |
| DAT               | Data Processing         | ±1.2%                         | N              | 1          | 1            | 1             | ±1.2%             | ±1.2%              |
| Phantom and Dev   | vice Errors             |                               |                |            |              |               | •                 |                    |
| LIQ(σ)            | Conductivity (meas.)    | ±2.5%                         | N              | 1          | 0.78         | 0.71          | ±2.0%             | ±1.8%              |
| LIQ(Tσ)           | Conductivity (temp.)    | ±3.3%                         | R              | $\sqrt{3}$ | 0.78         | 0.71          | ±1.5%             | ±1.4%              |
| EPS               | Phantom Permittivity    | ±14.0%                        | R              | $\sqrt{3}$ | 0            | 0             | ±0%               | ±0%                |
| DIS               | Distance DUT – TSL      | ±2.0%                         | N              | 1          | 2            | 2             | ±4.0%             | ±4.0%              |
| D <sub>xyz</sub>  | Device Positioning      | ±1.0%                         | N              | 1          | 1            | 1             | ±1.0%             | ±1.0%              |
| Н                 | Device Holder           | ±3.6%                         | N              | 1          | 1            | 1             | ±3.6%             | ±3.6%              |
| MOD               | DUT Modulationm         | ±2.4%                         | R              | $\sqrt{3}$ | 1            | 1             | ±1.4%             | ±1.4%              |
| TAS               | Time-average SAR        | ±1.7%                         | R              | $\sqrt{3}$ | 1            | 1             | ±1.0%             | ±1.0%              |
| RFdrift           | DUT drift               | ±2.5%                         | N              | 1          | 1            | 1             | ±2.5%             | ±2.5%              |
| VAL               | Val Antenna Unc.        | ±0.0%                         | N              | 1          | 1            | 1             | ±0.0%             | ±0.0%              |
| RFin              | Unc. Input Power        | ±0.0%                         | N              | 1          | 1            | 1             | ±0.0%             | ±0.0%              |
| Correction to the | SAR results             |                               |                |            |              |               |                   |                    |
| C(ε, σ)           | Deviation to Target     | ±1.9%                         | N              | 1          | 1            | 0.84          | ±1.9%             | ±1.6%              |
| C(R)              | SAR scaling             | ±0.0%                         | R              | $\sqrt{3}$ | 1            | 1             | ±0.0%             | ±0.0%              |
| u(∆SAR)           | Combined Uncertainty    |                               |                |            |              |               | ±11.0%            | ±10.9%             |
| U                 | Expanded Uncertainty    |                               |                |            |              |               | ±21.9%            | ±21.7%             |

Report No.: CHTEW23080045 Page: 9 of 30 Issued: 2023-08-22

| Measurement uncertainty evaluation for System Check IEC/IEEE 62209-1528 (300M-6GHz) |                               |                                       |                |            |              |               |                   |                    |
|-------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|----------------|------------|--------------|---------------|-------------------|--------------------|
| Symbol                                                                              | Error Description             | Uncert.<br>Value                      | Prob.<br>Dist. | Div.       | (Ci)<br>(1g) | (Ci)<br>(10g) | Std. Unc.<br>(1g) | Std. Unc.<br>(10g) |
| Measurement Syste                                                                   | em Errors                     |                                       |                |            | , , ,        |               |                   | , , , ,            |
| CF                                                                                  | Probe Calibration Repeat.     | ±3.6%                                 | N              | 2          | 1            | 1             | ±1.8%             | ±1.8%              |
| CFdrift                                                                             | Probe Calibration Drift       | ±1.7%                                 | R              | $\sqrt{3}$ | 1            | 1             | ±1.0%             | ±1.0%              |
| LIN                                                                                 | Probe Linearity               | ±4.7%                                 | R              | $\sqrt{3}$ | 0            | 0             | ±0.0%             | ±0.0%              |
| BBS                                                                                 | Broadband Signal              | ±0.0%                                 | R              | $\sqrt{3}$ | 0            | 0             | ±0.0%             | ±0.0%              |
| ISO                                                                                 | Probe Isotropy (axial)        | ±4.7%                                 | R              | $\sqrt{3}$ | 0            | 0             | ±0.0%             | ±0.0%              |
| DAE                                                                                 | Data Acquisition              | ±1.2%                                 | N              | 1          | 0            | 0             | ±0.0%             | ±0.0%              |
| AMB                                                                                 | RF Ambient                    | ±0.6%                                 | N              | 1          | 0            | 0             | ±0.0%             | ±0.0%              |
| Δ sys                                                                               | Probe Positioning             | $\pm$ 0.005mm                         | N              | 1          | 0.29         | 0.29          | ±0.2%             | ±0.2%              |
| DAT                                                                                 | Data Processing               | ±0.0%                                 | N              | 1          | 1            | 1             | ±0.0%             | ±0.0%              |
| Phantom and Devic                                                                   | e Errors                      | · · · · · · · · · · · · · · · · · · · |                |            |              |               |                   |                    |
| LIQ(σ)                                                                              | Conductivity (meas.)          | ±2.5%                                 | N              | 1          | 0.78         | 0.71          | ±2.0%             | ±1.8%              |
| LIQ(Tσ)                                                                             | Conductivity (temp.)          | ±3.4%                                 | R              | $\sqrt{3}$ | 0.78         | 0.71          | ±1.5%             | ±1.4%              |
| EPS                                                                                 | Phantom Permittivity          | ±14.0%                                | R              | $\sqrt{3}$ | 0            | 0             | ±0.0%             | ±0.0%              |
| DIS                                                                                 | Distance Phantom – DUT        | ±1.0%                                 | N              | 1          | 2            | 2             | ±2.0%             | ±2.0%              |
| MOD                                                                                 | DUT Modulationm               | ±0.0%                                 | R              | $\sqrt{3}$ | 1            | 1             | ±0.0%             | ±0.0%              |
| TAS                                                                                 | Time-average SAR              | ±0.0%                                 | R              | $\sqrt{3}$ | 1            | 1             | ±0.0%             | ±0.0%              |
| VAL                                                                                 | Validation antenna            | ±0.0%                                 | N              | 1          | 1            | 1             | ±0.0%             | ±0.0%              |
| RFin                                                                                | Accepted power                | ±1.2%                                 | N              | 1          | 1            | 1             | ±1.2%             | ±1.2%              |
| Correction to the Sa                                                                | Correction to the SAR results |                                       |                |            |              |               |                   |                    |
| C(ε, σ)                                                                             | Deviation to Target           | ±1.9%                                 | N              | 1          | 1            | 0.84          | ±1.9%             | ±1.6%              |
| u(∆SAR)                                                                             | Combined Uncertainty          |                                       |                |            |              |               | ±4.4%             | ±4.4%              |
| U                                                                                   | Expanded Uncertainty          |                                       |                |            | i            |               | ±8.8%             | $\pm 8.8\%$        |

Report No.: CHTEW23080045 Page: 10 of 30 Issued: 2023-08-22

# 6. SAR Measurement System Configuration

### 6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

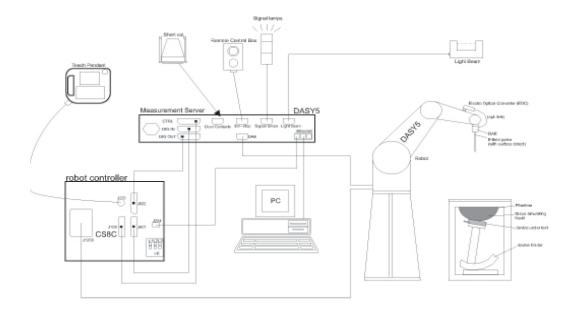
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.



Report No.: CHTEW23080045 Page: 11 of 30 Issued: 2023-08-22

### 6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

### Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 4 MHz to 10 GHz;

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity  $\pm 0.3$  dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range  $10 \mu W/g \text{ to } > 100 \text{ W/kg};$ 

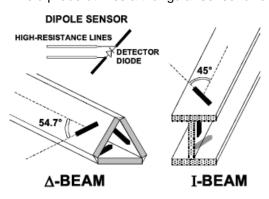
Linearity: ± 0.2 dB

Dimensions Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 1.0 mm

Application General dosimetry up to 6 GHz


Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Compatibility DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

#### Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:





Report No.: CHTEW23080045 Page: 12 of 30 Issued: 2023-08-22

#### 6.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.



SAM-Twin Phantom

### 6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.



Device holder supplied by SPEAG

Report No.: CHTEW23080045 Page: 13 of 30 Issued: 2023-08-22

### 7. SAR Test Procedure

### 7.1. Scanning Procedure

#### **Step 1: Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. Measure the local SAR at a test point within 8 mm of the phantom inner surface that is closest to the DUT. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

### Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

### Area Scan Resolutions per FCC KDB Publication 865664 D01v04

|                                                                                                        | ≤ 3 GHz                                                                                                                                         | > 3 GHz                                                                              |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 mm ± 1 mm                                                                                                                                     | $\frac{1}{2} \cdot \hat{\delta} \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$          |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location              | 30° ± 1°                                                                                                                                        | 20° ± 1°                                                                             |
|                                                                                                        | ≤ 2 GHz: ≤ 15 mm<br>2 – 3 GHz: ≤ 12 mm                                                                                                          | 3 – 4 GHz: ≤ 12 mm<br>4 – 6 GHz: ≤ 10 mm                                             |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                            | When the x or y dimension<br>measurement plane orienta<br>above, the measurement re<br>corresponding x or y dimen<br>at least one measurement p | tion, is smaller than the<br>solution must be ≤ the<br>nsion of the test device with |

Report No.: CHTEW23080045 Page: 14 of 30 Issued: 2023-08-22

#### Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1g and 10g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04

| Maximum zoom scan                                                        | spatial res    | olution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$                                              | $\leq$ 2 GHz: $\leq$ 8 mm<br>2 - 3 GHz: $\leq$ 5 mm*           | $3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$                                         |
|--------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                          | uniform        | grid: Δz <sub>Zoom</sub> (n)                                                                | ≤ 5 mm                                                         | 3 – 4 GHz: ≤ 4 mm<br>4 – 5 GHz: ≤ 3 mm<br>5 – 6 GHz: ≤ 2 mm                                                                |
| Maximum zoom<br>scan spatial<br>resolution, normal to<br>phantom surface | graded<br>grid | Δz <sub>Zoom</sub> (1): between<br>1 <sup>st</sup> two points closest<br>to phantom surface | ≤ 4 mm                                                         | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm                                                              |
|                                                                          | grid           | Δz <sub>Zoom</sub> (n>1):<br>between subsequent<br>points                                   | $\leq 1.5 \cdot \Delta z_{\text{Zoom}}(\text{n-1}) \text{ mm}$ |                                                                                                                            |
| Minimum zoom<br>scan volume                                              | x, y, z        |                                                                                             | ≥ 30 mm                                                        | $3 - 4 \text{ GHz:} \ge 28 \text{ mm}$<br>$4 - 5 \text{ GHz:} \ge 25 \text{ mm}$<br>$5 - 6 \text{ GHz:} \ge 22 \text{ mm}$ |

Note:  $\hat{o}$  is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

#### Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. The SAR drift shall be kept within ± 5 %.

<sup>\*</sup> When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: CHTEW23080045 Page: 15 of 30 Issued: 2023-08-22

### 7.2. Data Storage and Evaluation

### **Data Storage**

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), s together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [W/kg], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

### **Data Evaluation**

Media parameters:

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: Sensitivity: Normi, ai0, ai1, ai2

> Conversion factor: ConvFi Diode compression point: Dcpi

Device parameters: Frequency:

Crest factor: cf Conductivity:

Density: These parameters must be set correctly in the software. They can be found in the component documents or

they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter) diode compression point (DASY parameter) dcpi:

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes : 
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H – fieldprobes : 
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

Vi: compensated signal of channel ( i = x, y, z ) Normi: sensor sensitivity of channel (i = x, y, z),

[mV/(V/m)2] for E-field Probes

ConvF: sensitivity enhancement in solution

sensor sensitivity factors for H-field probes aij:

f: carrier frequency [GHz]

Ei: electric field strength of channel i in V/m magnetic field strength of channel i in A/m Hi:

Report No.: CHTEW23080045 Page: 16 of 30 Issued: 2023-08-22

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units. 
$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in W/kg

Etot: total field strength in V/m

σ: conductivity in [mho/m] or [Siemens/m] equivalent tissue density in g/cm3 ρ:

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

Report No.: CHTEW23080045 Page: 17 of 30 Issued: 2023-08-22

# 8. <u>Dielectric Property Measurements & System Check</u>

### 8.1. Tissue Dielectric Parameters

The temperature of the tissue-equivalent medium used during measurement must also be within 18  $^{\circ}$ C to 25  $^{\circ}$ C and within  $\pm$  2  $^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The dielectric constant  $(\epsilon_r)$  and conductivity  $(\sigma)$  of typical tissue-equivalent media recipes are expected to be within  $\pm$  5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for  $\epsilon_r$  and  $\sigma$  may be relaxed to  $\pm$  10%. This is limited to frequencies  $\leq$  3 GHz.

#### **Tissue Dielectric Parameters**

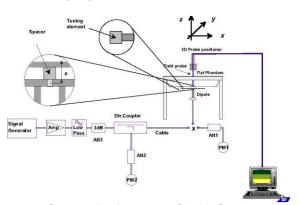
FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                  | Tissue dielectric parameters for Head |        |  |  |  |  |  |  |  |  |
|------------------|---------------------------------------|--------|--|--|--|--|--|--|--|--|
| Target Frequency |                                       | Head   |  |  |  |  |  |  |  |  |
| (MHz)            | ε <sub>r</sub>                        | σ(S/m) |  |  |  |  |  |  |  |  |
| 750              | 41.9                                  | 0.89   |  |  |  |  |  |  |  |  |
| 835              | 41.5                                  | 0.90   |  |  |  |  |  |  |  |  |
| 1750             | 40.1                                  | 1.37   |  |  |  |  |  |  |  |  |
| 1800-2000        | 40.0                                  | 1.40   |  |  |  |  |  |  |  |  |
| 2450             | 39.2                                  | 1.80   |  |  |  |  |  |  |  |  |
| 2600             | 39.0                                  | 1.96   |  |  |  |  |  |  |  |  |
| 5200             | 36.0                                  | 4.66   |  |  |  |  |  |  |  |  |
| 5300             | 35.9                                  | 4.76   |  |  |  |  |  |  |  |  |
| 5500             | 35.6                                  | 4.96   |  |  |  |  |  |  |  |  |
| 5600             | 35.5                                  | 5.07   |  |  |  |  |  |  |  |  |
| 5800             | 35.3                                  | 5.27   |  |  |  |  |  |  |  |  |

Report No.: CHTEW23080045 Page: 18 of 30 Issued: 2023-08-22

### Measurement Results:

|           |        | Dielectric     | perform | ance of Head | d tissue si       | mulating | liquid |      |           |
|-----------|--------|----------------|---------|--------------|-------------------|----------|--------|------|-----------|
| Frequency |        | ε <sub>r</sub> | σ(      | S/m)         | Delta             | Delta    | Limit  | Temp | Date      |
| (MHz)     | Target | Measured       | Target  | Measured     | (ε <sub>r</sub> ) | (σ)      | LIIIII | (℃)  | Date      |
| 2450      | 39.20  | 37.48          | 1.800   | 1.775        | -4.39%            | -1.39%   | ±5%    | 22.2 | 2023/8/17 |
| 2402      | 39.29  | 37.56          | 1.758   | 1.680        | -4.40%            | -4.44%   | ±5%    | 22.2 | 2023/8/17 |
| 2440      | 39.22  | 37.50          | 1.791   | 1.770        | -4.39%            | -1.17%   | ±5%    | 22.2 | 2023/8/17 |
| 2480      | 39.16  | 37.44          | 1.833   | 1.804        | -4.39%            | -1.58%   | ±5%    | 22.2 | 2023/8/17 |
| 2412      | 39.27  | 37.55          | 1.767   | 1.685        | -4.38%            | -4.64%   | ±5%    | 22.2 | 2023/8/17 |
| 2437      | 39.22  | 37.50          | 1.789   | 1.765        | -4.39%            | -1.34%   | ±5%    | 22.2 | 2023/8/17 |
| 2462      | 39.19  | 37.47          | 1.813   | 1.782        | -4.39%            | -1.71%   | ±5%    | 22.2 | 2023/8/17 |
| 5250      | 35.93  | 34.58          | 4.706   | 4.480        | -3.76%            | -4.80%   | ±5%    | 22.2 | 2023/8/17 |
| 5190      | 36.00  | 34.69          | 4.645   | 4.417        | -3.64%            | -4.91%   | ±5%    | 22.2 | 2023/8/17 |
| 5230      | 35.95  | 34.62          | 4.686   | 4.460        | -3.70%            | -4.82%   | ±5%    | 22.2 | 2023/8/17 |
| 5750      | 35.36  | 33.82          | 5.219   | 4.995        | -4.36%            | -4.29%   | ±5%    | 22.2 | 2023/8/17 |
| 5745      | 35.36  | 33.83          | 5.214   | 4.990        | -4.33%            | -4.30%   | ±5%    | 22.2 | 2023/8/17 |
| 5785      | 35.32  | 33.76          | 5.255   | 5.030        | -4.42%            | -4.28%   | ±5%    | 22.2 | 2023/8/17 |
| 5825      | 35.27  | 33.69          | 5.295   | 5.082        | -4.48%            | -4.02%   | ±5%    | 22.2 | 2023/8/17 |


Report No.: CHTEW23080045 Page: 19 of 30 Issued: 2023-08-22

### 8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

#### **System Performance Check Measurement Conditions:**

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
   For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- The results are normalized to 1 W input power.



System Performance Check Setup




Photo of Dipole Setup

Report No.: CHTEW23080045 Page: 20 of 30 Issued: 2023-08-22

### **Measurement Results:**

|                    | Head         |                 |                   |              |                 |                   |        |        |        |      |           |  |
|--------------------|--------------|-----------------|-------------------|--------------|-----------------|-------------------|--------|--------|--------|------|-----------|--|
| Frequency<br>(MHz) | 1g SAR       |                 |                   | 10g SAR      |                 |                   | Delta  | Delta  | Limit  | Temp | 2         |  |
|                    | Target<br>1W | Normalize to 1W | Measured<br>250mW | Target<br>1W | Normalize to 1W | Measured<br>250mW | (1g)   | (10g)  | LIIIII | (℃)  | Date      |  |
| 2450               | 52.00        | 49.20           | 12.30             | 23.90        | 22.76           | 5.69              | -5.38% | -4.77% | ±10%   | 22.4 | 2023/8/17 |  |
| Frequency          | 1g SAR       |                 |                   | 10g SAR      |                 |                   | Delta  | Delta  |        | Temp | _         |  |
| (MHz)              | Target<br>1W | Normalize to 1W | Measured<br>100mW | Target<br>1W | Normalize to 1W | Measured<br>100mW | (1g)   | (10g)  | Limit  | (℃)  | Date      |  |
| 5250               | 78.20        | 79.20           | 7.92              | 22.30        | 22.60           | 2.26              | 1.28%  | 1.35%  | ±10%   | 22.4 | 2023/8/17 |  |
| 5750               | 79.30        | 84.90           | 8.49              | 22.50        | 24.10           | 2.41              | 7.06%  | 7.11%  | ±10%   | 22.4 | 2023/8/17 |  |

Note:

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within  $\pm 10\%$  of the manufacturer calibrated dipole SAR target.

Report No.: CHTEW23080045 Page: 21 of 30 Issued: 2023-08-22

### **Plots of System Performance Check**

### SystemPerformanceCheck-Head 2450MHz

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz;  $\sigma = 1.775 \text{ S/m}$ ;  $\epsilon_r = 37.484$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

### DASY Configuration:

Probe: EX3DV4 - SN7494; ConvF(8.01, 8.01, 8.01); Calibrated: 4/17/2023;

· Sensor-Surface: 1.4mm (Mechanical Surface Detection)

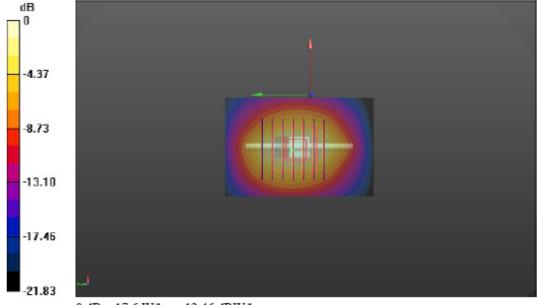
Electronics: DAE4 Sn1549; Calibrated: 3/27/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

# Head/d=10mm,Pin=250mW/Area Scan (41x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 18.0 W/kg


### Head/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 103.3 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 21.7 W/kg

SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.69 W/kg Maximum value of SAR (measured) = 17.6 W/kg



0 dB = 17.6 W/kg = 12.46 dBW/kg

Report No.: CHTEW23080045 Page: 22 of 30 Issued: 2023-08-22

### SystemPerformanceCheck-Head 5250MHz

Communication System: UID 0, Generic WIFI (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5250 MHz;  $\sigma = 4.48$  S/m;  $\epsilon_r = 34.58$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

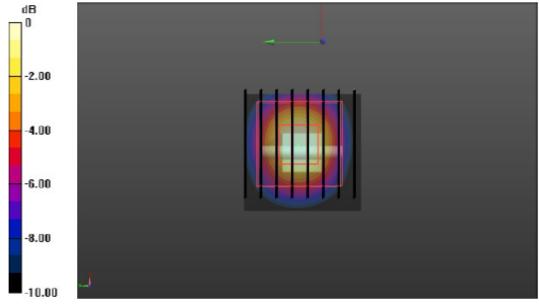
Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

#### DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(5.67, 5.67, 5.67); Calibrated: 4/17/2023;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Head/d=10mm,pin=100mW/Area Scan (31x31x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 21.1 W/kg


Head/d=10mm,pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=1.4mm

Reference Value = 71.95 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 18.7 W/kg



0 dB = 18.7 W/kg = 12.72 dBW/kg

Report No.: CHTEW23080045 Page: 23 of 30 Issued: 2023-08-22

### SystemPerformanceCheck-Head 5750MHz

Communication System: UID 0, Generic WIFI (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz;  $\sigma = 4.995$  S/m;  $\epsilon_r = 33.818$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Ambient Temperature:22.4°C;Liquid Temperature:22.2°C;

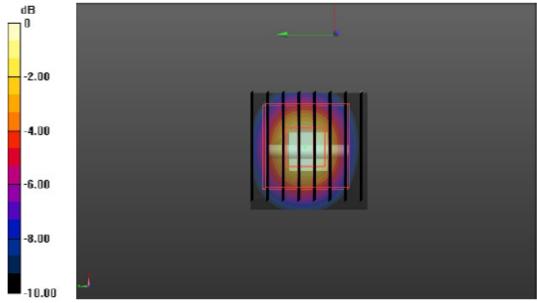
#### DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(5.14, 5.14, 5.14); Calibrated: 4/17/2023;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

### Head/d=10mm Pin=100mW,f=5750Mhz/Area Scan (31x31x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 23.2 W/kg


### Head/d=10mm Pin=100mW,f=5750Mhz/Zoom Scan (8x8x7)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.92 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 39.8 W/kg

SAR(1 g) = 8.49 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 20.7 W/kg



0 dB = 20.7 W/kg = 13.16 dBW/kg

Report No.: CHTEW23080045 Page: 24 of 30 Issued: 2023-08-22

# 9. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

|                                                         | Limit (W/kg)                                          |                                               |  |  |  |  |
|---------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|--|--|--|--|
| Type Exposure                                           | General Population/ Uncontrolled Exposure Environment | Occupational/ Controlled Exposure Environment |  |  |  |  |
| Spatial Average SAR (whole body)                        | 0.08                                                  | 0.4                                           |  |  |  |  |
| Spatial Peak SAR<br>(1g cube tissue for head and trunk) | 1.6                                                   | 8.0                                           |  |  |  |  |
| Spatial Peak SAR<br>(10g for limb)                      | 4.0                                                   | 20.0                                          |  |  |  |  |

#### Note:

- 1. Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.
- 2. Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

Report No.: CHTEW23080045 Page: 25 of 30 Issued: 2023-08-22

### 10. Conducted Power Measurement Results and Tune-up

Please refer to appendix report

### 11. Measured and Reported SAR Results

#### Measurement Results:

Please refer to appendix report

### Measurement data plots:

Please refer to appendix D

#### Note:

#### SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN = Measured SAR \*Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth = Measured SAR \* Tune-up scaling factor \* Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

### KDB 447498 D04 Interim General RF Exposure Guidance v01:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

#### KDB 248227 D01 SAR meas for 802.11:

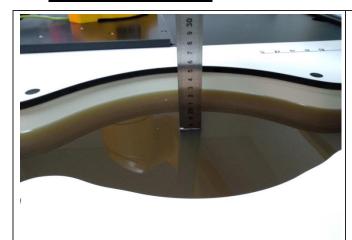
When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

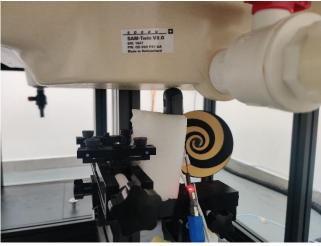
SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.

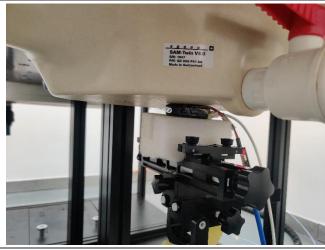
Report No.: CHTEW23080045 Page: 26 of 30 Issued: 2023-08-22


For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.


- When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered.
  - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

Report No.: CHTEW23080045 Page: 27 of 30 Issued: 2023-08-22


# 12. Test Setup Photos





Liquid depth in the Body phantom

Top (0mm)





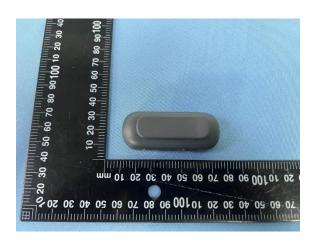


Back (0mm)



Left (0mm)




Right (0mm)

Report No.: CHTEW23080045 Page: 28 of 30 Issued: 2023-08-22

# 13. External and Internal Photos of the EUT







Report No.: CHTEW23080045 Page: 29 of 30 Issued: 2023-08-22







Report No.: CHTEW23080045 Page: 30 of 30 Issued: 2023-08-22



-----End of Report-----



# **Appendix Report**

| Project No.     | SHT2308030902EW |             |                |  |  |  |  |
|-----------------|-----------------|-------------|----------------|--|--|--|--|
| Test sample No. | YPHT23080309001 | Model No.   | CTS-CM100-245G |  |  |  |  |
| Start test date | 2023/8/17       | Finish date | 2023/8/17      |  |  |  |  |
| Temperature     | 23.2°C          | Humidity    | 49%            |  |  |  |  |
| Test Engineer   | Xiaodong Zhao   | Auditor     | In . Young     |  |  |  |  |

| Appendix clause | Test Item                           | Result |
|-----------------|-------------------------------------|--------|
| А               | Conducted Power Measurement Results | PASS   |
| В               | SAR Measurement Results             | PASS   |
| С               | Simultaneous Transmission analysis  | PASS   |



Appendix A:Conducted Power Measurement Results-WIF/Bluetooth

|           |                    |         | WIFI 2.4           | .G                                      |       |            |
|-----------|--------------------|---------|--------------------|-----------------------------------------|-------|------------|
| Bandwidth | Mode               | Channel | Frequency<br>(MHz) | Conducted Power (dBm) Tune-up lin (dBm) |       | Duty Cycle |
|           |                    | 1       | 2412               | 17.35                                   | 17.50 | 99.82%     |
|           | 802.11b            | 6       | 2437               | 16.89                                   | 17.00 | 99.82%     |
|           |                    | 11      | 2462               | 16.52                                   | 17.00 | 99.82%     |
|           |                    | 1       | 2412               | 11.44                                   | 11.50 | 98.53%     |
|           | 802.11g            | 6       | 2437               | 13.04                                   | 13.50 | 98.89%     |
| 20        |                    | 11      | 2462               | 13.43                                   | 13.50 | 98.53%     |
|           | 802.11n<br>(HT20)  | 1       | 2412               | 13.14                                   | 13.50 | 98.81%     |
|           |                    | 6       | 2437               | 12.93                                   | 13.00 | 98.42%     |
|           |                    | 11      | 2462               | 13.33                                   | 13.50 | 98.81%     |
|           |                    | 1       | 2412               | 13.01                                   | 13.50 | 97.06%     |
|           | 802.11ax<br>(HE20) | 6       | 2437               | 12.65                                   | 13.00 | 96.08%     |
|           | (1120)             | 11      | 2462               | 13.02                                   | 13.50 | 97.06%     |
|           | 222.44             | 3       | 2422               | 12.33                                   | 12.50 | 96.83%     |
|           | 802.11n<br>(Ht40)  | 6       | 2437               | 12.20                                   | 12.50 | 96.83%     |
| 40        | ()                 | 9       | 2452               | 12.05                                   | 12.50 | 97.60%     |
| 40        | 000.44             | 3       | 2422               | 12.03                                   | 12.50 | 94.55%     |
|           | 802.11ax<br>(HE40) | 6       | 2437               | 12.04                                   | 12.50 | 92.73%     |
|           | (                  | 9       | 2452               | 11.95                                   | 12.00 | 94.55%     |

|           |                                         |         | WIFI 5G U-         | ·NII-1                |                        |            |
|-----------|-----------------------------------------|---------|--------------------|-----------------------|------------------------|------------|
| Bandwidth | Mode                                    | Channel | Frequency<br>(MHz) | Conducted Power (dBm) | Tune-up limit<br>(dBm) | Duty Cycle |
|           | 000.44                                  | 36      | 5180               | 10.61                 | 11.00                  | 98.45%     |
|           | 802.11ax<br>(HE20)                      | 44      | 5220               | 10.46                 | 11.00                  | 98.45%     |
|           | (1123)                                  | 48      | 5240               | 10.17                 | 11.00                  | 98.45%     |
|           | 000.44                                  | 36      | 5180               | 10.02                 | 10.50                  | 96.95%     |
|           | 802.11ac<br>(VHT20)                     | 44      | 5220               | 11.13                 | 11.50                  | 96.95%     |
| 20        | ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 48      | 5240               | 12.90                 | 13.00                  | 96.95%     |
| 20        | 802.11n<br>(HT20)                       | 36      | 5180               | 10.99                 | 11.00                  | 96.15%     |
|           |                                         | 44      | 5220               | 10.73                 | 11.00                  | 98.81%     |
|           |                                         | 48      | 5240               | 10.61                 | 11.00                  | 92.57%     |
|           | 802.11a                                 | 36      | 5180               | 10.54                 | 11.00                  | 98.52%     |
|           |                                         | 44      | 5220               | 10.16                 | 10.50                  | 98.89%     |
|           |                                         | 48      | 5240               | 11.75                 | 12.00                  | 98.89%     |
|           | 802.11ax                                | 38      | 5190               | 10.26                 | 10.50                  | 96.83%     |
|           | (HE40)                                  | 46      | 5230               | 12.64                 | 13.00                  | 96.83%     |
| 40        | 802.11ac                                | 38      | 5190               | 10.49                 | 10.50                  | 94.03%     |
| 40        | (VHT40)                                 | 46      | 5230               | 10.18                 | 10.50                  | 94.03%     |
|           | 802.11n                                 | 38      | 5190               | 10.20                 | 10.50                  | 97.60%     |
|           | (HT40)                                  | 46      | 5230               | 9.98                  | 10.00                  | 96.83%     |



|           |                     |         | WIFI 5G U-         | ·NII-3                |                        |            |
|-----------|---------------------|---------|--------------------|-----------------------|------------------------|------------|
| Bandwidth | Mode                | Channel | Frequency<br>(MHz) | Conducted Power (dBm) | Tune-up limit<br>(dBm) | Duty Cycle |
|           | 222.44              | 149     | 5745               | 7.10                  | 7.50                   | 98.45%     |
|           | 802.11ax<br>(HE20)  | 157     | 5785               | 5.80                  | 6.00                   | 98.45%     |
|           | (1.22)              | 165     | 5825               | 6.65                  | 7.00                   | 98.45%     |
|           | 222.11              | 149     | 5745               | 7.31                  | 7.50                   | 96.95%     |
|           | 802.11ac<br>(VHT20) | 157     | 5785               | 6.07                  | 6.50                   | 96.95%     |
| 20        | (111120)            | 165     | 5825               | 5.11                  | 5.50                   | 97.69%     |
| 20        | 802.11n<br>(HT20)   | 149     | 5745               | 7.38                  | 7.50                   | 98.42%     |
|           |                     | 157     | 5785               | 6.05                  | 6.50                   | 98.81%     |
|           |                     | 165     | 5825               | 5.08                  | 5.50                   | 98.81%     |
|           | 802.11a             | 149     | 5745               | 11.46                 | 11.50                  | 98.89%     |
|           |                     | 157     | 5785               | 11.61                 | 12.00                  | 98.89%     |
|           |                     | 165     | 5825               | 11.64                 | 12.00                  | 98.89%     |
|           | 802.11ax            | 151     | 5755               | 6.72                  | 7.00                   | 93.18%     |
|           | (HE40)              | 159     | 5795               | 5.37                  | 5.50                   | 97.62%     |
| 40        | 802.11ac            | 151     | 5755               | 6.82                  | 7.00                   | 94.03%     |
| 40        | (VHT40)             | 159     | 5795               | 5.52                  | 6.00                   | 95.52%     |
|           | 802.11n             | 151     | 5755               | 6.34                  | 6.50                   | 97.60%     |
|           | (HT40)              | 159     | 5795               | 5.25                  | 5.50                   | 96.83%     |

|              |         |                                               | Bluetoo | th    |                        |            |
|--------------|---------|-----------------------------------------------|---------|-------|------------------------|------------|
| Мс           | ode     | Channel Frequency Conducted Power (MHz) (dBm) |         |       | Tune-up limit<br>(dBm) | Duty Cycle |
|              |         | 0                                             | 2402    | -3.93 | -3.50                  | 76.61%     |
|              | GFSK    | 39                                            | 2441    | -3.82 | -3.50                  | 76.68%     |
|              |         | 78                                            | 2480    | -3.74 | -3.50                  | 76.61%     |
|              | π/4QPSK | 0                                             | 2402    | -6.49 | -6.00                  | 76.68%     |
| EDR          |         | 39                                            | 2441    | -6.34 | -6.00                  | 76.88%     |
|              |         | 78                                            | 2480    | -6.35 | -6.00                  | 76.68%     |
|              | 8DPSK   | 0                                             | 2402    | -6.58 | -6.00                  | 76.94%     |
|              |         | 39                                            | 2441    | -6.47 | -6.00                  | 76.68%     |
|              |         | 78                                            | 2480    | -6.37 | -6.00                  | 76.94%     |
| 5            |         | 0                                             | 2402    | -4.29 | -4.00                  | 85.02%     |
| BLE<br>1Mbps | GFSK    | 19                                            | 2440    | -4.31 | -4.00                  | 85.02%     |
|              |         | 39                                            | 2480    | -4.24 | -4.00                  | 85.02%     |



### Appendix B:SAR Measurement Results-Head

|                       | WIFI 2.4G |       |                    |                        |                 |               |                          |                    |                     |                   |          |   |
|-----------------------|-----------|-------|--------------------|------------------------|-----------------|---------------|--------------------------|--------------------|---------------------|-------------------|----------|---|
| Mode Test<br>Position | Frequ     | uency | Conducted<br>Power | Tune-up<br>limit (dBm) | Tune-up scaling | Duty<br>Cycle | Duty<br>Cycle<br>Scaling | Power<br>Drift(dB) | Measured<br>SAR(1g) | Report<br>SAR(1g) | Plot No. |   |
|                       | 1 0311011 | СН    | MHz                | (dBm)                  | iiiiii (dDiii)  | factor        | Gyolo                    | Factor             | Dina(GB)            | (W/kg)            | (W/kg)   |   |
|                       |           | 1     | 2412               | 17.35                  | 17.50           | 1.035         | 99.82%                   | 1.002              | 0.13                | 0.403             | 0.418    | 1 |
| 802.11b Top           | Тор       | 6     | 2437               | 16.89                  | 17.00           | 1.026         | 99.82%                   | 1.002              | -0.12               | 0.325             | 0.334    | - |
|                       |           | 11    | 2462               | 16.52                  | 17.00           | 1.117         | 99.82%                   | 1.002              | -0.07               | 0.311             | 0.348    | - |

|          |                  |           |      |                    | WI                     | FI 5G U-NI      | I-1           |                          |                    |                     |                   |          |
|----------|------------------|-----------|------|--------------------|------------------------|-----------------|---------------|--------------------------|--------------------|---------------------|-------------------|----------|
| Mode     | Test<br>Position | Frequency |      | Conducted<br>Power | Tune-up<br>limit (dBm) | Tune-up scaling | Duty<br>Cycle | Duty<br>Cycle<br>Scaling | Power<br>Drift(dB) | Measured<br>SAR(1g) | Report<br>SAR(1g) | Plot No. |
|          | Position         | СН        | MHz  | (dBm)              | IIIIII (dbiii)         | factor          | Сусів         | Factor                   | Dilit(db)          | (W/kg)              | (W/kg)            |          |
| 802.11ax | Тор              | 38        | 5190 | 10.26              | 10.50                  | 1.057           | 96.83%        | 1.033                    | -0.09              | 0.144               | 0.157             | i        |
| (HE40)   | ТОР              | 46        | 5230 | 12.64              | 13.00                  | 1.086           | 96.83%        | 1.033                    | -0.15              | 0.328               | 0.368             | 2        |

|                    | WIFI 5G U-NII-3 |       |       |                    |                        |                    |               |                          |                    |                     |                   |          |  |  |  |
|--------------------|-----------------|-------|-------|--------------------|------------------------|--------------------|---------------|--------------------------|--------------------|---------------------|-------------------|----------|--|--|--|
| Mode Test Position |                 | Frequ | uency | Conducted<br>Power | Tune-up<br>limit (dBm) | Tune-up<br>scaling | Duty<br>Cycle | Duty<br>Cycle<br>Scaling | Power<br>Drift(dB) | Measured<br>SAR(1g) | Report<br>SAR(1g) | Plot No. |  |  |  |
| Position           | СН              | MHz   | (dBm) | iiiiii (dBiii)     | factor                 | Cycle              | Factor        | Dim(ab)                  | (W/kg)             | (W/kg)              |                   |          |  |  |  |
|                    |                 | 149   | 5745  | 11.46              | 11.50                  | 1.009              | 98.89%        | 1.011                    | -0.17              | 0.678               | 0.692             | -        |  |  |  |
| 802.11a            | Тор             | 157   | 5785  | 11.61              | 12.00                  | 1.094              | 98.89%        | 1.011                    | -0.08              | 0.709               | 0.784             | 3        |  |  |  |
|                    |                 | 165   | 5825  | 11.64              | 12.00                  | 1.086              | 98.89%        | 1.011                    | 0.15               | 0.695               | 0.764             | -        |  |  |  |

|             | Bluetooth Control of the Control of |       |       |                    |                        |                    |               |                          |                    |                     |                   |          |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------|------------------------|--------------------|---------------|--------------------------|--------------------|---------------------|-------------------|----------|--|--|--|
| Mode        | Test<br>Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Frequ | uency | Conducted<br>Power | Tune-up<br>limit (dBm) | Tune-up<br>scaling | Duty<br>Cycle | Duty<br>Cycle<br>Scaling | Power<br>Drift(dB) | Measured<br>SAR(1g) | Report<br>SAR(1g) | Plot No. |  |  |  |
| Position    | СН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHz   | (dBm) | mine (dbin)        | factor                 | Cycle              | Factor        | Dilit(GD)                | (W/kg)             | (W/kg)              |                   |          |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0     | 2402  | -3.93              | -3.50                  | 1.104              | 76.61%        | 1.305                    | -0.11              | 0.004               | 0.006             | -        |  |  |  |
| EDR<br>GFSK | Тор                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39    | 2441  | -3.82              | -3.50                  | 1.076              | 76.68%        | 1.304                    | 0.02               | 0.004               | 0.006             | -        |  |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78    | 2480  | -3.74              | -3.50                  | 1.057              | 76.61%        | 1.305                    | -0.09              | 0.005               | 0.007             | 4        |  |  |  |



### Appendix B:SAR Measurement Results-Body

|         | WIFI 2.4G        |       |       |                    |                        |                 |               |                          |                    |                     |                   |          |  |  |  |
|---------|------------------|-------|-------|--------------------|------------------------|-----------------|---------------|--------------------------|--------------------|---------------------|-------------------|----------|--|--|--|
| Mode    | Test<br>Position | Frequ | uency | Conducted<br>Power | Tune-up<br>limit (dBm) | Tune-up scaling | Duty<br>Cycle | Duty<br>Cycle<br>Scaling | Power<br>Drift(dB) | Measured<br>SAR(1g) | Report<br>SAR(1g) | Plot No. |  |  |  |
|         | 1 0311011        | СН    | MHz   | (dBm)              | iii iii (dbiii)        | factor          | Cyclo         | Factor                   | Dini(GB)           | (W/kg)              | (W/kg)            |          |  |  |  |
|         |                  | 1     | 2412  | 17.35              | 17.50                  | 1.035           | 99.82%        | 1.002                    | -0.18              | 0.678               | 0.703             | 5        |  |  |  |
| 802.11b | Back             | 6     | 2437  | 16.89              | 17.00                  | 1.026           | 99.82%        | 1.002                    | -0.15              | 0.599               | 0.615             | -        |  |  |  |
|         |                  | 11    | 2462  | 16.52              | 17.00                  | 1.117           | 99.82%        | 1.002                    | -0.12              | 0.575               | 0.643             | -        |  |  |  |

|          |                  |           |      |                    | WI                     | FI 5G U-NI      | I-1           |                          |                    |                     |                   |          |
|----------|------------------|-----------|------|--------------------|------------------------|-----------------|---------------|--------------------------|--------------------|---------------------|-------------------|----------|
| Mode     | Test<br>Position | Frequency |      | Conducted<br>Power | Tune-up<br>limit (dBm) | Tune-up scaling | Duty<br>Cycle | Duty<br>Cycle<br>Scaling | Power<br>Drift(dB) | Measured<br>SAR(1g) | Report<br>SAR(1g) | Plot No. |
|          | Position         | СН        | MHz  | (dBm)              | IIIIII (dbiii)         | factor          | Cycle         | Factor                   | Dilit(GB)          | (W/kg)              | (W/kg)            |          |
| 802.11ax | Back             | 38        | 5190 | 10.26              | 10.50                  | 1.057           | 96.83%        | 1.033                    | 0.11               | 0.163               | 0.178             | i        |
| (HE40)   | Dack             | 46        | 5230 | 12.64              | 13.00                  | 1.086           | 96.83%        | 1.033                    | -0.07              | 0.263               | 0.295             | 6        |

|                       | WIFI 5G U-NII-3 |           |      |                    |                        |                    |               |                          |                    |                     |                   |          |  |  |  |
|-----------------------|-----------------|-----------|------|--------------------|------------------------|--------------------|---------------|--------------------------|--------------------|---------------------|-------------------|----------|--|--|--|
| Mode Test<br>Position |                 | Frequency |      | Conducted<br>Power | Tune-up<br>limit (dBm) | Tune-up<br>scaling | Duty<br>Cycle | Duty<br>Cycle<br>Scaling | Power<br>Drift(dB) | Measured<br>SAR(1g) | Report<br>SAR(1g) | Plot No. |  |  |  |
|                       | 1 Osition       | СН        | MHz  | (dBm)              | minic (dBini)          | factor             | Cyclo         | Factor                   | Dini(GB)           | (W/kg)              | (W/kg)            |          |  |  |  |
|                       |                 | 149       | 5745 | 11.46              | 11.50                  | 1.009              | 98.89%        | 1.011                    | -0.12              | 0.294               | 0.300             | -        |  |  |  |
| 802.11a               | Back            | 157       | 5785 | 11.61              | 12.00                  | 1.094              | 98.89%        | 1.011                    | -0.05              | 0.309               | 0.342             | 7        |  |  |  |
|                       |                 | 165       | 5825 | 11.64              | 12.00                  | 1.086              | 98.89%        | 1.011                    | -0.17              | 0.307               | 0.337             | -        |  |  |  |

|             | Bluetooth        |       |          |                    |                        |                    |               |                          |                    |                     |                   |          |  |  |  |
|-------------|------------------|-------|----------|--------------------|------------------------|--------------------|---------------|--------------------------|--------------------|---------------------|-------------------|----------|--|--|--|
| Mode        | Test<br>Position | Frequ | uency    | Conducted<br>Power | Tune-up<br>limit (dBm) | Tune-up<br>scaling | Duty<br>Cycle | Duty<br>Cycle<br>Scaling | Power<br>Drift(dB) | Measured<br>SAR(1g) | Report<br>SAR(1g) | Plot No. |  |  |  |
| Position    | 1 Osition        | СН    | CH MHz ( |                    | minit (dBin)           | factor             | Cycle         | Factor                   | Dilit(GD)          | (W/kg)              | (W/kg)            |          |  |  |  |
|             |                  | 0     | 2402     | -3.93              | -3.50                  | 1.104              | 76.61%        | 1.305                    | -0.18              | 0.005               | 0.007             | -        |  |  |  |
| EDR<br>GFSK | Back             | 39    | 2441     | -3.82              | -3.50                  | 1.076              | 76.68%        | 1.304                    | -0.13              | 0.005               | 0.007             | -        |  |  |  |
|             |                  | 78    | 2480     | -3.74              | -3.50                  | 1.057              | 76.61%        | 1.305                    | -0.09              | 0.006               | 0.008             | 8        |  |  |  |



## Appendix B:SAR Measurement Results-Limbs

|         |          |       |       |                    |             | WIFI 2.4G          |        |                   |           |                      |                    |          |
|---------|----------|-------|-------|--------------------|-------------|--------------------|--------|-------------------|-----------|----------------------|--------------------|----------|
| Mode    | Test     | Frequ | uency | Conducted<br>Power | Tune-up     | Tune-up<br>scaling | Duty   | Duty<br>Cycle     | Power     | Measured<br>SAR(10g) | Report<br>SAR(10g) | Plot No. |
| Mode    | Position | СН    | MHz   | (dBm)              | limit (dBm) | factor             | Cycle  | Scaling<br>Factor | Drift(dB) | (W/kg)               | (W/kg)             | FIOUNO.  |
|         |          | 1     | 2412  | 17.35              | 17.50       | 1.035              | 99.82% | 1.002             | 0.10      | 1.250                | 1.296              | 9        |
|         | Front    | 6     | 2437  | 16.89              | 17.00       | 1.026              | 99.82% | 1.002             | -0.18     | 1.170                | 1.202              | ı        |
|         |          | 11    | 2462  | 16.52              | 17.00       | 1.117              | 99.82% | 1.002             | 0.05      | 1.130                | 1.264              | ı        |
|         |          | 1     | 2412  | 17.35              | 17.50       | 1.035              | 99.82% | 1.002             | -0.18     | 0.354                | 0.367              | -        |
|         | Back     | 6     | 2437  | 16.89              | 17.00       | 1.026              | 99.82% | 1.002             | -         | -                    | -                  | -        |
| 802.11b |          | 11    | 2462  | 16.52              | 17.00       | 1.117              | 99.82% | 1.002             | -         | -                    | -                  | -        |
|         |          | 1     | 2412  | 17.35              | 17.50       | 1.035              | 99.82% | 1.002             | -0.08     | 0.920                | 0.954              | -        |
|         | Left     | 6     | 2437  | 16.89              | 17.00       | 1.026              | 99.82% | 1.002             | -         | -                    | -                  | -        |
|         |          | 11    | 2462  | 16.52              | 17.00       | 1.117              | 99.82% | 1.002             | -         | -                    | -                  | -        |
|         |          | 1     | 2412  | 17.35              | 17.50       | 1.035              | 99.82% | 1.002             | 0.04      | 0.676                | 0.701              | -        |
|         | Right    | 6     | 2437  | 16.89              | 17.00       | 1.026              | 99.82% | 1.002             | -         | -                    | -                  | -        |
|         |          | 11    | 2462  | 16.52              | 17.00       | 1.117              | 99.82% | 1.002             | -         | -                    | -                  | -        |

|          | WIFI 5G U-NII-1 |         |         |             |         |                    |                   |               |        |                      |                    |          |       |        |       |       |       |       |
|----------|-----------------|---------|---------|-------------|---------|--------------------|-------------------|---------------|--------|----------------------|--------------------|----------|-------|--------|-------|-------|-------|-------|
| Mode     | Test            | Frequ   | uency   | Conducted   | Tune-up | Tune-up<br>scaling | Duty              | Duty<br>Cycle | Power  | Measured<br>SAR(10g) | Report<br>SAR(10g) | Plot No. |       |        |       |       |       |       |
| Position | СН              | MHz     | (dBm)   | limit (dBm) | factor  | Cycle              | Scaling<br>Factor | Drift(dB)     | (W/kg) | (W/kg)               |                    |          |       |        |       |       |       |       |
|          | Front           | 38      | 5190    | 10.26       | 10.50   | 1.057              | 96.83%            | 1.033         | -0.09  | 0.199                | 0.217              | -        |       |        |       |       |       |       |
|          | Front           | 46      | 5230    | 12.64       | 13.00   | 1.086              | 96.83%            | 1.033         | -0.08  | 0.362                | 0.406              | 10       |       |        |       |       |       |       |
|          | Back            | 38      | 5190    | 10.26       | 10.50   | 1.057              | 96.83%            | 1.033         | -      | -                    | -                  | -        |       |        |       |       |       |       |
| 802.11ax | Dack            | 46      | 5230    | 12.64       | 13.00   | 1.086              | 96.83%            | 1.033         | -0.07  | 0.093                | 0.104              | -        |       |        |       |       |       |       |
| (HE40)   | Loft            | 38      | 5190    | 10.26       | 10.50   | 1.057              | 96.83%            | 1.033         | -      | -                    | -                  | -        |       |        |       |       |       |       |
|          | Left -          | 46      | 5230    | 12.64       | 13.00   | 1.086              | 96.83%            | 1.033         | -0.18  | 0.251                | 0.282              | -        |       |        |       |       |       |       |
|          |                 | 38      | 5190    | 10.26       | 10.50   | 1.057              | 96.83%            | 1.033         | -      | -                    | -                  | -        |       |        |       |       |       |       |
|          |                 | Right - | Right - | Right       | Right   | Right              | Right -           | Right -       | 46     | 5230                 | 12.64              | 13.00    | 1.086 | 96.83% | 1.033 | -0.08 | 0.189 | 0.212 |

|         |          |      |       |                    | WI          | FI 5G U-NI         | I-3    |                   |           |                      |                    |            |
|---------|----------|------|-------|--------------------|-------------|--------------------|--------|-------------------|-----------|----------------------|--------------------|------------|
| Mode    | Test     | Freq | uency | Conducted<br>Power | Tune-up     | Tune-up<br>scaling | Duty   | Duty<br>Cycle     | Power     | Measured<br>SAR(10g) | Report<br>SAR(10g) | Plot No.   |
| Wode    | Position | СН   | MHz   | (dBm)              | limit (dBm) | factor             | Cycle  | Scaling<br>Factor | Drift(dB) | (W/kg)               | (W/kg)             | 1 100 140. |
|         |          | 149  | 5745  | 11.46              | 11.50       | 1.009              | 98.89% | 1.011             | -0.12     | 0.415                | 0                  | -          |
|         | Front    | 157  | 5785  | 11.61              | 12.00       | 1.094              | 98.89% | 1.011             | -0.05     | 0.435                | 0                  | 11         |
|         |          | 165  | 5825  | 11.64              | 12.00       | 1.086              | 98.89% | 1.011             | -0.11     | 0.430                | 0                  | i          |
|         |          | 149  | 5745  | 11.46              | 11.50       | 1.009              | 98.89% | 1.011             | -         | -                    | -                  | i          |
|         | Back     | 157  | 5785  | 11.61              | 12.00       | 1.094              | 98.89% | 1.011             | -         | -                    | -                  | ı          |
| 802.11a |          | 165  | 5825  | 11.64              | 12.00       | 1.086              | 98.89% | 1.011             | -0.05     | 0.104                | 0                  | i          |
| 002.11a |          | 149  | 5745  | 11.46              | 11.50       | 1.009              | 98.89% | 1.011             | -         | -                    | -                  | i          |
|         | Left     | 157  | 5785  | 11.61              | 12.00       | 1.094              | 98.89% | 1.011             | -         | -                    | -                  | i          |
|         |          | 165  | 5825  | 11.64              | 12.00       | 1.086              | 98.89% | 1.011             | 0.06      | 0.307                | 0                  | ı          |
|         |          | 149  | 5745  | 11.46              | 11.50       | 1.009              | 98.89% | 1.011             | -         | -                    | -                  | i          |
|         | Right    | 157  | 5785  | 11.61              | 12.00       | 1.094              | 98.89% | 1.011             | -         | -                    | -                  | -          |
|         |          | 165  | 5825  | 11.64              | 12.00       | 1.086              | 98.89% | 1.011             | -0.08     | 0.254                | 0                  | -          |



| Bluetooth   |                  |           |      |                    |             |                    |        |                   |           |                      |                    |            |
|-------------|------------------|-----------|------|--------------------|-------------|--------------------|--------|-------------------|-----------|----------------------|--------------------|------------|
| Mode        | Test<br>Position | Frequency |      | Conducted<br>Power | Tune-up     | Tune-up<br>scaling | Duty   | Duty<br>Cycle     | Power     | Measured<br>SAR(10g) | Report<br>SAR(10g) | Plot No.   |
|             |                  | СН        | MHz  | (dBm)              | limit (dBm) | factor             | Cycle  | Scaling<br>Factor | Drift(dB) | (W/kg)               | (W/kg)             | i lot ivo. |
| EDR<br>GFSK | Front            | 0         | 2402 | -3.93              | -3.50       | 1.104              | 76.61% | 1.305             | -0.17     | 0.009                | 0.013              | -          |
|             |                  | 39        | 2441 | -3.82              | -3.50       | 1.076              | 76.68% | 1.304             | -0.04     | 0.010                | 0.014              | -          |
|             |                  | 78        | 2480 | -3.74              | -3.50       | 1.057              | 76.61% | 1.305             | -0.15     | 0.012                | 0.016              | 12         |
|             | Back             | 0         | 2402 | -3.93              | -3.50       | 1.104              | 76.61% | 1.305             | -         | -                    | -                  | -          |
|             |                  | 39        | 2441 | -3.82              | -3.50       | 1.076              | 76.68% | 1.304             | -         | -                    | -                  | -          |
|             |                  | 78        | 2480 | -3.74              | -3.50       | 1.057              | 76.61% | 1.305             | -0.13     | 0.005                | 0.007              | -          |
|             | Left             | 0         | 2402 | -3.93              | -3.50       | 1.104              | 76.61% | 1.305             | -         | -                    | -                  | -          |
|             |                  | 39        | 2441 | -3.82              | -3.50       | 1.076              | 76.68% | 1.304             | -         | -                    | -                  | -          |
|             |                  | 78        | 2480 | -3.74              | -3.50       | 1.057              | 76.61% | 1.305             | 0.08      | 0.008                | 0.011              | -          |
|             | Right            | 0         | 2402 | -3.93              | -3.50       | 1.104              | 76.61% | 1.305             | -         | -                    | -                  | -          |
|             |                  | 39        | 2441 | -3.82              | -3.50       | 1.076              | 76.68% | 1.304             | -         | -                    | -                  | -          |
|             |                  | 78        | 2480 | -3.74              | -3.50       | 1.057              | 76.61% | 1.305             | -0.11     | 0.005                | 0.007              | -          |



# Appendix C: Simultaneous Transmission analysis-Head

| WLAN + BT       |                   |         |            |        |  |  |  |
|-----------------|-------------------|---------|------------|--------|--|--|--|
| WLAN Band       | Exposure Position | Max SAI | Summed SAR |        |  |  |  |
| WLAN Ballu      | Exposure Position | WLAN    | ВТ         | (W/kg) |  |  |  |
| WIFI 2.4G       | Тор               | 0.418   | 0.007      | 0.425  |  |  |  |
| WIFI 5G U-NII-1 | Тор               | 0.368   | 0.007      | 0.375  |  |  |  |
| WIFI 5G U-NII-3 | Тор               | 0.784   | 0.007      | 0.791  |  |  |  |

Appendix: 8/10



## Appendix C: Simultaneous Transmission analysis-Body

| WLAN + BT       |                   |         |            |        |  |  |
|-----------------|-------------------|---------|------------|--------|--|--|
| WLAN Band       | Exposure Position | Max SAI | Summed SAR |        |  |  |
|                 | Exposure Position | WLAN    | ВТ         | (W/kg) |  |  |
| WIFI 2.4G       | Back              | 0.703   | 0.008      | 0.711  |  |  |
| WIFI 5G U-NII-1 | Back              | 0.295   | 0.008      | 0.303  |  |  |
| WIFI 5G U-NII-3 | Back              | 0.342   | 0.008      | 0.350  |  |  |

Appendix: 9/10



Appendix C: Simultaneous Transmission analysis-Limbs

| WLAN + BT       |                   |        |            |        |  |  |
|-----------------|-------------------|--------|------------|--------|--|--|
| WLAN Band       | Exposure Position | Max SA | Summed SAR |        |  |  |
| WLAN Ballu      | Exposure Position | WLAN   | ВТ         | (W/kg) |  |  |
|                 | Front             | 1.296  | 0.016      | 1.312  |  |  |
| WIFI 2.4G       | Back              | 0.367  | 0.007      | 0.374  |  |  |
| WIFI 2.4G       | Left              | 0.954  | 0.011      | 0.965  |  |  |
|                 | Right             | 0.701  | 0.007      | 0.708  |  |  |
|                 | Front             | 0.406  | 0.016      | 0.422  |  |  |
| WIFI 5G U-NII-1 | Back              | 0.104  | 0.007      | 0.111  |  |  |
| WIFI 3G O-MII-1 | Left              | 0.282  | 0.011      | 0.293  |  |  |
|                 | Right             | 0.212  | 0.007      | 0.219  |  |  |
|                 | Front             | 0.481  | 0.016      | 0.497  |  |  |
| WIFI 5G U-NII-3 | Back              | 0.114  | 0.007      | 0.121  |  |  |
| WIFI 3G O-MI-3  | Left              | 0.337  | 0.011      | 0.348  |  |  |
|                 | Right             | 0.279  | 0.007      | 0.286  |  |  |

Appendix: 10/10

#### WIFI 2.4G Head

Communication System: UID 0, Generic WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz;  $\sigma = 1.683$  S/m;  $\varepsilon_r = 37.552$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Ambient Temperature:23.2°C;Liquid Temperature:22.5°C;

#### **DASY Configuration:**

- Probe: EX3DV4 SN7494; ConvF(8.01, 8.01, 8.01) @ 2412 MHz; Calibrated: 4/17/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

**Top 0mm/CH1/Area Scan (41x41x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.564 W/kg

Top 0mm/CH1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.87 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.403 W/kg; SAR(10 g) = 0.168 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.870 W/kg



0 dB = 0.870 W/kg = -0.60 dBW/kg

#### WIFI 5G U-NII-1 Head

Communication System: UID 0, Generic WIFI (0); Frequency: 5230 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5230 MHz;  $\sigma = 4.46$  S/m;  $\epsilon_r = 34.617$ ;  $\rho = 1000$  kg/m<sup>3</sup>

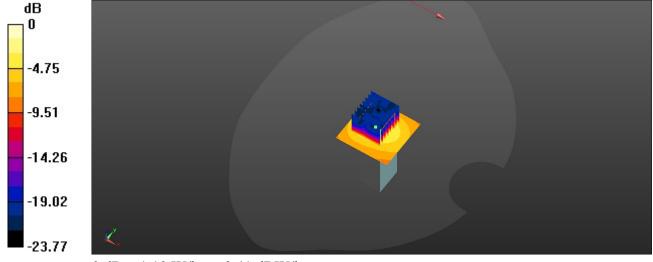
Phantom section: Flat Section

Ambient Temperature:23.2°C;Liquid Temperature:22.5°C;

#### **DASY Configuration:**

- Probe: EX3DV4 SN7494; ConvF(5.67, 5.67, 5.67) @ 5230 MHz; Calibrated: 4/17/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

**Top 0mm/CH46/Area Scan (51x51x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.12 W/kg


**Top 0mm/CH46/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 16.23 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 2.10 W/kg

SAR(1 g) = 0.328 W/kg; SAR(10 g) = 0.105 W/kg

Maximum value of SAR (measured) = 1.10 W/kg



0 dB = 1.10 W/kg = 0.41 dBW/kg

#### WIFI 5G U-NII-3 Head

Communication System: UID 0, Generic WIFI (0); Frequency: 5785 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5785 MHz;  $\sigma = 5.03$  S/m;  $\varepsilon_r = 33.764$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Ambient Temperature:23.2°C;Liquid Temperature:22.5°C;

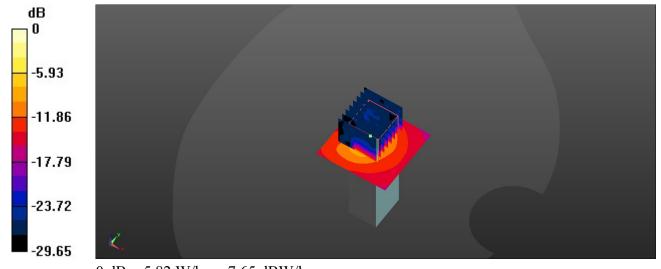
#### **DASY Configuration:**

- Probe: EX3DV4 SN7494; ConvF(5.14, 5.14, 5.14) @ 5785 MHz; Calibrated: 4/17/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

**Top 0mm/CH157/Area Scan (51x51x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.12 W/kg

**Top 0mm/CH157/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 18.37 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.709 W/kg; SAR(10 g) = 0.393 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.10 W/kg



0 dB = 5.82 W/kg = 7.65 dBW/kg

#### **BT Head**

Communication System: UID 0, Generic BT (0); Frequency: 2480 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz;  $\sigma = 1.804$  S/m;  $\varepsilon_r = 37.435$ ;  $\rho = 1000$  kg/m<sup>3</sup>

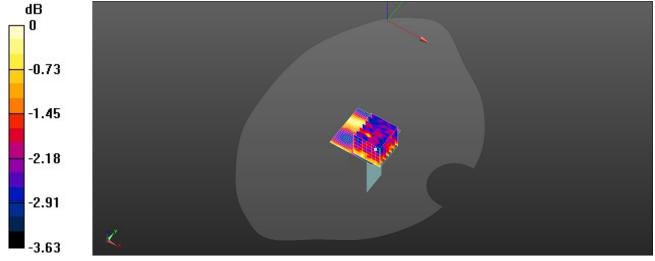
Phantom section: Flat Section

Ambient Temperature:23.2°C;Liquid Temperature:22.5°C;

#### **DASY Configuration:**

- Probe: EX3DV4 SN7494; ConvF(8.01, 8.01, 8.01) @ 2480 MHz; Calibrated: 4/17/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

**Top 0mm/CH78/Area Scan (41x41x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0121 W/kg


**Top 0mm/CH78/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.692 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.00790 W/kg

SAR(1 g) = 0.00526 W/kg; SAR(10 g) = 0.00428 W/kg

Maximum value of SAR (measured) = 0.00670 W/kg



0 dB = 0.0121 W/kg = -19.17 dBW/kg

#### WIFI 2.4G-Body

Communication System: UID 0, Generic WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz;  $\sigma = 1.683$  S/m;  $\varepsilon_r = 37.552$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Ambient Temperature:23.2°C;Liquid Temperature:22.5°C;

#### **DASY Configuration:**

- Probe: EX3DV4 SN7494; ConvF(8.01, 8.01, 8.01) @ 2412 MHz; Calibrated: 4/17/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

**Back 0mm/CH1/Area Scan (41x71x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.08 W/kg

**Back 0mm/CH1/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.21 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.678 W/kg; SAR(10 g) = 0.354 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.03 W/kg



## WIFI 5G U-NII-1 Body

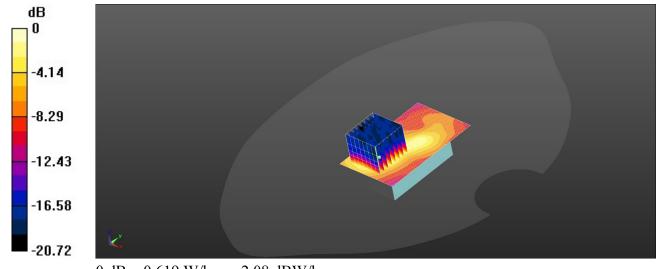
Communication System: UID 0, Generic WIFI (0); Frequency: 5230 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5230 MHz;  $\sigma = 4.46$  S/m;  $\epsilon_r = 34.617$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Ambient Temperature:23.2°C;Liquid Temperature:22.5°C;

#### **DASY Configuration:**

- Probe: EX3DV4 SN7494; ConvF(5.67, 5.67, 5.67) @ 5230 MHz; Calibrated: 4/17/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


**Back 0mm/CH46/Area Scan (51x81x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.772 W/kg

**Back 0mm/CH46/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 10.45 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.093 W/kgMaximum value of SAR (measured) = 0.619 W/kg



0 dB = 0.619 W/kg = -2.08 dBW/kg

### WIFI 5G U-NII-3 Body

Communication System: UID 0, Generic WIFI (0); Frequency: 5785 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5785 MHz;  $\sigma = 5.03$  S/m;  $\varepsilon_r = 33.764$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Ambient Temperature:23.2°C;Liquid Temperature:22.5°C;

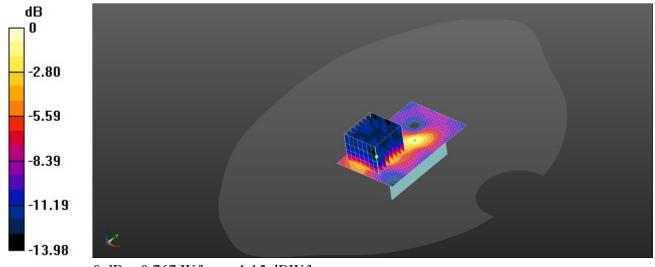
#### **DASY Configuration:**

- Probe: EX3DV4 SN7494; ConvF(5.14, 5.14, 5.14) @ 5785 MHz; Calibrated: 4/17/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

**Back 0mm/CH157/Area Scan (51x81x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.767 W/kg

**Back 0mm/CH157/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 10.08 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.309 W/kg; SAR(10 g) = 0.104 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.836 W/kg



0 dB = 0.767 W/kg = -1.15 dBW/kg

#### **BT Body**

Communication System: UID 0, Generic BT (0); Frequency: 2480 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2480 MHz;  $\sigma = 1.804$  S/m;  $\epsilon_r = 37.435$ ;  $\rho = 1000$  kg/m<sup>3</sup>

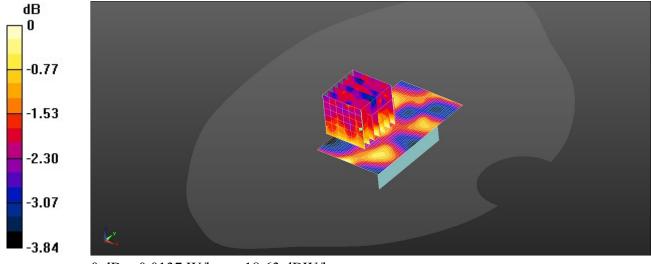
Phantom section: Flat Section

Ambient Temperature:23.2°C;Liquid Temperature:22.5°C;

## DASY Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.01, 8.01, 8.01) @ 2480 MHz; Calibrated: 4/17/2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/27/2023
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

**Back 0mm/CH78/Area Scan (41x71x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0137 W/kg


**Back 0mm/CH78/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.041 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.00888 W/kg

SAR(1 g) = 0.00624 W/kg; SAR(10 g) = 0.00461 W/kg

Maximum value of SAR (measured) = 0.00812 W/kg



0 dB = 0.0137 W/kg = -18.63 dBW/kg