

Global United Technology Services Co., Ltd.

Report No.: GTSL202106000187F01

TEST REPORT

Migear International Group LLC **Applicant:**

34 W 33rd Street Suite 1007 New York NY 10001 **Address of Applicant:**

Shantou Jiaxin Electronic Industry Co., limited Manufacturer:

Address of West Part of Guantian Middle Rd, Gurao, Chaoyang,

Shantou, Guangdong, China Manufacturer:

Equipment Under Test (EUT)

Product Name: Bluetooth headset

Model No.: 2BOOM-HPBT290

Trade Mark: N/A

FCC ID: 2A2BT-2BOOM-HPBT290

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jun.04,2021

Date of Test: Jun.04,2021- Jun.22,2021

Date of report issued: Jun.22,2021

Test Result: PASS *

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date Date	Description Original			
00	Jun.22,2021				
	2 2 2				
6 2 2 2 10 10	20 20 20 20 20	0 10 10 10 10 10			

Tested/Prepared By:	Joseph Du	Date:	Jun.22,2021	
8 8 2 - 8	Project Engineer	- 8 - 8 -		
	a lw			
Check By:	Johnson Lun	Date:	Jun.22,2021	
	Reviewer			6

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1		1
2	VERSION	2
3		
9		
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 DEVIATION FROM STANDARDS	7
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6 TEST FACILITY	7
	5.7 TEST LOCATION	7
	5.8 ADDITIONAL INSTRUCTIONS	7
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	
	7.2 CONDUCTED EMISSIONS	V/48/71 - V/48/71 -
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 20DB EMISSION BANDWIDTH	
	7.5 CARRIER FREQUENCIES SEPARATION	
	7.6 HOPPING CHANNEL NUMBER	
	7.7 DWELL TIME	
	7.8 BAND EDGE	
	7.8.1 Conducted Emission Method	
	7.8.2 Radiated Emission Method	
	7.9 Spurious Emission	
	7.9.1 Conducted Emission Method	
	7.9.2 Radiated Emission Method	
8	TEST SETUP PHOTO	44
	EUT CONSTRUCTIONAL DETAILS	8
۵	LITE CONSTRUCTIONAL DETAILS	11

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

5 General Information

5.1 General Description of EUT

Product Name:	Bluetooth headset
Model No.:	2BOOM-HPBT290
Test sample(s) ID:	GTSL202106000187-1(Engineer sample)
2 2	GTSL202106000187-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	PCB Antenna
Antenna gain:	-0.58dBi
Power supply:	DC 3.7V/200mAh Form Battery and DC 5V From External Circuit
Adapter Information	Mode: CD122
(auxiliary test equipment	Input: AC100-240V, 50/60Hz, 500mA
supplied by test Lab)	Output: DC 5V, 2A

Operation I	Frequency eac	h of channel		8	E E	7 8	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz	68	4 6°

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383. FCC Designation Number:CN5029

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A, ISED Cab Identifier:CN0091

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Test software(FCCAssist) provided by manufacturer to Keep the EUT in cotransmitting mode and hopping mode					n continu	ntinuously	
Power level setup	Default		60	18	2	1	6	

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Rad	ated Emission:	0 0	9 9 9	69	6 6	D D
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	MP /	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Cond	ucted Emission		9 9 9	49	6 6	6 6
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	FARAD	EZ-EMC	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 25 2020	June. 24 2021
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 10 2020	July. 09 2021

RF C	onducted Test:		7 - 7	E ST	7 7	
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021
9	Power Sensor	Agilent	E9300A	GTS589	June. 25 2020	June. 24 2021
10	Spectrum analyzer	Agilent	N9020A	GTS591	June. 25 2020	June. 24 2021

Gene	General used equipment:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

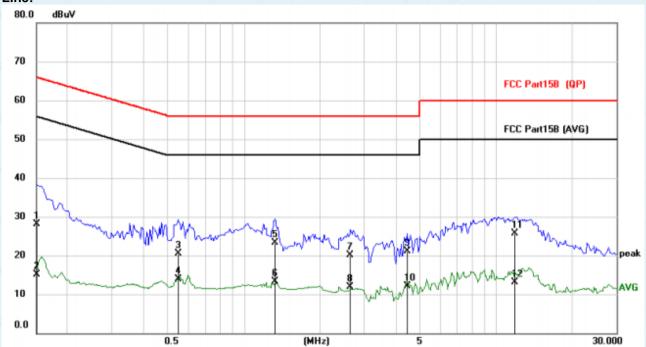
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB Antenna, the best case gain of the is -0.58dBi, reference to the appendix II for details

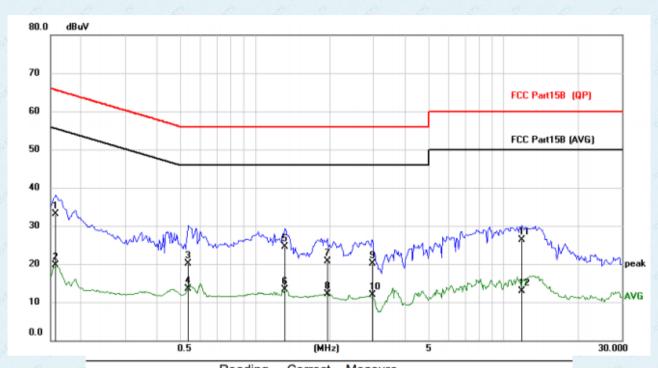
7.2 Conducted Emissions


Tes Tes Clas	et Requirement: et Method: et Frequency Range: ess / Severity: ceiver setup: eit:	FCC Part15 C Sec ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW	3	veep time=auto		
Tes Clas Rec	st Frequency Range: ss / Severity: ceiver setup:	150KHz to 30MHz Class B RBW=9KHz, VBW		veep time=auto		
Clas Red	ss / Severity:	Class B RBW=9KHz, VBW	S. C.	veep time=auto		
Red	ceiver setup:	RBW=9KHz, VBW	′=30KHz, Sw	veep time=auto		
	•	6 6	′=30KHz, Sv	veep time=auto	9 19	3.09
Lim	it:	-2				
			CALLY	Lim	it (dBuV)	0 0
		Frequency rang	je (MHz)	Quasi-peak		erage
		0.15-0.5	5	66 to 56*		to 46*
	Test setup:	0.5-5	2	56		46
		5-30	1 - 1 - 20	60		50
T.,			<u>ne logarithm</u> ference Plane	of the frequency.	(C	- 6° - 6°
Tes	st procedure:	Remark EUT Equipment Under Tes LISN: Line Impedence Stabili Test table height=0.8m 1. The E.U.T and line impedance 500hm/50uH cc	situitation Network simulators a stabilization pupling impe	Filter AC EMI Receiver Ac Ac Ac Ac Ac Ac Ac Ac Ac A	This provide suring equipn the main pow	es a nent. rer through a
		termination. (Ple photographs). 3. Both sides of A. interference. In positions of equ according to AN	ease refer to .C. line are co order to find uipment and JSI C63.10:2	the block diagram checked for maximu the maximum emi all of the interface of	um conducted ission, the rel cables must l	etup and d lative be changed
T	st Instruments:	Refer to section 6.	0 for details	0 0	9 20	- 10 X
I es	Test mode: Refer to section 5.2 for details					
	t mode:	Refer to section 5.	∠ for details	9 (9 ,9	269	19 19
Tes	et mode: et environment:	Temp.: 25 °C	787		Press.:	1012mbar
Tes Tes			787		Press.:	1012mbar

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

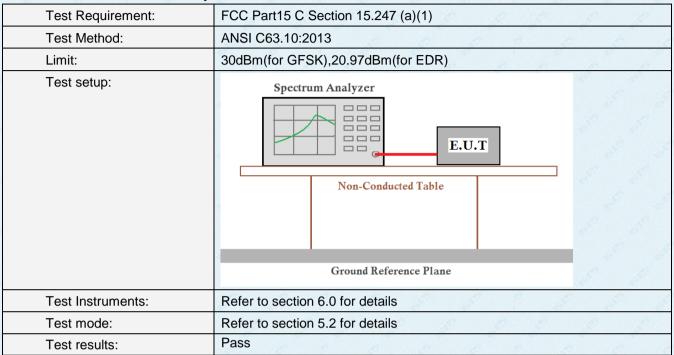
Line:



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	17.09	10.92	28.01	66.00	-37.99	QP
2		0.1500	4.25	10.92	15.17	56.00	-40.83	AVG
3		0.5478	9.64	10.92	20.56	56.00	-35.44	QP
4	*	0.5478	3.07	10.92	13.99	46.00	-32.01	AVG
5		1.3239	12.41	10.94	23.35	56.00	-32.65	QP
6		1.3239	2.28	10.94	13.22	46.00	-32.78	AVG
7		2.6499	9.03	11.00	20.03	56.00	-35.97	QP
8		2.6499	0.89	11.00	11.89	46.00	-34.11	AVG
9		4.4508	9.93	11.08	21.01	56.00	-34.99	QP
10		4.4508	1.07	11.08	12.15	46.00	-33.85	AVG
11		11.8608	14.31	11.39	25.70	60.00	-34.30	QP
12		11.8608	1.66	11.39	13.05	50.00	-36.95	AVG

Neutral:

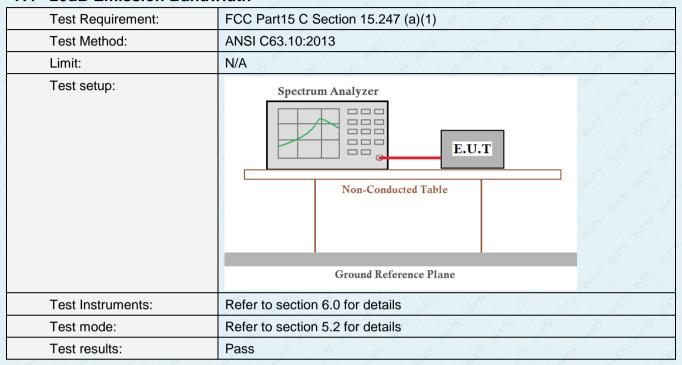
Report No.: GTSL202106000187F01


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1578	22.10	10.93	33.03	65.58	-32.55	QP
2		0.1578	8.75	10.93	19.68	55.58	-35.90	AVG
3		0.5361	9.19	10.92	20.11	56.00	-35.89	QP
4		0.5361	2.54	10.92	13.46	46.00	-32.54	AVG
5	*	1.3200	13.57	10.94	24.51	56.00	-31.49	QP
6		1.3200	2.42	10.94	13.36	46.00	-32.64	AVG
7		1.9518	9.76	10.96	20.72	56.00	-35.28	QP
8		1.9518	1.09	10.96	12.05	46.00	-33.95	AVG
9		2.9619	9.13	11.00	20.13	56.00	-35.87	QP
10		2.9619	0.88	11.00	11.88	46.00	-34.12	AVG
11		11.9154	14.82	11.40	26.22	60.00	-33.78	QP
12		11.9154	1.59	11.40	12.99	50.00	-37.01	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Los

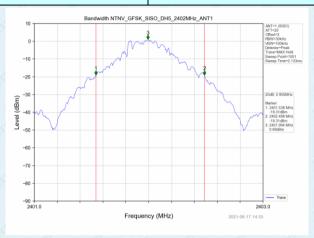
7.3 Conducted Peak Output Power



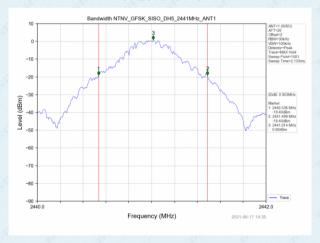
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	3.12		6 2
GFSK	Middle	3.16	30.00	Pass
	Highest	2.76		
	Lowest	3.82		
π/4-DQPSK	Middle	3.90	20.97	Pass
8 8	Highest	3.50		

7.4 20dB Emission Bandwidth


Measurement Data

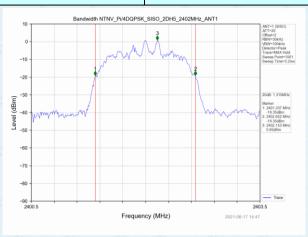
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result	
2 2 2	Lowest	0.950		
GFSK	Middle	0.953	Pass	
	Highest	0.945	9 6	
	Lowest	1.315		
π/4-DQPSK	Middle	1.349	Pass	
	Highest	1.265		

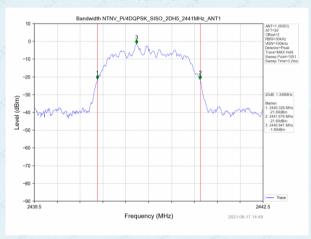


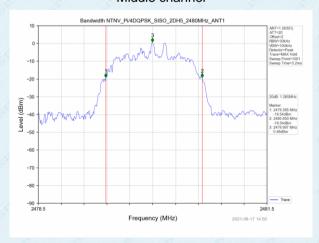
Test plot as follows: 20dB Emission Bandwidth

Test mode: GFSK mode

Lowest channel


Middle channel


Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel

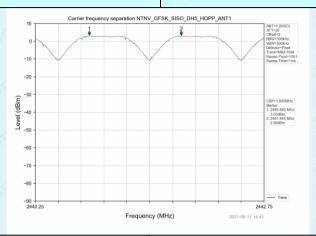
Middle channel

Highest channel

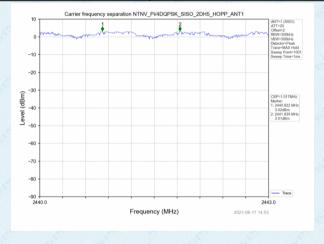
7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data


Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
	6 6		25KHz or	6° - 6° -
GFSK	Middle	1.005	2/3*20dB	Pass
	6 6		bandwidth	9 9
6			25KHz or	
π/4-DQPSK	Middle	1.017	2/3*20dB	Pass
	. 10		bandwidth	10 10

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



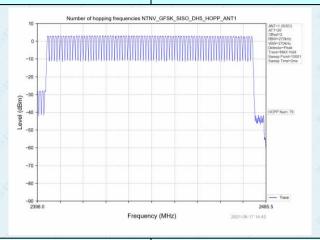
Test plot as follows:

Modulation mode: GFSK

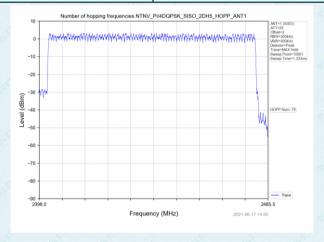
Test mode: $\pi/4$ -DQPSK

7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	≥15	Pass
π/4-DQPSK	79 8	8 8 6	Pass



Test plot as follows:

Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)	0 0
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	9 6
Test mode:	Refer to section 5.2 for details	6
Test results:	Pass	

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	0.378	120.204	400	Pass
2441MHz	DH3	1.632	177.888	400	Pass
2441MHz	DH5	2.881	178.622	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5

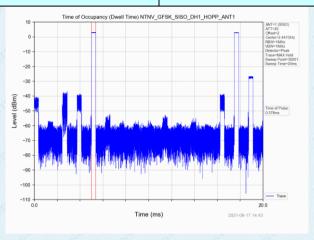
π/4-DQPSK mode:

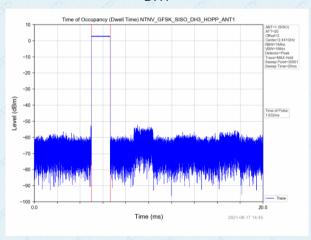
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	0.387	123.840	400	Pass
2441MHz	2DH3	1.640	165.640	400	Pass
2441MHz	2DH5	2.889	170.451	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

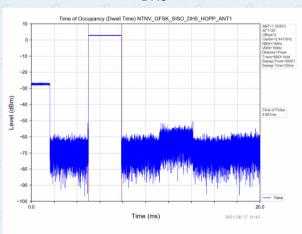
Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

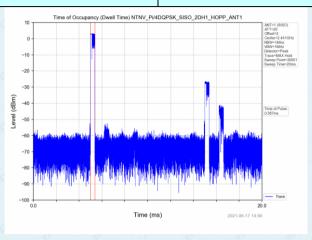

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5

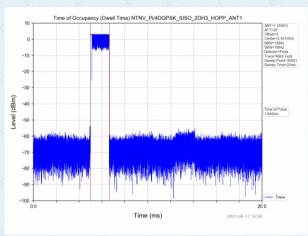

Test plot as follows:

GFSK mode:

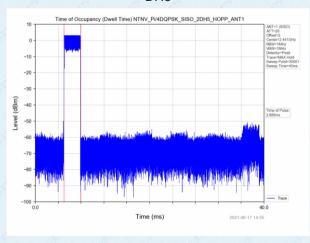

Test channel: 2441MHz

DH₁


DH3



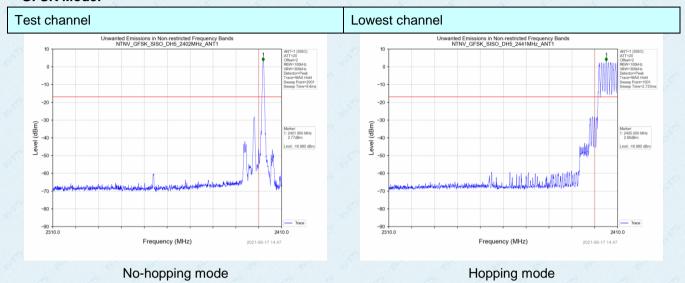
π/4-DQPSK mode:


Test channel: 2441MHz

DH1

DH3

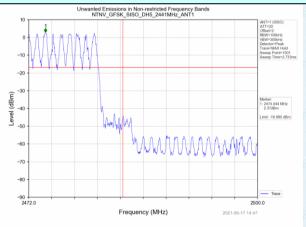
7.8 Band Edge


7.8.1 Conducted Emission Method

<u> </u>								
Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013							
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak							
Limit:	n any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Test plot as follows:

GFSK Mode:



Test channel:

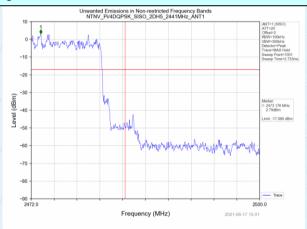
No-hopping mode

Highest channel

Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel Unwanted Emissions in Non-restricted Frequency Bands NTNV_PHIDDPSK_SISO_2DH9_2402Htz_ANT1 ATT-1880C One 2 O


Test channel:

Unwanted Emissions in Non-restricted Frequency Bands NTNV Fi40 OFSK_SISO_2016_2480MHz_ANT1 ATT-1 (850) Offise2 View-3004 by Win-3004 by W

No-hopping mode

No-hopping mode

Highest channel

Hopping mode

Hopping mode

7.8.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205				
Test Method:	ANSI C63.10:20		9	1			
Test Frequency Range:		ct bands were	tested, only	the worst	band's (2310MHz to		
Test site:	Measurement D	istance: 3m	6 6		6 6		
Receiver setup:	Frequency Detector RBW VBW Remark						
	Above 1GHz	Peak Value					
	Above IGHZ	Peak	1MHz	10Hz	Average Value		
Limit:	Freque	ency	Limit (dBuV/	m @3m)	Remark		
	Above 1	GHz	54.0 74.0	V-/	Average Value Peak Value		
	Tum Table <150cm >4	EUT+	Test Antenna-	emplifier-			
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, white tower. 3. The antenna ground to determine the horizontal and measurement 4. For each sus and then the and the rotal maximum reasonable to the test-recesor Bandwidth with 6. If the emission limit specified EUT would be margin would service to the test-recesor beautiful to the t	s meter cambe e position of the s set 3 meters ch was mounted height is varied termine the maded vertical polar at. spected emission antenna was to table was turned ading. seiver system word ith Maximum Hon level of the led, then testing	ar. The table was highest rad away from the don the top and from one maximum value rizations of the con, the EUT was set to Pearlold Mode. EUT in peak could be stop herwise the eone by one use the highest one by one use the highest of the highest one by one use the highest one by one use the highest one by the h	vas rotated liation. he interferer of a variab heter to found e of the field e antenna a was arrangents from 1 ngrees to 360 k Detect Fumode was apped and the missions the sing peak, of the control of	le-height antenna r meters above the d strength. Both are set to make the ed to its worst case neter to 4 meters d degrees to find the unction and Specified 10dB lower than the e peak values of the nat did not have 10dB quasi-peak or		
Test Instruments:	Refer to section	6.0 for details	10 /	9 9	2 2 3		
Test mode:	Refer to section	5.2 for details					
Test results:	Pass		6	6 6			

Measurement Data

Report No.: GTSL202106000187F01

Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB) (dBµV/m)		(dBµV/m)	(dB)	Туре	
2390	58.04	-5.68	52.36	74	-21.64	peak	
2390	44.09	-5.68	38.41	54	-15.59	AVG	

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	62.38	-5.68	56.7	74	-17.3	peak
2390	45.01	-5.68	39.33	54	-14.67	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

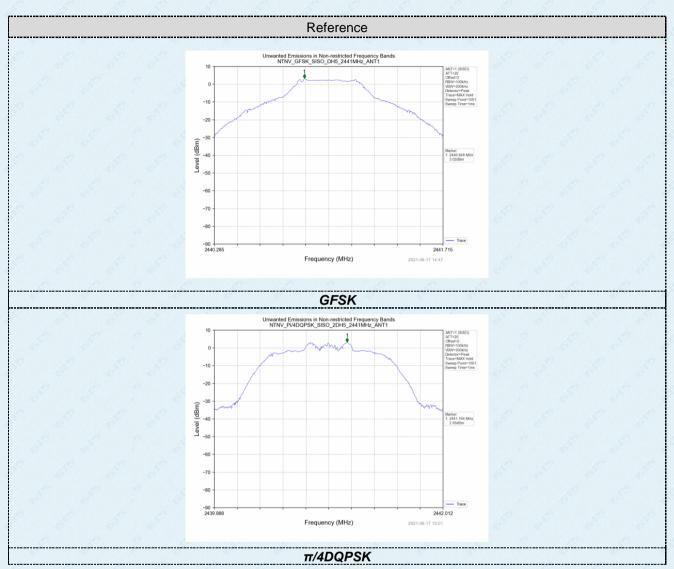
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.79	-5.85	51.94	74	-22.06	peak
2483.5	44.33	-5.85	38.48	54	-15.52	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

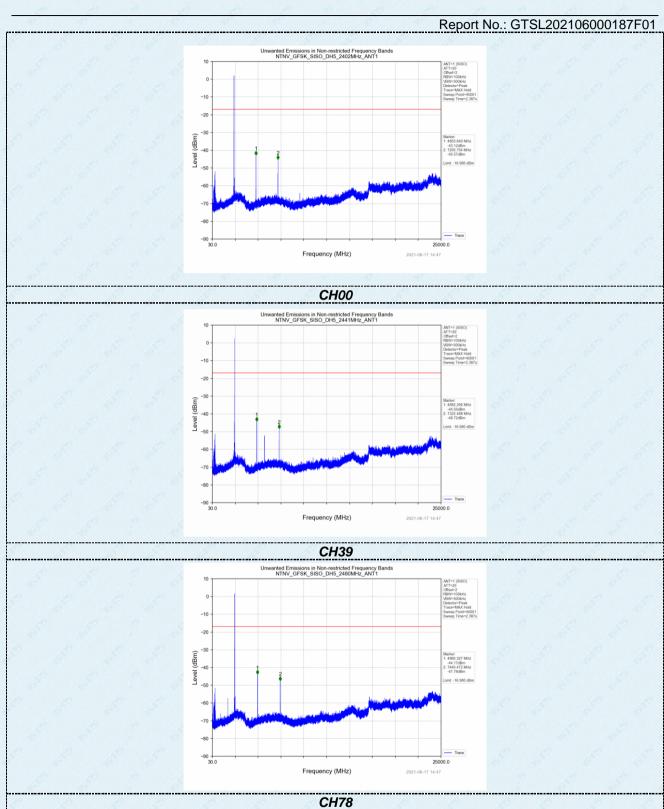
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	62.32	-5.85	56.47	74	-17.53	peak
2483.5	45.7	-5.85	39.85	54	-14.15	AVG

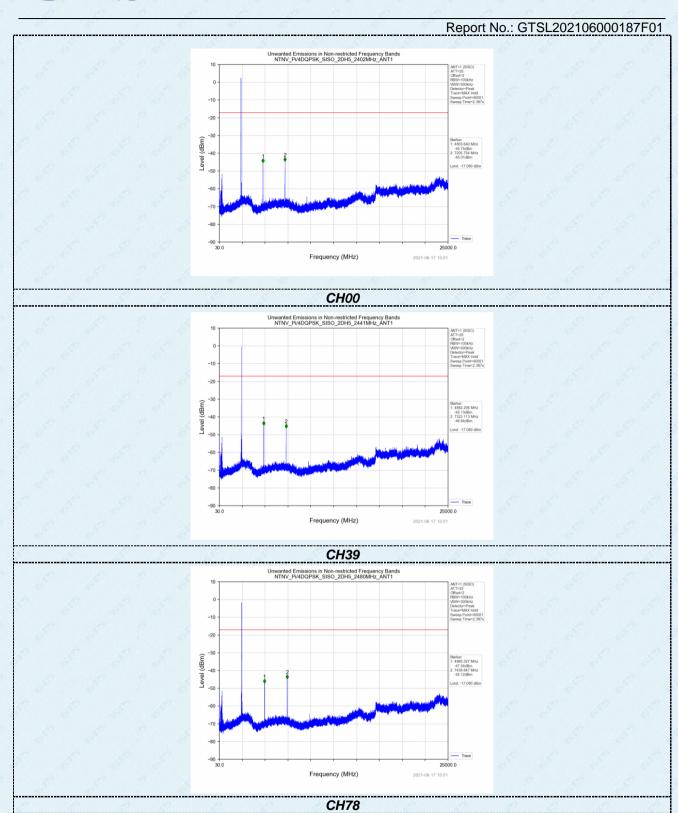
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.



7.9 Spurious Emission

7.9.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						


GFSK

π/4DQPSK

GTS

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209	19	d	1		2 2
Test Method:	ANSI C63.10:2013		5 B		, "		1	
Test Frequency Range:	9kHz to 25GHz	6	6	69		4	8	6 6
Test site:	Measurement Distar	nce: 3	3m	68	6	6		
Receiver setup:	Frequency	É	etector	RBV	٧	VBW	65	Value
	9KHz-150KHz	Qı	ıasi-peak	200H	·lz	600H	z	Quasi-peak
	150KHz-30MHz	ď	ıasi-peak	9KH	lz	30KH	Z	Quasi-peak
	30MHz-1GHz	Qu	ıasi-peak	120K	Hz	300KH	lz	Quasi-peak
	Above 1GHz		Peak	1MH	lz	3MHz	7	Peak
	Above IGHZ	6	Peak	1MH	lz	10Hz	400	Average
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m
	0.490MHz-1.705MHz		24000/F((KHz)		QP		30m
	1.705MHz-30MHz		30	30		QP 30m		30m
	30MHz-88MHz		100	48	65	QP		
	88MHz-216MHz	150	6	7	QP	S. Carrier		
	216MHz-960MH	200	100	3	QP		3m	
	960MHz-1GHz		500			QP	de la constant de la	JIII
	Above 1GHz		500		Average			
	Above 19112		5000		P	eak		8 6
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH:	z	e ^S	
	< 80cm >		< 3m > Test Ar m Table+	atenna Im				

Report No.: GTSL202106000187F01 For radiated emissions from 30MHz to1GHz 4m > EUT-Tum Table Receiver. Preamplifier. For radiated emissions above 1GHz Test Antenna-< 1m ... 4m > EUT. Turn Table <150cm> Receiver Preamplifier-Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

Global United Technology Services Co., Ltd.

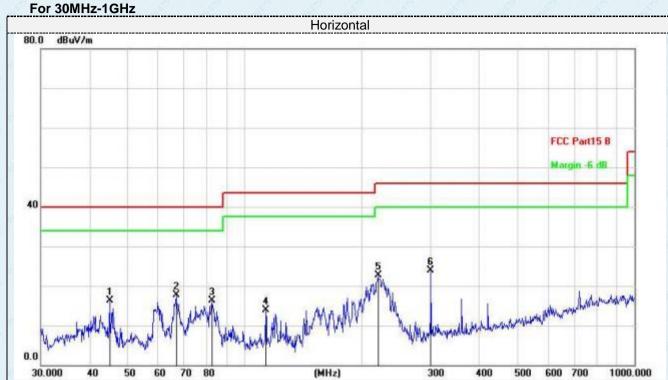
No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

	Report No.: GTSL202106000187F01					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V,	60Hz		e de la companya della companya della companya de la companya della companya dell		8 8
Test results:	Pass	10 10	19	10 1		0 0

Measurement data:

Remarks:

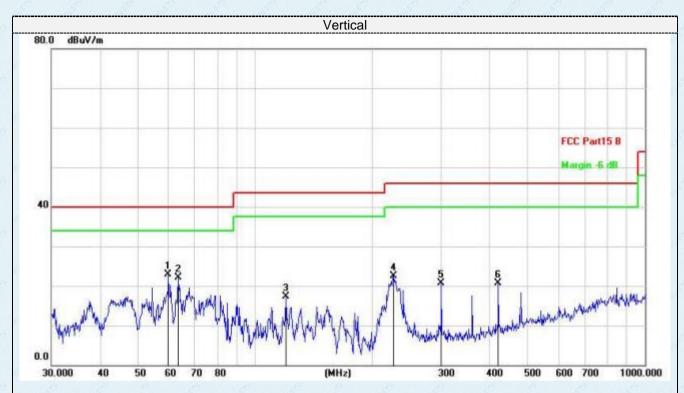
- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

GTS


Report No.: GTSL202106000187F01

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		45.0583	34.16	-17.89	16.27	40.00	-23.73	QP
2		66.7325	37.21	-19.55	17.66	40.00	-22.34	QP
3		82.3588	37.14	-20.93	16.21	40.00	-23.79	QP
4		113.3163	34.09	-20.11	13.98	43.50	-29.52	QP
5		219.8449	42.01	-19.40	22.61	46.00	-23.39	QP
6	*	300.3672	42.23	-18.28	23.95	46.00	-22.05	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	59.8588	41.64	-18.75	22.89	40.00	-17.11	QP
2		63.5356	41.19	-19.16	22.03	40.00	-17.97	QP
3		119.8556	37.21	-19.91	17.30	43.50	-26.20	QP
4		226.8936	42.01	-19.46	22.55	46.00	-23.45	QP
5		300.3672	39.07	-18.27	20.80	46.00	-25.20	QP
6		420.5803	37.29	-16.67	20.62	46.00	-25.38	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	6 6
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	61.28	-3.61	57.67	74	-16.33	peak
4804	46.28	-3.61	42.67	54	-11.33	AVG
7206	53.38	-0.85	52.53	74	-21.47	peak
7206	42.01	-0.85	41.16	54	-12.84	AVG
e <u></u> e	8 _ 8	<u> </u>	2 <u>2.</u>	<u>£</u> 6	<u> </u>	\$ <u></u> 6
<u> </u>	? <u>&</u>	8 _8	2	8 8	? <u></u> 8	<u> 4</u> 2

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Y
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	62.33	-3.61	58.72	74	-15.28	peak
4804	45.72	-3.61	42.11	54	-11.89	AVG
7206	55.82	-0.85	54.97	74	-19.03	peak
7206	45.29	-0.85	44.44	54	-9.56	AVG
	,	, e , ,			g 3	
				<i>-</i>		8

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotooto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detecto Type
4882	62.31	-3.49	58.82	74	-15.18	peak
4882	45.92	-3.49	42.43	54	-11.57	AVG
7326	57.80	-0.8	57	74	-17.00	peak
7326	45.95	-0.8	45.15	54	-8.85	AVG
42	2 _2	<u> 8 - 8 </u>	2	8-8	2- 8	82
0 0	2-0	<u> </u>	2 2	2 <u>-1</u> 2	g <u></u> g	Ø

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	8
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	60.35	-3.49	56.86	74	-17.14	peak
4882	45.71	-3.49	42.22	54	-11.78	AVG
7326	55.52	-0.80	54.72	74	-19.28	peak
7326	40.85	-0.8	40.05	54	-13.95	AVG
4	<u> </u>	8 <u></u> 8	? <u></u> &	\$ _ \$	1 _ B	4
£ _ £	e _ e	<u> </u>	9 <u>4</u> 6	1 <u>2</u>	2 <u>2</u> 2	£ _ &
20	9 9	6 6	9 9	20	9 2	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

CH High (2480MHz)

Report No.: GTSL202106000187F01

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	£ 6
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	63.21	-3.41	59.8	74	-14.2	peak
4960	45.58	-3.41	42.17	54	-11.83	AVG
7440	54.25	-0.72	53.53	74	-20.47	peak
7440	42.61	-0.8	41.81	54	-12.19	AVG
8 <u> </u>	8 8	<u> </u>				£ 4
<u>£</u>	<u> </u>	e _ e	7 _ 8	8 <u> </u>	1 _ 6	<u> </u>

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

4	Matan Dan English	_6	6	6		68
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	61.25	-3.41	57.84	74	-16.16	peak
4960	45.82	-3.41	42.411	54	-11.589	AVG
7440	55.28	-0.72	54.56	74	-19.44	peak
7440	42.59	-0.80	41.79	54	-12.21	AVG
<u></u> , 6	~ ~	<u> </u>		<u> </u>		
<u> </u>	<u> </u>	4 <u> </u>		<i>-</i>		- 4

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark.

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----