

element

Paycom Software, Inc.

PMF-002LP Microfence Bluetooth Low Energy Beacon

FCC 15.247:2022

RSS-247 Issue 2:2017

Bluetooth LE Radio

Report: PAYC0009.1 Rev. 2, Issue Date: October 24, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: September 27, 2022

Paycom Software, Inc.

EUT: PMF-002LP Microfence Bluetooth Low Energy Beacon

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2022	ANSI C63.10:2013, FCC KDB 558074 v05r02:2019
RSS-247 Issue 2:2017, RSS-Gen Issue 5:2018+A1:2019+A2:2021	ANSI C63.10:2013

Results

Test Description	Result	FCC Section(s)	RSS Section(s)	ANSI C63.10 Section(s)	Comments
Powerline Conducted Emissions	Pass	15.207	RSS-Gen 8.8	6.2	
Occupied Bandwidth (99%)	N/A	KDB 558074 - 2.1	RSS-Gen 6.7	6.9.3	
Duty Cycle	N/A	KDB 558074 - 6.0	RSS-Gen 3.2	11.6	
DTS Bandwidth (6 dB)	Pass	15.247(a)(2), KDB 558074 - 8.2	RSS-247 5.2(a)	11.8.2	
Output Power	Pass	15.247(b)(3), KDB 558074 - 8.3.1	RSS-247 5.4(d, f), RSS-Gen 6.12	11.9.1.1	
Equivalent Isotropic Radiated Power	Pass	15.247(b)(3), KDB 558074 - 8.3.1	RSS-247 5.4(d, f), RSS-Gen 6.12	11.9.1.1	
Power Spectral Density	Pass	15.247(e), KDB 558074 -8.4	RSS-247 5.2(b)	11.10.2	
Band Edge Compliance	Pass	15.247(d), KDB 558074 -8.5	RSS-247 5.5	11.11	
Spurious Conducted Emissions	Pass	15.247(d), KDB 558074 -8.5	RSS-247 5.5	11.11	
Spurious Radiated Emissions	Pass	15.247(d), KDB 558074 - 8.6, 8.7	RSS-247 5.5, RSS-Gen 6.13, 8.10	11.12.1, 11.13.2, 6.5, 6.6	

Deviations From Test Standards

None

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

CERTIFICATE OF TEST

Approved By:

A handwritten signature in blue ink, appearing to read 'Adam Bruno'.

Adam Bruno, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Corrected EUT name.	2022-10-20	1, 2, 11, 13
	Updated last date of test.	2022-10-20	2, 11, 13
	Updated power settings and antenna table.	2022-10-20	12
	Corrected calibration due date.	2022-10-20	15
	Updated test description.	2022-10-20	51
02	Updated the Occupied Bandwidth (99%) and Duty Cycle result to N/A, as there is no pass/fail criteria for these tests.	2022-10-24	2
	Updated power settings and antenna table.	2022-10-24	12
	Updated test description in Spurious Radiated Emissions.	2022-10-24	51

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

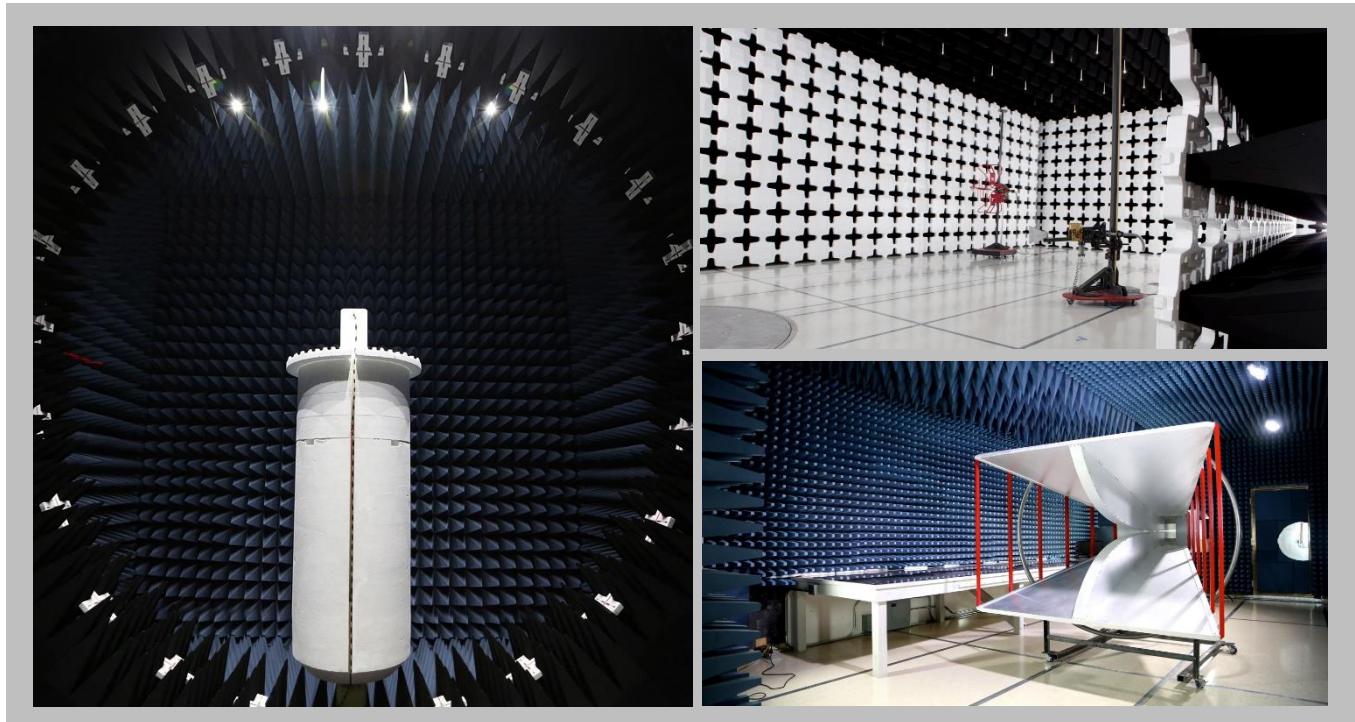
SCOPE

For details on the Scopes of our Accreditations, please visit:

[California](#)

[Minnesota](#)

[Oregon](#)


[Texas](#)

[Washington](#)

FACILITIES

California	Minnesota	Oregon	Texas	Washington
Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Labs NC01-05 19201 120th Ave NE Bothell, WA 98011 (425) 984-6600
A2LA				
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06
Innovation, Science and Economic Development Canada				
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1
BSMI				
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI				
A-0029	A-0109	A-0108	A-0201	A-0110
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA				
US0158	US0175	US0017	US0191	US0157

MEASUREMENT UNCERTAINTY

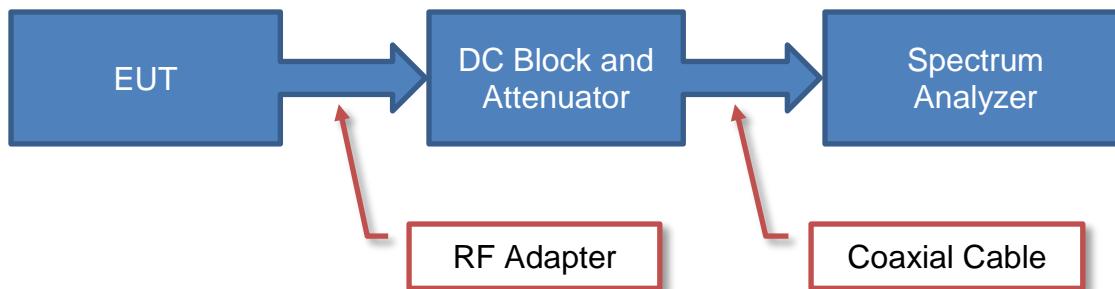
Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

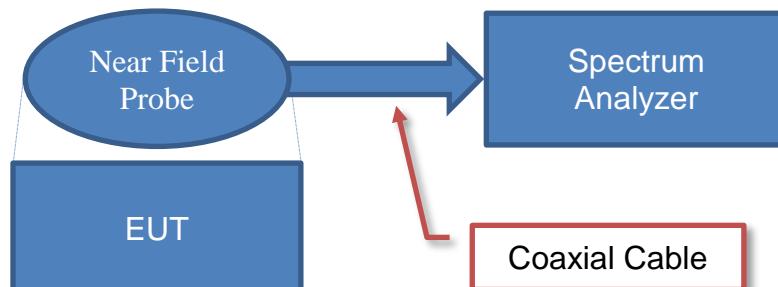
Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	3.1 dB	-3.1 dB


TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

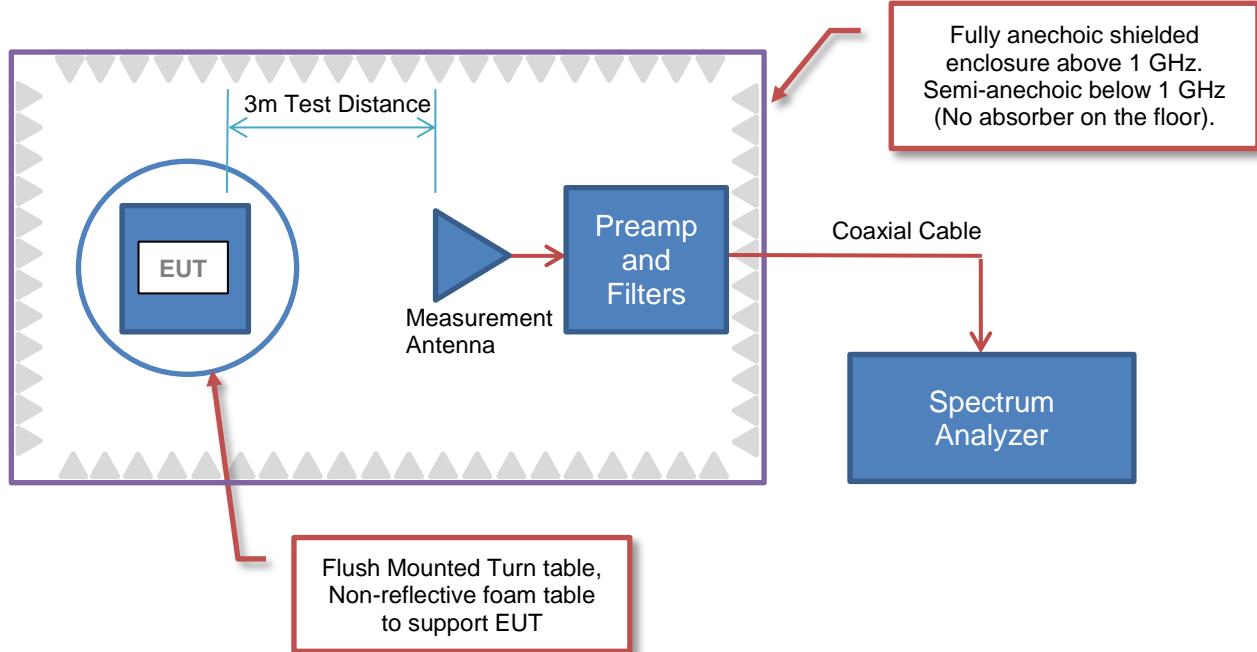
Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.


Antenna Port Conducted Measurements

Sample Calculation (logarithmic units)

$$\begin{array}{ccc} \text{Measured} & \text{Measured} & \text{Reference} \\ \text{Value} & = & \text{Level} \\ 71.2 & = & 42.6 \\ & & + \\ & & \text{Level} \\ & & \text{Offset} \\ & & 28.6 \end{array}$$

Near Field Test Fixture Measurements



Sample Calculation (logarithmic units)

$$\begin{array}{ccc} \text{Measured} & \text{Measured} & \text{Reference} \\ \text{Value} & = & \text{Level} \\ 71.2 & = & 42.6 \\ & & + \\ & & \text{Level} \\ & & \text{Offset} \\ & & 28.6 \end{array}$$

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

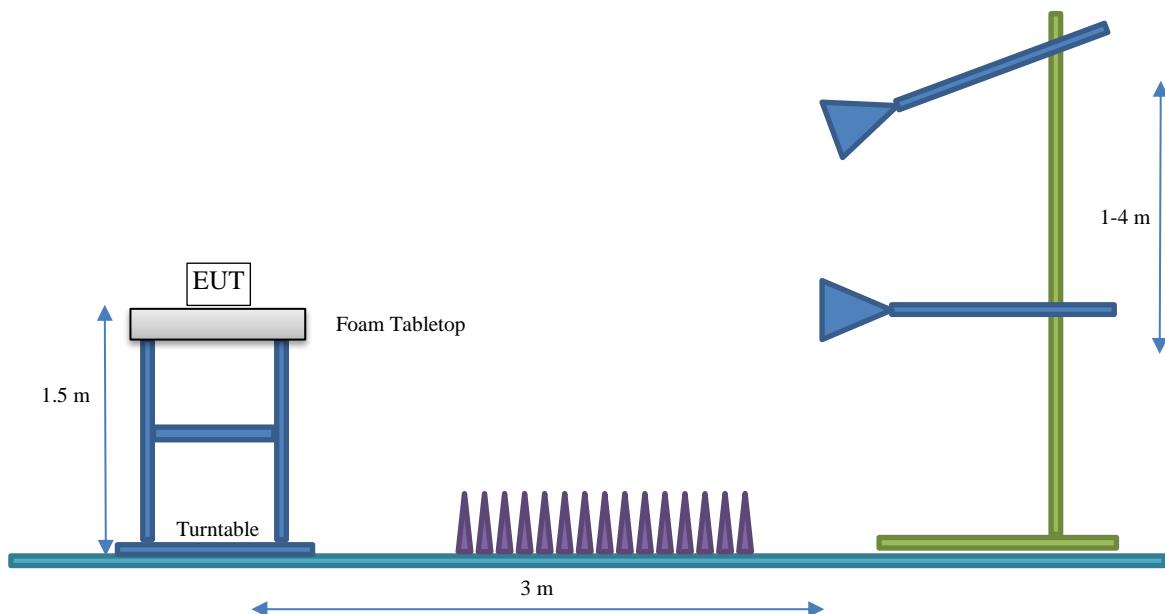
Sample Calculation (logarithmic units)

Radiated Emissions:

Factor						
Measured Level (Amplitude)	Antenna Factor	Cable Factor	Amplifier Gain	Distance Adjustment Factor	External Attenuation	Field Strength
42.6	28.6	+	3.1	-	40.8	0.0
						=
						33.5

Conducted Emissions:

Factor				
Measured Level (Amplitude)	Transducer Factor	Cable Factor	External Attenuation	Adjusted Level
26.7	0.3	+	0.1	20.0
				=
				47.1


Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)	10.0	+	Substitution Antenna Factor (dBi)	6.0	-	EIRP to ERP (if applicable)	2.15	=	Measured power (dBm ERP/EIRP)
									13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Paycom Software, Inc.
Address:	125 E. John Carpenter Fwy Suite 1000
City, State, Zip:	Las Colinas, TX 75062
Test Requested By:	Dennis English
EUT:	PMF-002LP Microfence Bluetooth Low Energy Beacon
First Date of Test:	August 29, 2022
Last Date of Test:	September 27, 2022
Receipt Date of Samples:	August 25, 2022
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Microfence is a geolocation clock-in technology. This is BL product based on TI's CC2640R2F BLE radio chip. It also has a Real time clock. The RF section is a copy of the TI launchXL-CC2640R@ evaluation board.

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247/RSS-247 requirements.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit at during normal operation.

ANTENNA GAIN (dBi)

Type	Provided by:	Frequency Range (MHz)	Gain (dBi)
Inverted F Antenna	Texas Instruments	2402-2480	3.3

The EUT was tested using the power settings provided by the manufacturer which were based upon:

Test software/firmware installed on EUT: 2021.06.27

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types / Data Rates	Type	Channel	Frequency (MHz)	Power Setting
GFSK, 1 Mbps	DTS	0 or 37	2402	5 dBm
		20 or 18	2442	5 dBm
		39	2480	5 dBm

CONFIGURATIONS

Configuration PAYC0009- 2

EUT					
Description		Manufacturer	Model/Part Number	Serial Number	
PMF-002LP Microfence BLE Beacon		Paycom Software, Inc.	921-1001-010	002	

Peripherals in Test Setup Boundary					
Description		Manufacturer	Model/Part Number	Serial Number	
USB Power Supply		VL27005853A3	Phihong USA Corporation	PSAA05A-05QL6	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable	Yes	1.4m	No	EUT	USB Power Supply

Configuration PAYC0009- 4

EUT					
Description		Manufacturer	Model/Part Number	Serial Number	
PMF-002LP Microfence BLE Beacon		Paycom Software, Inc.	921-1001-010	004	

Peripherals in Test Setup Boundary					
Description		Manufacturer	Model/Part Number	Serial Number	
USB Power Supply		VL27005853A3	Phihong USA Corporation	PSAA05A-05QL6	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable	Yes	1.4m	No	EUT	USB Power Supply

Configuration PAYC0009- 6

EUT					
Description		Manufacturer	Model/Part Number	Serial Number	
PMF-002LP Microfence BLE Beacon		Paycom Software, Inc.	921-1001-010	004	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-08-29	DTS Bandwidth (6 dB)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2022-08-29	Occupied Bandwidth (99%)	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2022-09-27	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2022-09-27	Equivalent Isotropic Radiated Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2022-09-27	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2022-08-29	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	2022-09-27	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
8	2022-09-27	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
9	2022-09-27	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

POWERLINE CONDUCTED EMISSIONS

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically, those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	2022-08-08	2023-08-08
Power Source/Analyzer	Hewlett Packard	6841A	THC	NCR	NCR
Receiver	Rohde & Schwarz	ESCI	ARF	2022-09-26	2023-09-26
Cable - Conducted Cable Assembly	Northwest EMC	TXA, HFC, TQU	TXAA	2022-01-24	2023-01-24

MEASUREMENT UNCERTAINTY

Description			
Expanded k=2	3.1 dB		-3.1 dB

CONFIGURATIONS INVESTIGATED

PAYC0009-4

MODES INVESTIGATED

BLE, 1 Mbps

POWERLINE CONDUCTED EMISSIONS

EUT:	PMF-002 Microfence BLE Beacon	Work Order:	PAYC0009
Serial Number:	004	Date:	2022-09-27
Customer:	Paycom Software, Inc.	Temperature:	20.3°C
Attendees:	Mike Pearson	Relative Humidity:	59.1%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Jarrod Brenden	Job Site:	TX01
Power:	110VAC/60Hz	Configuration:	PAYC0009-4

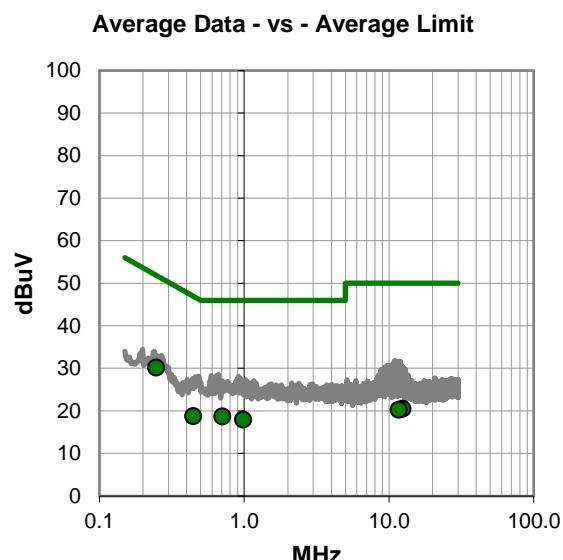
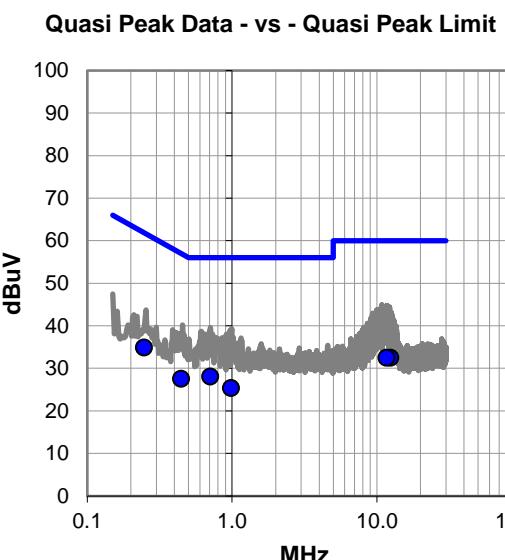
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013
RSS-Gen Issue 5:2018 +A1:2019 +A2:2021	ANSI C63.10:2013

TEST PARAMETERS

Run #:	2	Line:	High Line	Add. Ext. Attenuation (dB):	0
--------	---	-------	-----------	-----------------------------	---

COMMENTS



Continuous Tx, 100% Duty Cycle. Mid Channel, 2442 MHz.

EUT OPERATING MODES

BLE, 1 Mbps

DEVIATIONS FROM TEST STANDARD

None

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #2

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.246	14.3	20.6	34.9	61.9	-27.0
12.395	12.0	20.5	32.5	60.0	-27.5
11.680	12.0	20.5	32.5	60.0	-27.5
0.707	7.9	20.2	28.1	56.0	-27.9
0.445	7.4	20.2	27.6	57.0	-29.4
0.983	5.3	20.1	25.4	56.0	-30.6

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.246	9.6	20.6	30.2	51.9	-21.7
0.707	-1.5	20.2	18.7	46.0	-27.3
0.983	-2.1	20.1	18.0	46.0	-28.0
0.445	-1.4	20.2	18.8	47.0	-28.2
12.395	0.0	20.5	20.5	50.0	-29.5
11.680	-0.2	20.5	20.3	50.0	-29.7

CONCLUSION

Pass

Tested By

POWERLINE CONDUCTED EMISSIONS

EUT:	PMF-002 Microfence BLE Beacon	Work Order:	PAYC0009
Serial Number:	004	Date:	2022-09-27
Customer:	Paycom Software, Inc.	Temperature:	20.3°C
Attendees:	Mike Pearson	Relative Humidity:	59.1%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Jarrod Brenden	Job Site:	TX01
Power:	110VAC/60Hz	Configuration:	PAYC0009-4

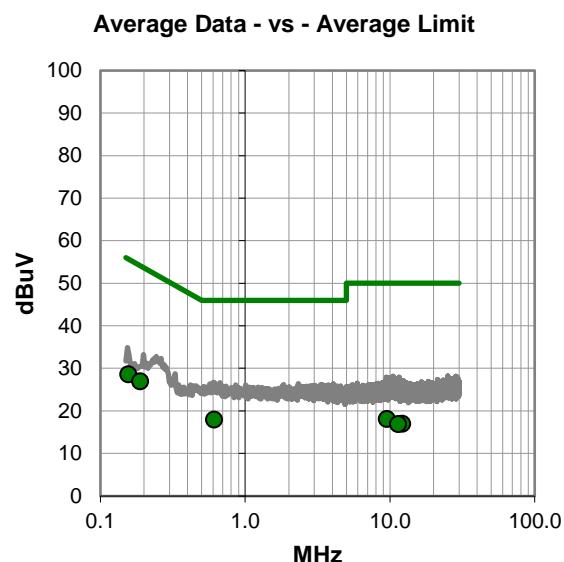
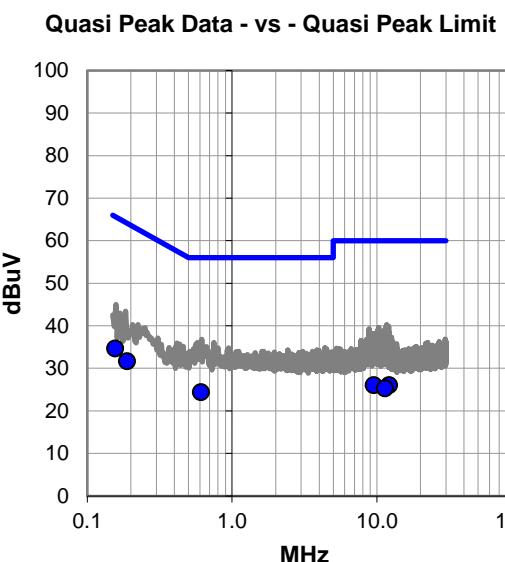
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2022	ANSI C63.10:2013
RSS-Gen Issue 5:2018 +A1:2019 +A2:2021	ANSI C63.10:2013

TEST PARAMETERS

Run #:	3	Line:	Neutral	Add. Ext. Attenuation (dB):	0
--------	---	-------	---------	-----------------------------	---

COMMENTS



Continuous Tx, 100% Duty Cycle. Mid Channel, 2442 MHz.

EUT OPERATING MODES

BLE, 1 Mbps

DEVIATIONS FROM TEST STANDARD

None

POWERLINE CONDUCTED EMISSIONS

RESULTS - Run #3

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.156	14.1	20.6	34.7	65.7	-31.0
0.609	4.2	20.2	24.4	56.0	-31.6
0.188	11.1	20.6	31.7	64.1	-32.4
9.488	5.8	20.3	26.1	60.0	-33.9
12.116	5.6	20.5	26.1	60.0	-33.9
11.378	4.8	20.5	25.3	60.0	-34.7

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
0.156	8.0	20.6	28.6	55.7	-27.1
0.188	6.4	20.6	27.0	54.1	-27.1
0.609	-2.2	20.2	18.0	46.0	-28.0
9.488	-2.2	20.3	18.1	50.0	-31.9
12.116	-3.5	20.5	17.0	50.0	-33.0
11.378	-3.6	20.5	16.9	50.0	-33.1

CONCLUSION

Pass

Tested By

OCCUPIED BANDWIDTH (99%)

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	2021-12-10	2022-12-10
Generator - Signal	Keysight	N5182B	TEV	2021-04-27	2024-04-27

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The 99% occupied bandwidth was measured with the EUT configured for continuous modulated operation.

Per ANSI C63.10:2013, 6.9.3, the spectrum analyzer was configured as follows:

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

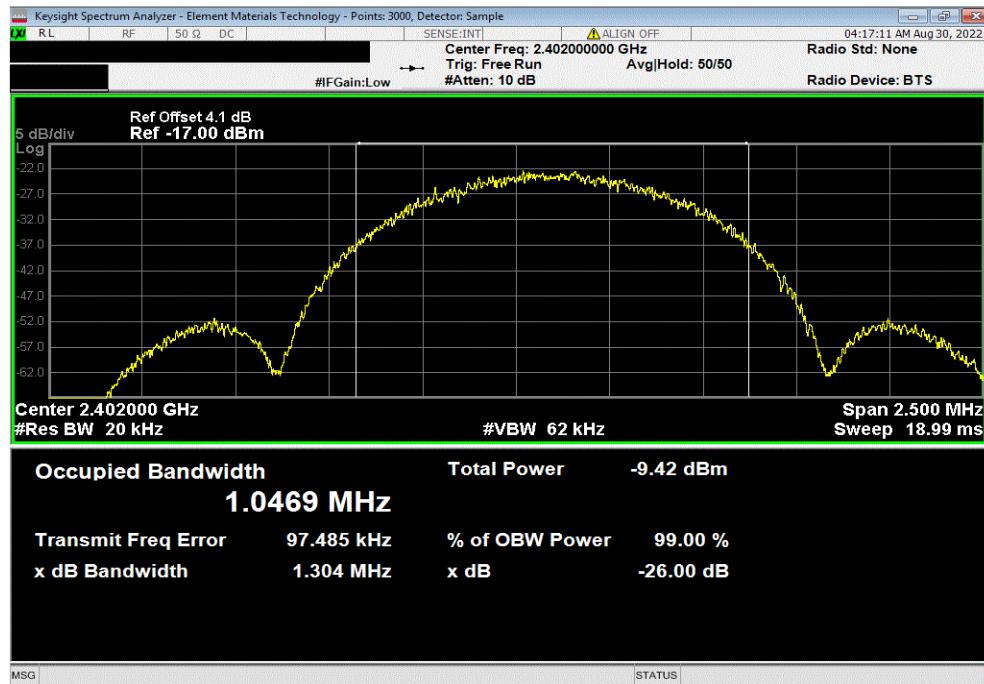
The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

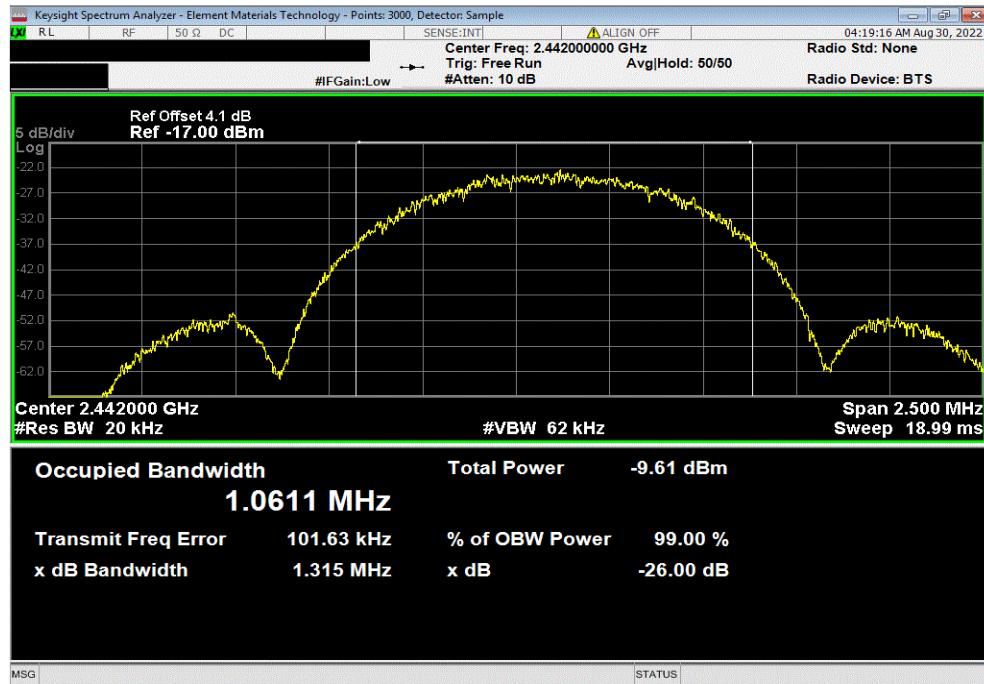
OCCUPIED BANDWIDTH (99%)

TbTx 2022.06.03.0

XMI 2022.02.07.0


EUT:	PMF-002 Microfence BLE Beacon		Work Order:	PAYC0009	
Serial Number:	002		Date:	29-Aug-22	
Customer:	Paycom Software, Inc.		Temperature:	21.3 °C	
Attendees:	Mike Pearson		Humidity:	56.4% RH	
Project:	None		Barometric Pres.:	1017 mbar	
Tested by:	Jarrod Brenden		Power:	110VAC/60Hz	
TEST SPECIFICATIONS			Test Method	ANSI C63.10:2013	
FCC 15.247:2022				ANSI C63.10:2013	
RSS-Gen Issue 5:2018+A1:2019+A2:2021					
COMMENTS					
Continuous Tx, 100% Duty Cycle.					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	2	 Signature			
			Value	Limit	Result
BLE/GFSK					
1 Mbps					
Low Channel, 2402 MHz			1.047 MHz	N/A	N/A
Mid Channel, 2442 MHz			1.061 MHz	N/A	N/A
High Channel, 2480 MHz			1.065 MHz	N/A	N/A

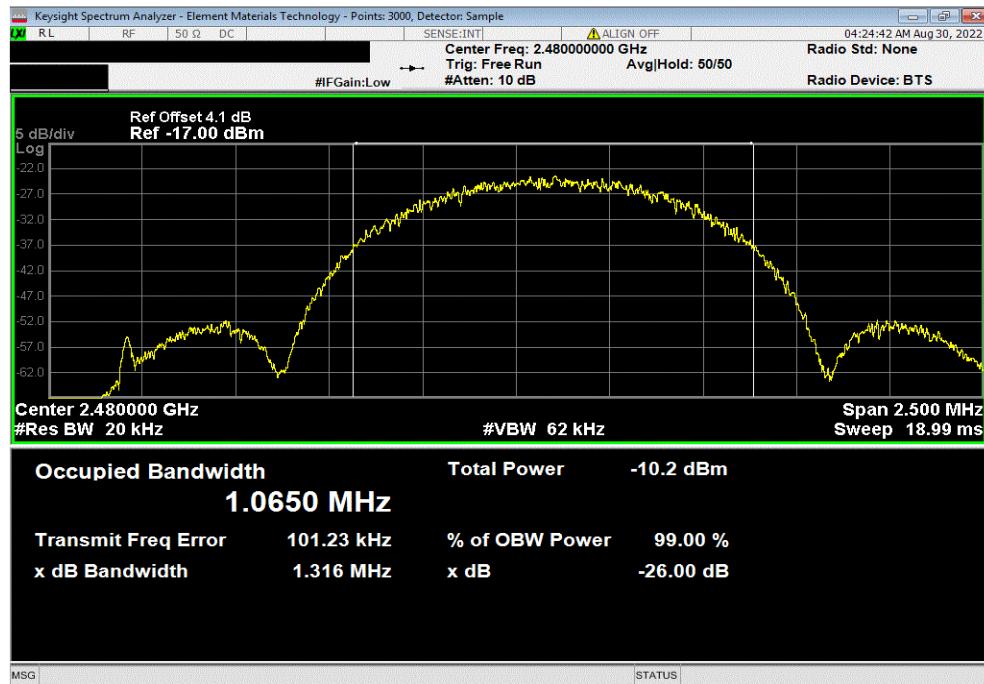
OCCUPIED BANDWIDTH (99%)



TbITx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, Low Channel, 2402 MHz			Value	Limit	Result
			1.047 MHz	N/A	N/A

BLE/GFSK, 1 Mbps, Mid Channel, 2442 MHz			Value	Limit	Result
			1.061 MHz	N/A	N/A


OCCUPIED BANDWIDTH (99%)

TbtTx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, High Channel, 2480 MHz

	Value	Limit	Result
	1.065 MHz	N/A	N/A

DUTY CYCLE

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	2021-12-10	2022-12-10
Generator - Signal	Keysight	N5182B	TEV	2021-04-27	2024-04-27

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The Duty Cycle of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The test software provided for operation in a fixed, single channel mode allows the EUT to operate continuously at 100% Duty Cycle.

DTS BANDWIDTH (6dB)

XMIT 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	2021-12-10	2022-12-10
Generator - Signal	Keysight	N5182B	TEV	2021-04-27	2024-04-27

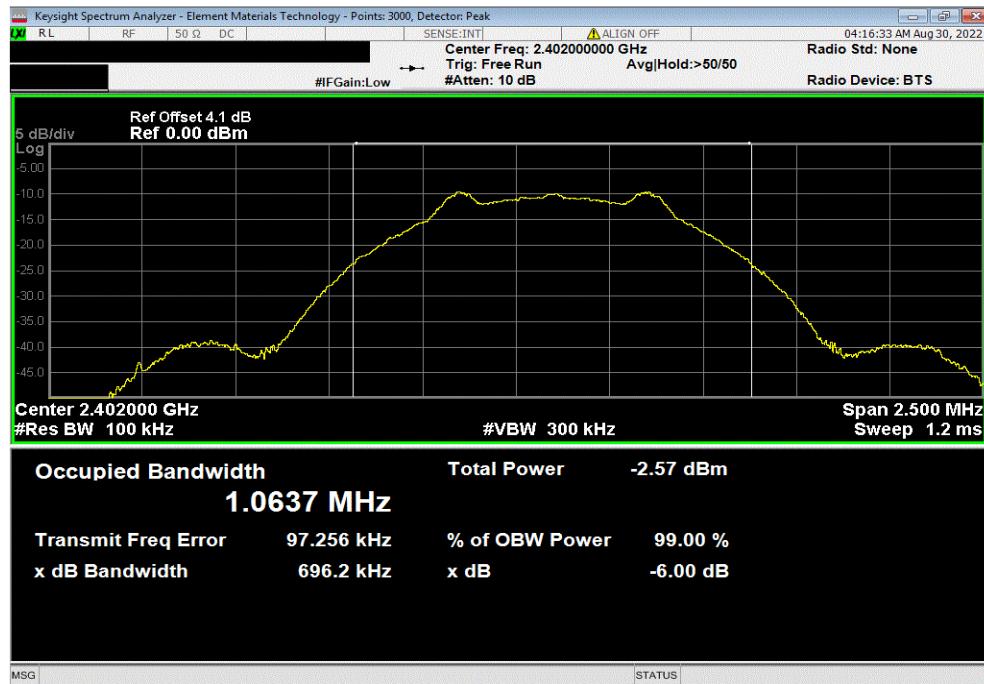
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

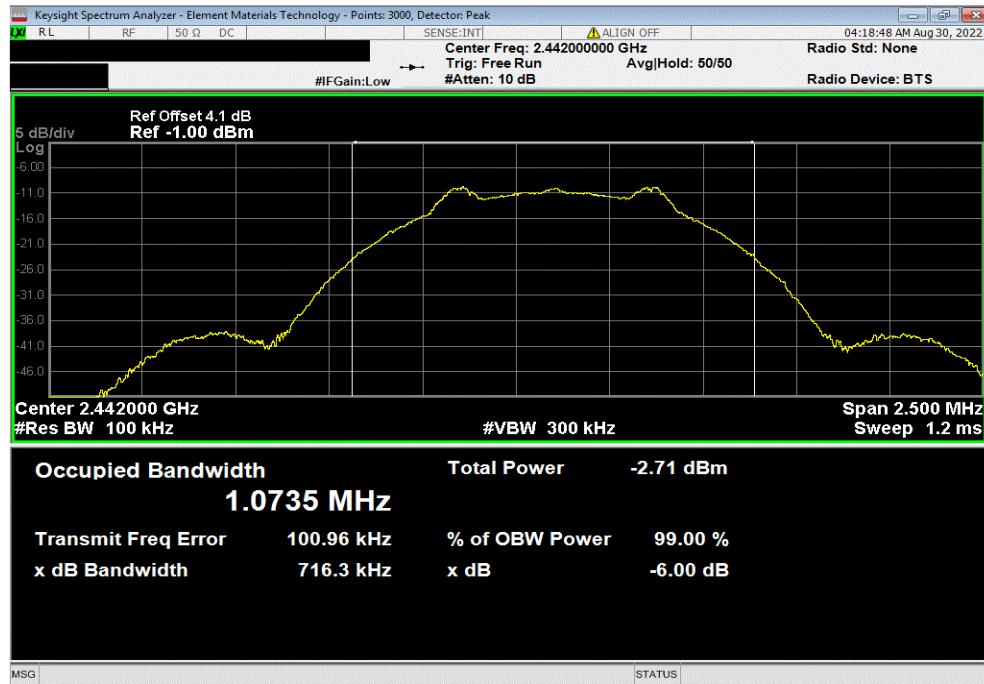
The EUT was set to the channels and modes listed in the datasheet.

The 6dB DTS bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

DTS BANDWIDTH (6dB)

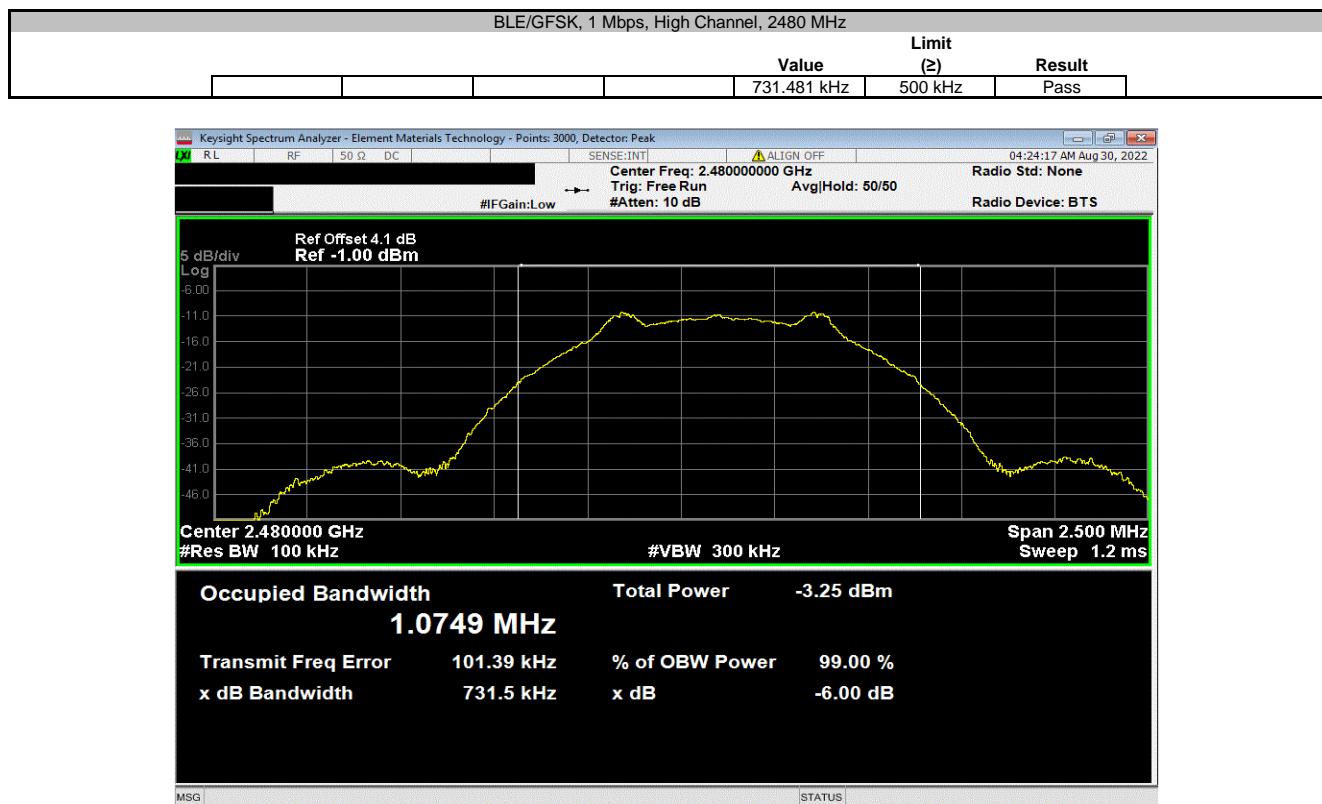

EUT: PMF-002 Microfence BLE Beacon		Work Order: PAYC0009			
Serial Number: 002		Date: 29-Aug-22			
Customer: Paycom Software, Inc.		Temperature: 20.7 °C			
Attendees: Mike Pearson		Humidity: 59.2% RH			
Project: None		Barometric Pres.: 1017 mbar			
Tested by: Jarrod Brenden	Power: 110VAC/60Hz	Job Site: TX07			
TEST SPECIFICATIONS					
FCC 15.247:2022		ANSI C63.10:2013			
RSS-247 Issue 2:2017		ANSI C63.10:2013			
COMMENTS					
Continuous Tx, 100% Duty Cycle.					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	2	Signature			
		Value	Limit (±)	Result	
BLE/GFSK		1 Mbps	696.173 kHz 716.323 kHz 731.481 kHz	500 kHz 500 kHz 500 kHz	Pass Pass Pass
Low Channel, 2402 MHz					
Mid Channel, 2442 MHz					
High Channel, 2480 MHz					

DTS BANDWIDTH (6dB)



TbTx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, Low Channel, 2402 MHz			Value	Limit (≥)	Result
			696.173 kHz	500 kHz	Pass


BLE/GFSK, 1 Mbps, Mid Channel, 2442 MHz			Value	Limit (≥)	Result
			716.323 kHz	500 kHz	Pass

DTS BANDWIDTH (6dB)

TbtTx 2022.06.03.0 XMit 2022.02.07.0

OUTPUT POWER

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Attenuator	Fairview Microwave	SA4018-20	TYW	2022-03-01	2023-03-01
Cable	Micro-Coax	D150A-1-0720-200	TXG	2021-12-10	2022-12-10
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

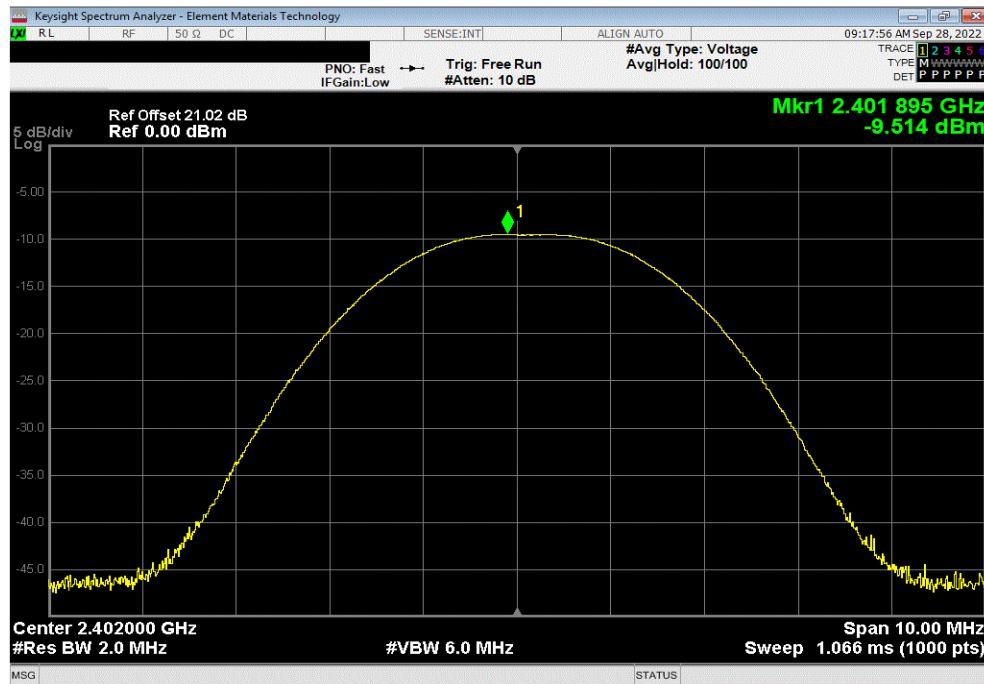
The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

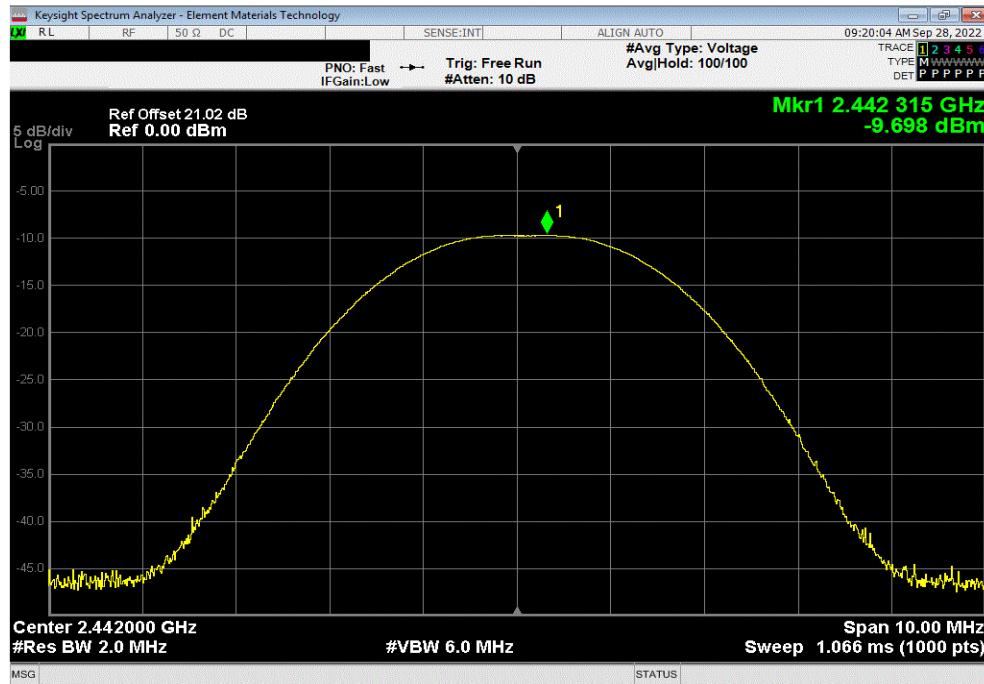
The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

OUTPUT POWER

TbTx 2022.06.03.0 XMII 2022.02.07.0


EUT:	PMF-002 Microfence BLE Beacon		Work Order:	PAYC0009	
Serial Number:	002		Date:	27-Sep-22	
Customer:	Paycom Software, Inc.		Temperature:	21.8 °C	
Attendees:	Mike Pearson		Humidity:	37.3% RH	
Project:	None		Barometric Pres.:	1024 mbar	
Tested by:	Jarrod Brenden		Power:	3VDC via Battery	
TEST SPECIFICATIONS			Test Method	Job Site: TX07	
FCC 15.247:2022			ANSI C63.10:2013		
RSS-247 Issue 2:2017			ANSI C63.10:2013		
COMMENTS					
Continuous Tx, 100% Duty Cycle.					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	2	Signature			
			Out Pwr (dBm)	Limit (dBm)	Result
BLE/GFSK					
1 Mbps					
Low Channel, 2402 MHz			-9.514	30	Pass
Mid Channel, 2442 MHz			-9.698	30	Pass
High Channel, 2480 MHz			-10.002	30	Pass

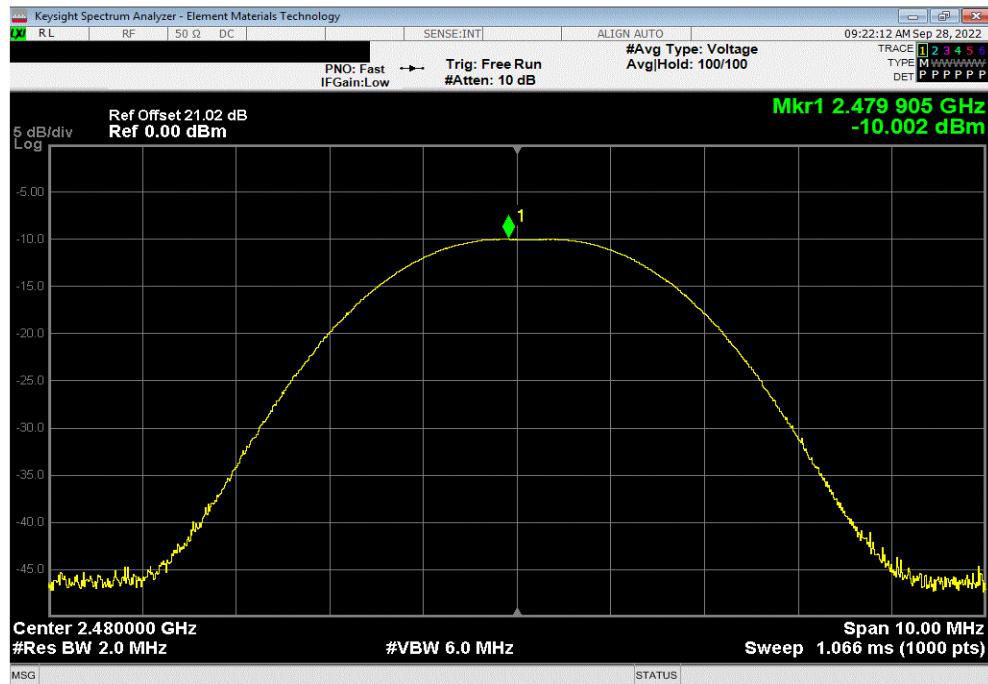
OUTPUT POWER



TbITx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, Low Channel, 2402 MHz			
	Out Pwr (dBm)	Limit (dBm)	Result
	-9.514	30	Pass

BLE/GFSK, 1 Mbps, Mid Channel, 2442 MHz			
	Out Pwr (dBm)	Limit (dBm)	Result
	-9.698	30	Pass



OUTPUT POWER

TbtTx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, High Channel, 2480 MHz			
	Out Pwr (dBm)	Limit (dBm)	Result
	-10.002	30	Pass

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Attenuator	Fairview Microwave	SA4018-20	TYW	2022-03-01	2023-03-01
Cable	Micro-Coax	D150A-1-0720-200	TXG	2021-12-10	2022-12-10
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

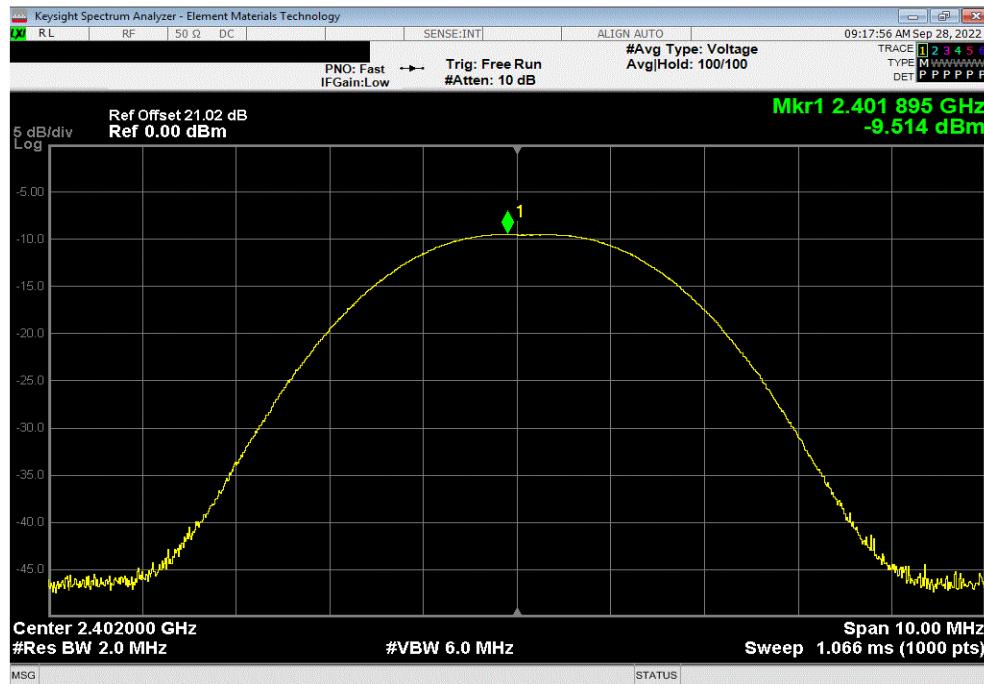
Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

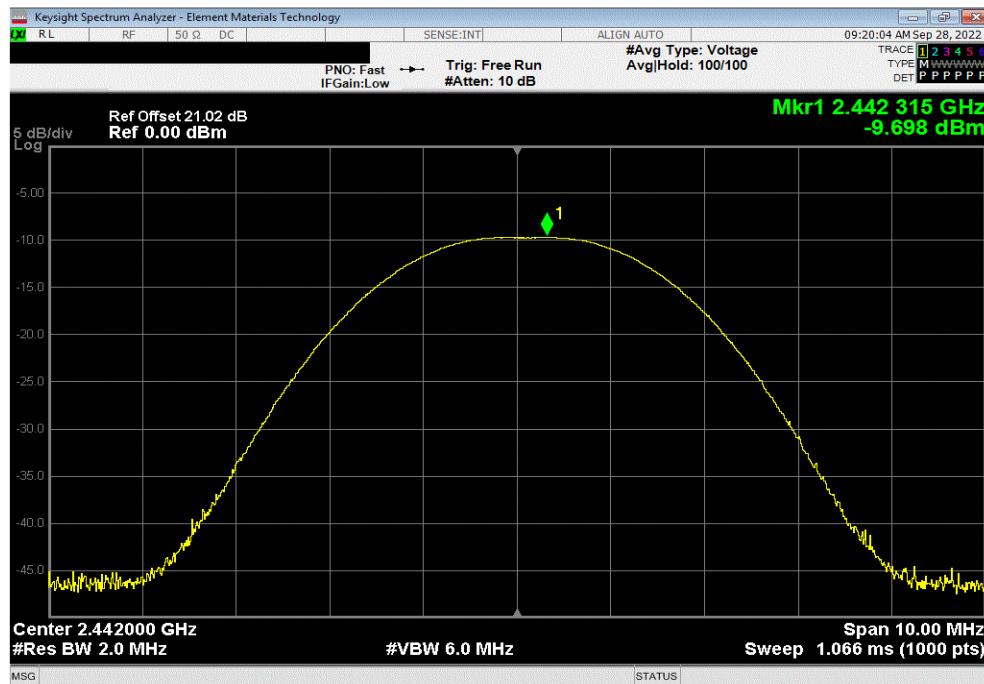
Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

TbTx 2022.06.03.0 XMII 2022.02.07.0


EUT:	PMF-002 Microfence BLE Beacon	Work Order:	PAYC0009			
Serial Number:	002	Date:	27-Sep-22			
Customer:	Paycom Software, Inc.	Temperature:	20.5 °C			
Attendees:	Mike Pearson	Humidity:	39.6% RH			
Project:	None	Barometric Pres.:	1024 mbar			
Tested by:	Jarrod Brenden	Job Site:	TX07			
TEST SPECIFICATIONS		Power:	3VDC via Battery			
		Test Method:				
FCC 15.247:2022		ANSI C63.10:2013				
RSS-247 Issue 2:2017		ANSI C63.10:2013				
COMMENTS						
Continuous Tx, 100% Duty Cycle.						
DEVIATIONS FROM TEST STANDARD						
None						
Configuration #	2	Signature				
BLE/GFSK	1 Mbps	Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
	Low Channel, 2402 MHz	-9.514	3.3	-6.214	36	Pass
	Mid Channel, 2442 MHz	-9.698	3.3	-6.398	36	Pass
	High Channel, 2480 MHz	-10.002	3.3	-6.702	36	Pass

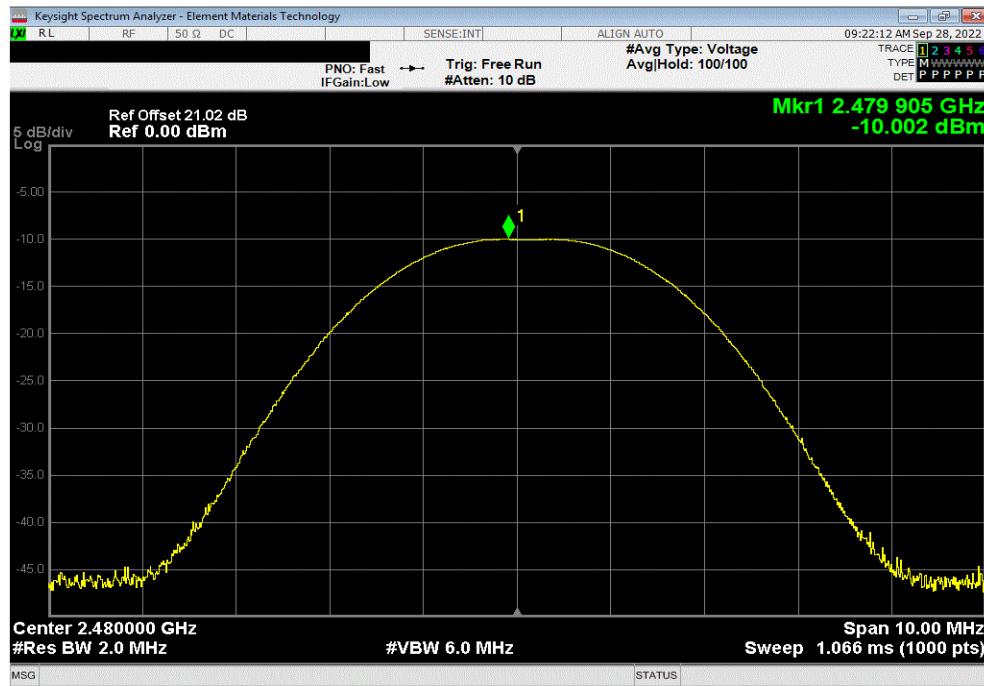
EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)



TbtTx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, Low Channel, 2402 MHz					
Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result	
-9.514	3.3	-6.214	36	Pass	

BLE/GFSK, 1 Mbps, Mid Channel, 2442 MHz					
Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result	
-9.698	3.3	-6.398	36	Pass	



EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

TbtTx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, High Channel, 2480 MHz					
Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result	
-10.002	3.3	-6.702	36	Pass	

POWER SPECTRAL DENSITY

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Attenuator	Fairview Microwave	SA4018-20	TYW	2022-03-01	2023-03-01
Cable	Micro-Coax	D150A-1-0720-200	TXG	2021-12-10	2022-12-10
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

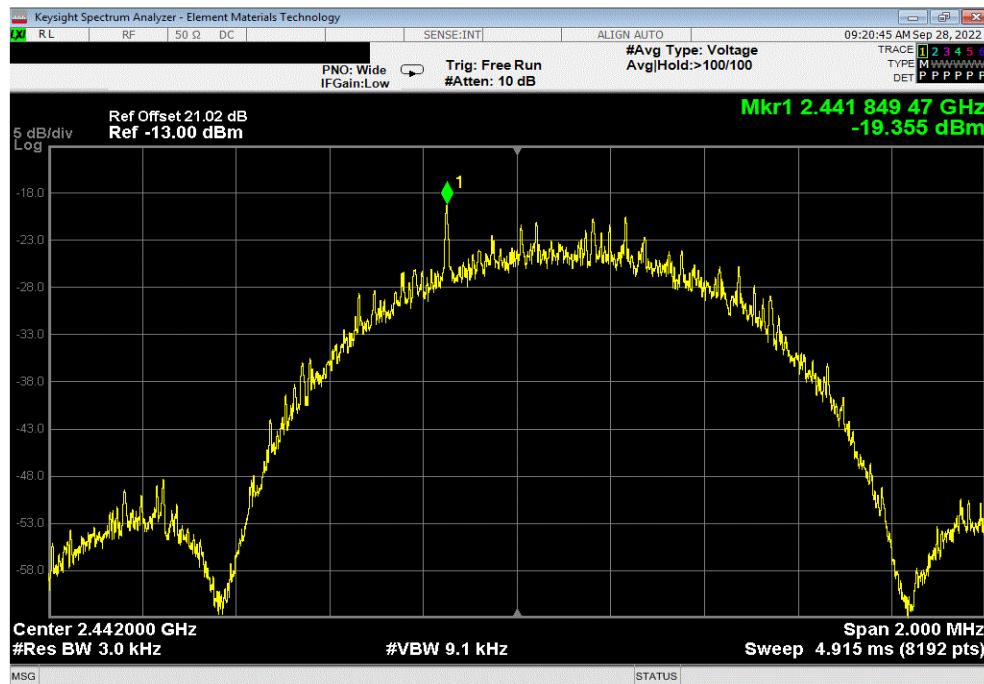
Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

POWER SPECTRAL DENSITY

TbTx 2022.06.03.0 XMII 2022.02.07.0


EUT:	PMF-002 Microfence BLE Beacon	Work Order:	PAYC0009	
Serial Number:	002	Date:	27-Sep-22	
Customer:	Paycom Software, Inc.	Temperature:	20.7 °C	
Attendees:	Mike Pearson	Humidity:	39.6% RH	
Project:	None	Barometric Pres.:	1024 mbar	
Tested by:	Jarrod Brenden	Job Site:	TX07	
TEST SPECIFICATIONS		Power:	3VDC via Battery	
FCC 15.247:2022		Test Method		
RSS-247 Issue 2:2017		ANSI C63.10:2013		
COMMENTS				
Continuous Tx, 100% Duty Cycle.				
DEVIATIONS FROM TEST STANDARD				
None				
Configuration #	2	Signature		
		Value dBm/3kHz	Limit < dBm/3kHz	Results
BLE/GFSK	1 Mbps			
	Low Channel, 2402 MHz	-19.202	8	Pass
	Mid Channel, 2442 MHz	-19.355	8	Pass
	High Channel, 2480 MHz	-19.614	8	Pass

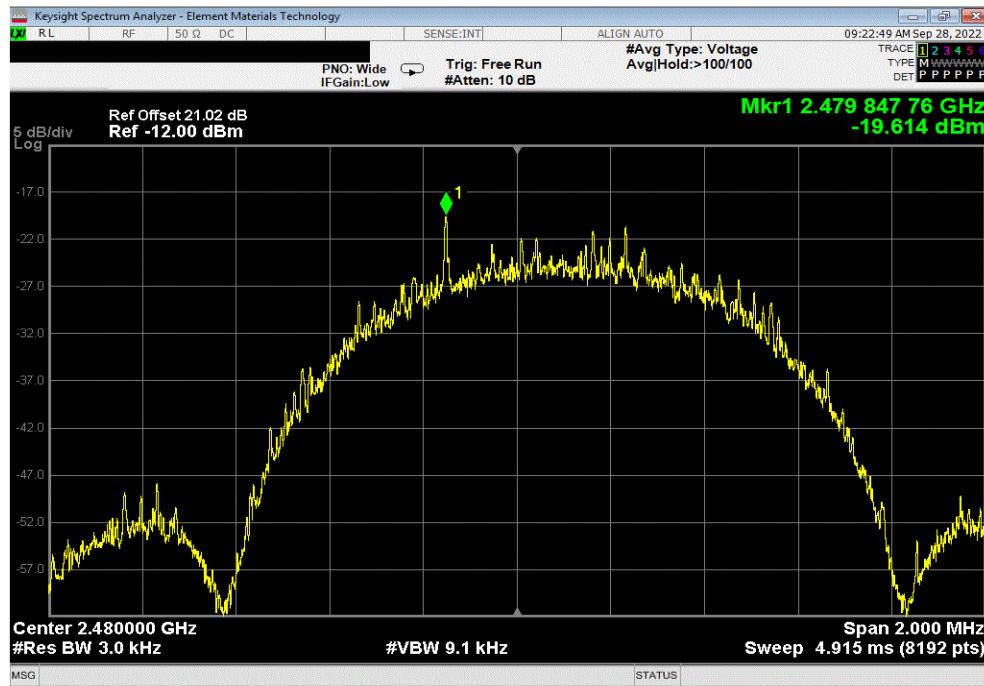
POWER SPECTRAL DENSITY



TbITx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, Low Channel, 2402 MHz				Value	Limit	Results
				dBm/3kHz	< dBm/3kHz	
				-19.202	8	Pass

BLE/GFSK, 1 Mbps, Mid Channel, 2442 MHz				Value	Limit	Results
				dBm/3kHz	< dBm/3kHz	
				-19.355	8	Pass



POWER SPECTRAL DENSITY

TbtTx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, High Channel, 2480 MHz				Value	Limit	Results
				dBm/3kHz	< dBm/3kHz	
				-19.614	8	Pass

BAND EDGE COMPLIANCE

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Cable	Micro-Coax	UFD150A-1-0720-200200	TXG	2021-12-10	2022-12-10
Generator - Signal	Keysight	N5182B	TEV	2021-04-27	2024-04-27

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

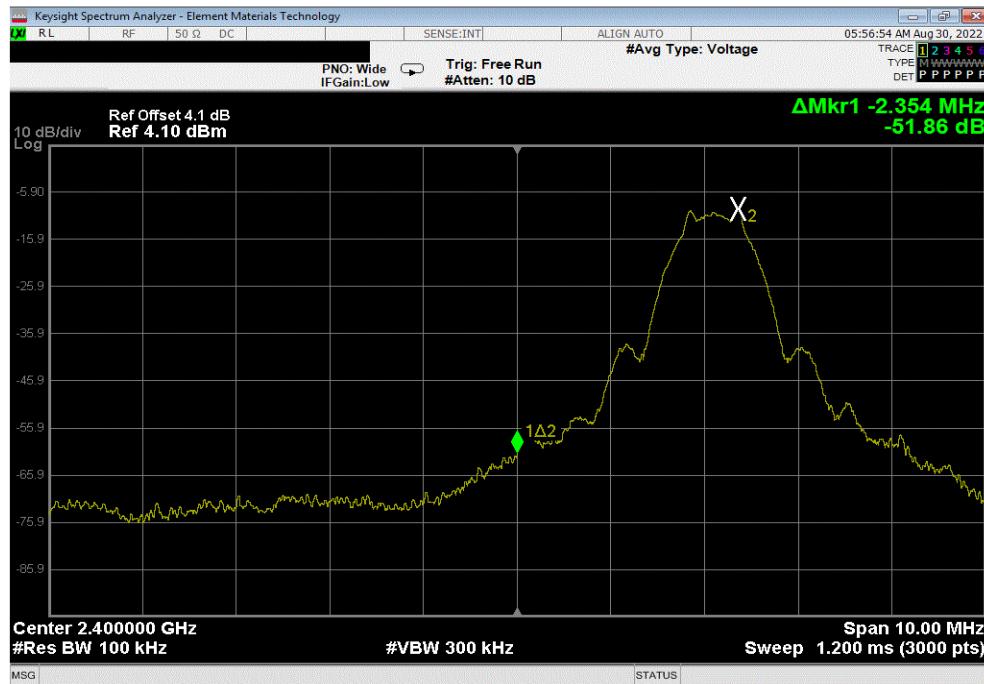
The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

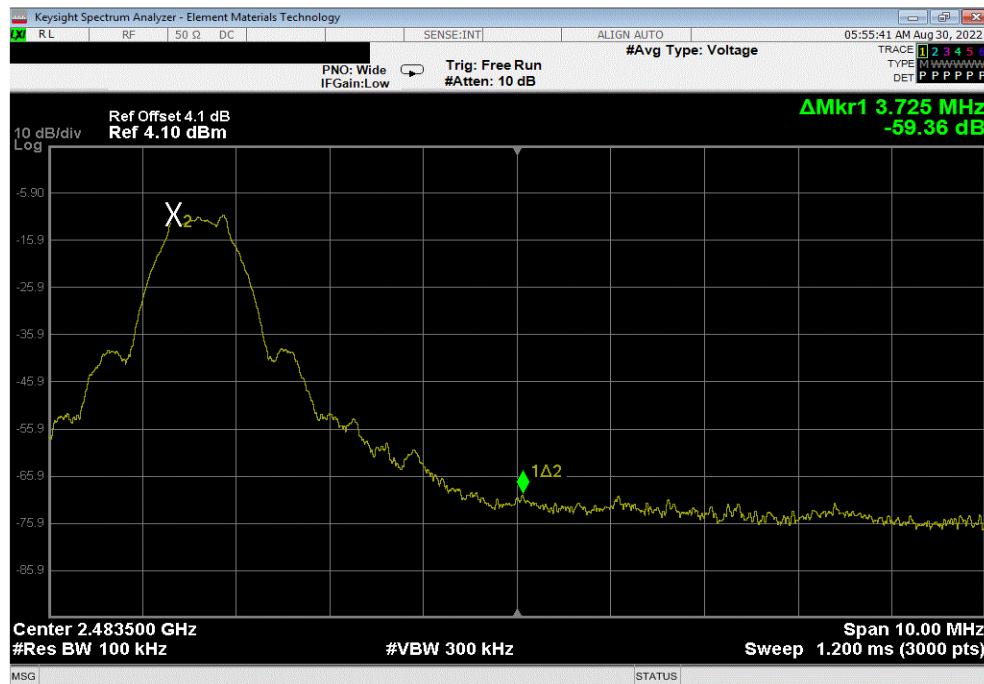
BAND EDGE COMPLIANCE

TbTx 2022.06.03.0

XMI 2022.02.07.0


EUT:	PMF-002 Microfence BLE Beacon		Work Order:	PAYC0009	
Serial Number:	002		Date:	29-Aug-22	
Customer:	Paycom Software, Inc.		Temperature:	20.9 °C	
Attendees:	Mike Pearson		Humidity:	57% RH	
Project:	None		Barometric Pres.:	1017 mbar	
Tested by:	Jarrod Brenden		Power:	110VAC/60Hz	
TEST SPECIFICATIONS			Test Method	ANSI C63.10:2013	
FCC 15.247:2022				ANSI C63.10:2013	
RSS-247 Issue 2:2017					
COMMENTS					
Continuous Tx, 100% Duty Cycle.					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	2	Signature			
			Value (dBc)	Limit ≤ (dBc)	Result
BLE/GFSK					
1 Mbps					
Low Channel, 2402 MHz			-51.86	-20	Pass
High Channel, 2480 MHz			-59.36	-20	Pass

BAND EDGE COMPLIANCE



TbITx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, Low Channel, 2402 MHz				Value (dBc)	Limit \leq (dBc)	Result
				-51.86	-20	Pass

BLE/GFSK, 1 Mbps, High Channel, 2480 MHz				Value (dBc)	Limit \leq (dBc)	Result
				-59.36	-20	Pass

SPURIOUS CONDUCTED EMISSIONS

XMit 2022.02.07.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFQ	2022-01-17	2023-01-17
Block - DC	Fairview Microwave	SD3239	ANE	2022-03-02	2023-03-02
Attenuator	Fairview Microwave	SA4018-20	TYW	2022-03-01	2023-03-01
Cable	Micro-Coax	D150A-1-0720-200	TXG	2021-12-10	2022-12-10
Generator - Signal	Agilent	N5173B	TIW	2020-07-17	2023-07-17

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.

The reference level offset for the fundamental screen capture was based on a measured value of the loss between the spectrum analyzer and the EUT which was verified at the time of test. The remaining screen capture(s) use an internal transducer factor on the analyzer to correct the displayed trace based on the cable loss over frequency. The reference level offset for the additional screen capture(s) is then based on the expected attenuator value and any other losses.

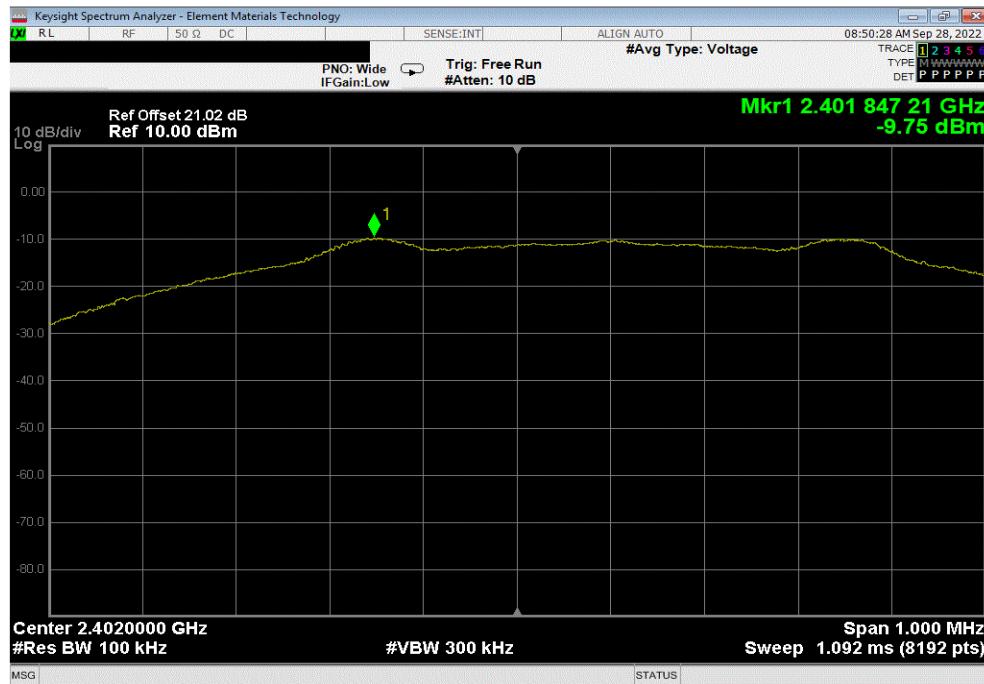
Fundamental Offset = Ref Lvl Offset showing measured composite factor of all losses

Remaining Screen capture(s) Offset = "Internal" cable loss factor not shown on screen capture + Ref Lvl Offset showing expected attenuator value and any other losses

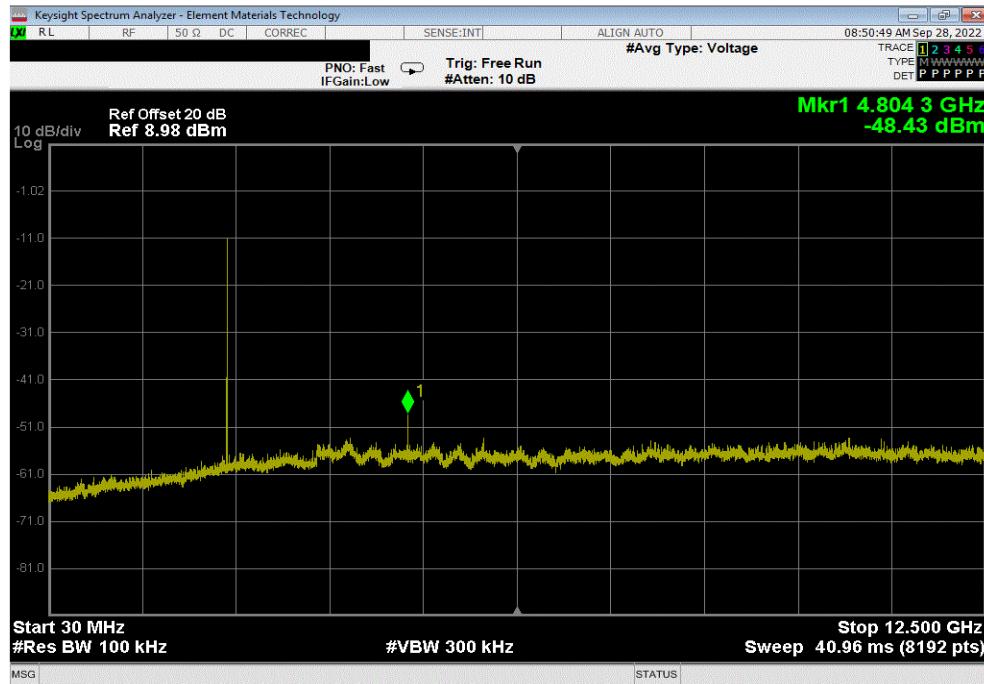
SPURIOUS CONDUCTED EMISSIONS

TbTx 2022.06.03.0

XMB 2022.02.07.0


EUT:	PMF-002 Microfence BLE Beacon		Work Order:	PAYC0009																																																							
Serial Number:	002		Date:	27-Sep-22																																																							
Customer:	Paycom Software, Inc.		Temperature:	21.6 °C																																																							
Attendees:	Mike Pearson		Humidity:	38% RH																																																							
Project:	None		Barometric Pres.:	1025 mbar																																																							
Tested by:	Jarrod Brenden		Power:	3VDC via Battery																																																							
TEST SPECIFICATIONS			Test Method																																																								
FCC 15.247:2022			ANSI C63.10:2013																																																								
RSS-247 Issue 2:2017			ANSI C63.10:2013																																																								
COMMENTS																																																											
Continuous Tx, 100% Duty Cycle.																																																											
DEVIATIONS FROM TEST STANDARD																																																											
None																																																											
Configuration #	2	Signature	Frequency Range	Measured Freq (MHz)	Max Value (dBc)																																																						
BLE/GFSK																																																											
1 Mbps																																																											
<table border="1"> <tr> <td>Low Channel, 2402 MHz</td> <td>Fundamental</td> <td>2401.85</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> </tr> <tr> <td>Low Channel, 2402 MHz</td> <td>30 MHz - 12.5 GHz</td> <td>4804.25</td> <td>-38.68</td> <td>-20</td> <td>Pass</td> </tr> <tr> <td>Low Channel, 2402 MHz</td> <td>12.5 GHz - 25 GHz</td> <td>23809.67</td> <td>-38.11</td> <td>-20</td> <td>Pass</td> </tr> <tr> <td>Mid Channel, 2442 MHz</td> <td>Fundamental</td> <td>2441.85</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> </tr> <tr> <td>Mid Channel, 2442 MHz</td> <td>30 MHz - 12.5 GHz</td> <td>4883.42</td> <td>-40.77</td> <td>-20</td> <td>Pass</td> </tr> <tr> <td>Mid Channel, 2442 MHz</td> <td>12.5 GHz - 25 GHz</td> <td>24409.41</td> <td>-38.48</td> <td>-20</td> <td>Pass</td> </tr> <tr> <td>High Channel, 2480 MHz</td> <td>Fundamental</td> <td>2479.84</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> </tr> <tr> <td>High Channel, 2480 MHz</td> <td>30 MHz - 12.5 GHz</td> <td>4961.52</td> <td>-43.20</td> <td>-20</td> <td>Pass</td> </tr> <tr> <td>High Channel, 2480 MHz</td> <td>12.5 GHz - 25 GHz</td> <td>24378.89</td> <td>-37.53</td> <td>-20</td> <td>Pass</td> </tr> </table>						Low Channel, 2402 MHz	Fundamental	2401.85	N/A	N/A	N/A	Low Channel, 2402 MHz	30 MHz - 12.5 GHz	4804.25	-38.68	-20	Pass	Low Channel, 2402 MHz	12.5 GHz - 25 GHz	23809.67	-38.11	-20	Pass	Mid Channel, 2442 MHz	Fundamental	2441.85	N/A	N/A	N/A	Mid Channel, 2442 MHz	30 MHz - 12.5 GHz	4883.42	-40.77	-20	Pass	Mid Channel, 2442 MHz	12.5 GHz - 25 GHz	24409.41	-38.48	-20	Pass	High Channel, 2480 MHz	Fundamental	2479.84	N/A	N/A	N/A	High Channel, 2480 MHz	30 MHz - 12.5 GHz	4961.52	-43.20	-20	Pass	High Channel, 2480 MHz	12.5 GHz - 25 GHz	24378.89	-37.53	-20	Pass
Low Channel, 2402 MHz	Fundamental	2401.85	N/A	N/A	N/A																																																						
Low Channel, 2402 MHz	30 MHz - 12.5 GHz	4804.25	-38.68	-20	Pass																																																						
Low Channel, 2402 MHz	12.5 GHz - 25 GHz	23809.67	-38.11	-20	Pass																																																						
Mid Channel, 2442 MHz	Fundamental	2441.85	N/A	N/A	N/A																																																						
Mid Channel, 2442 MHz	30 MHz - 12.5 GHz	4883.42	-40.77	-20	Pass																																																						
Mid Channel, 2442 MHz	12.5 GHz - 25 GHz	24409.41	-38.48	-20	Pass																																																						
High Channel, 2480 MHz	Fundamental	2479.84	N/A	N/A	N/A																																																						
High Channel, 2480 MHz	30 MHz - 12.5 GHz	4961.52	-43.20	-20	Pass																																																						
High Channel, 2480 MHz	12.5 GHz - 25 GHz	24378.89	-37.53	-20	Pass																																																						

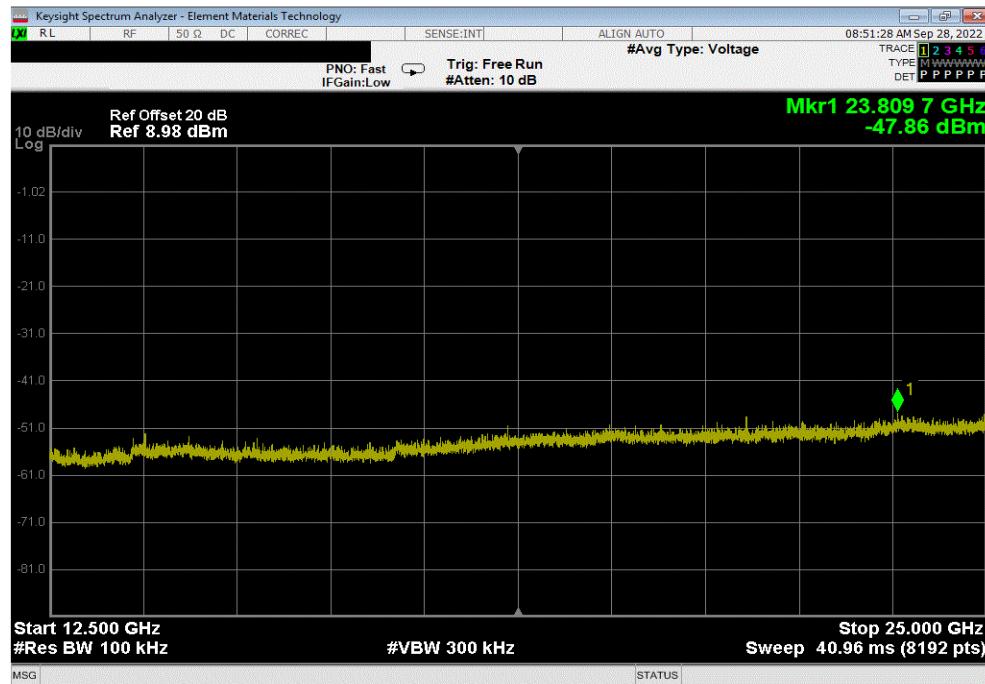
SPURIOUS CONDUCTED EMISSIONS



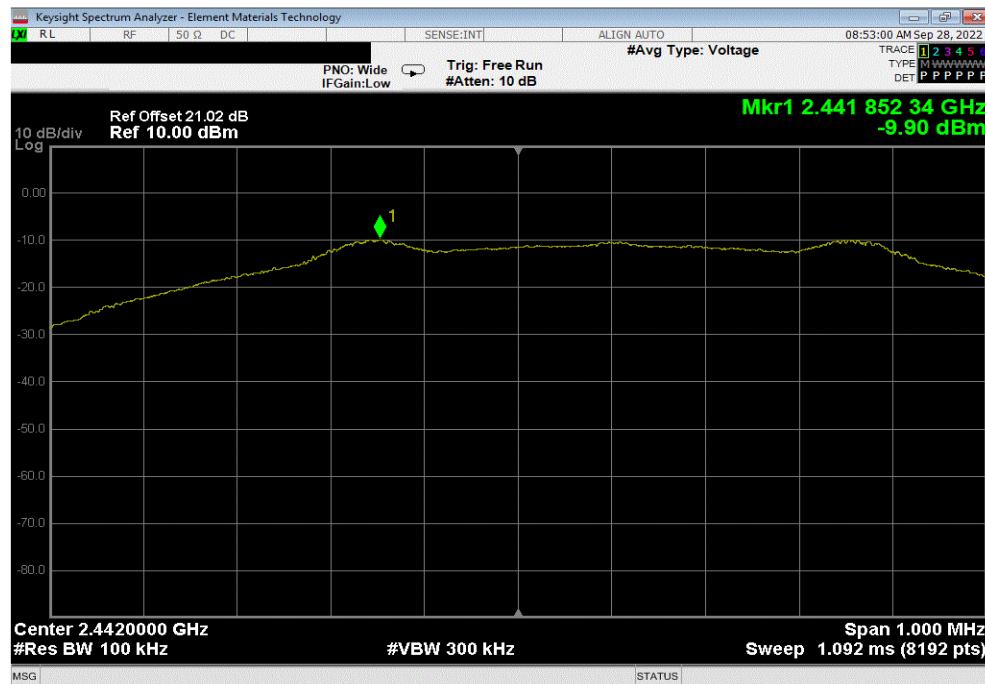
TbTx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, Low Channel, 2402 MHz					
Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result	
Fundamental	2401.85	N/A	N/A	N/A	

BLE/GFSK, 1 Mbps, Low Channel, 2402 MHz					
Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result	
30 MHz - 12.5 GHz	4804.25	-38.68	-20	Pass	



SPURIOUS CONDUCTED EMISSIONS

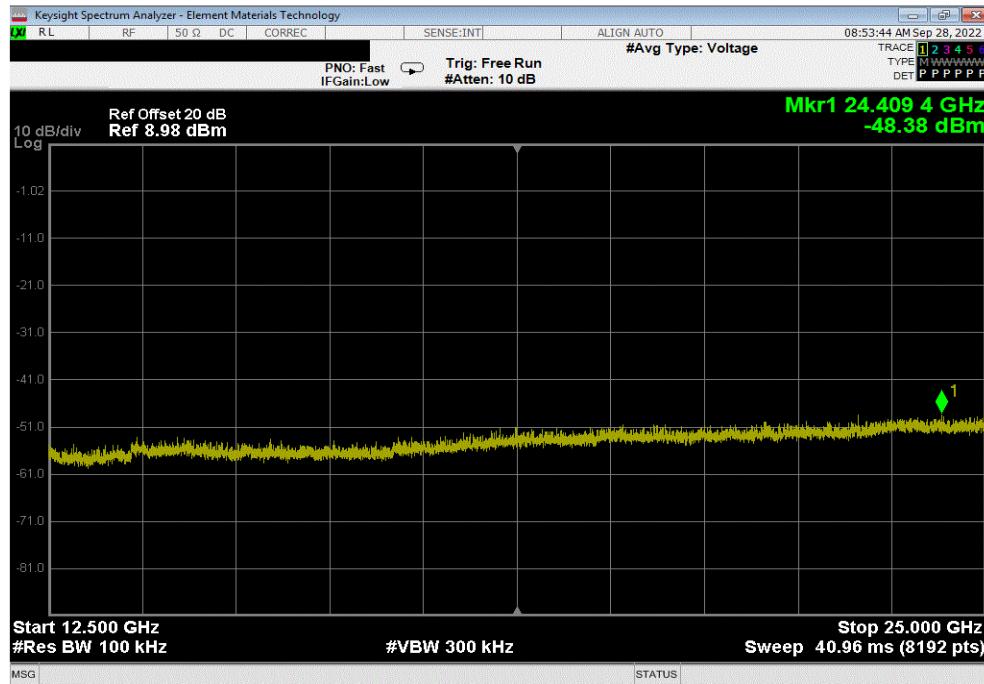


TbITx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, Low Channel, 2402 MHz				
Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 GHz - 25 GHz	23809.67	-38.11	-20	Pass

BLE/GFSK, 1 Mbps, Mid Channel, 2442 MHz				
Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
Fundamental	2441.85	N/A	N/A	N/A

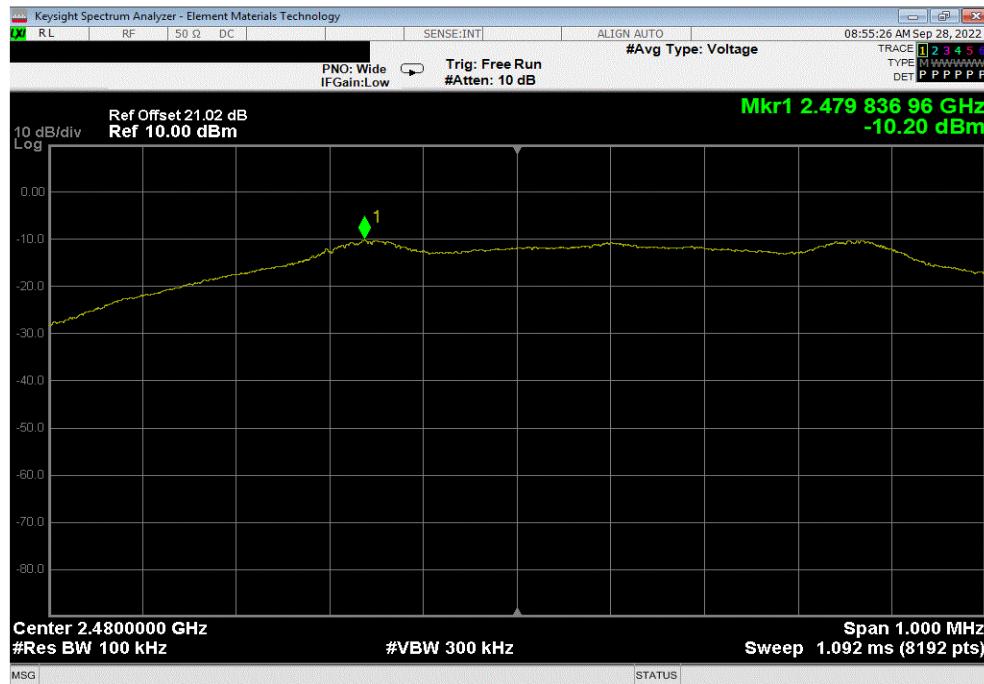
SPURIOUS CONDUCTED EMISSIONS



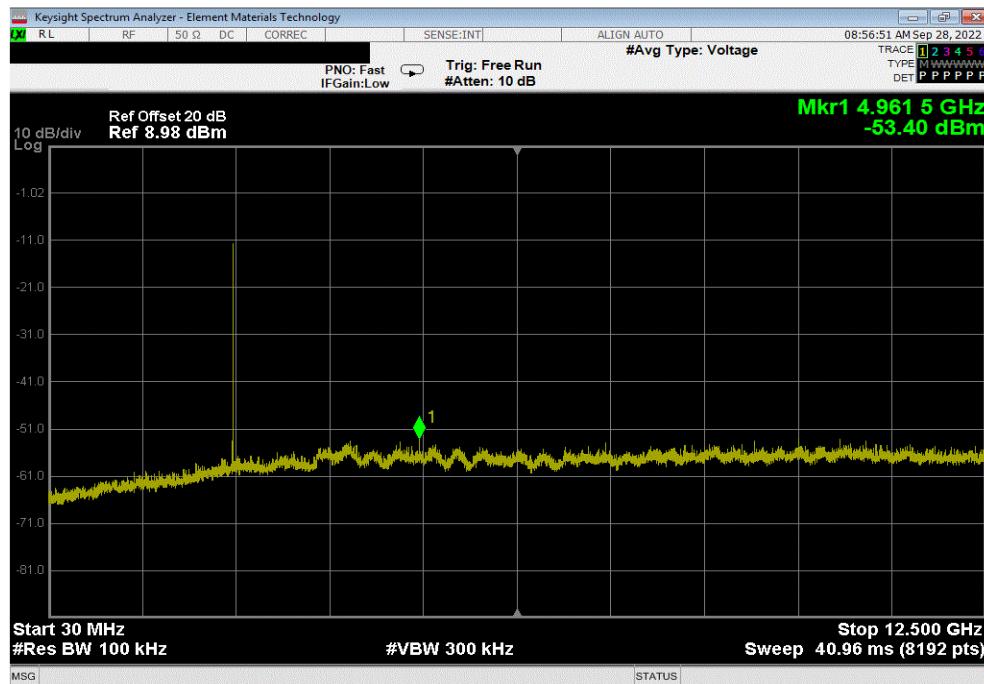
TbITx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, Mid Channel, 2442 MHz				
Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
30 MHz - 12.5 GHz	4883.42	-40.77	-20	Pass

BLE/GFSK, 1 Mbps, Mid Channel, 2442 MHz				
Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
12.5 GHz - 25 GHz	24409.41	-38.48	-20	Pass



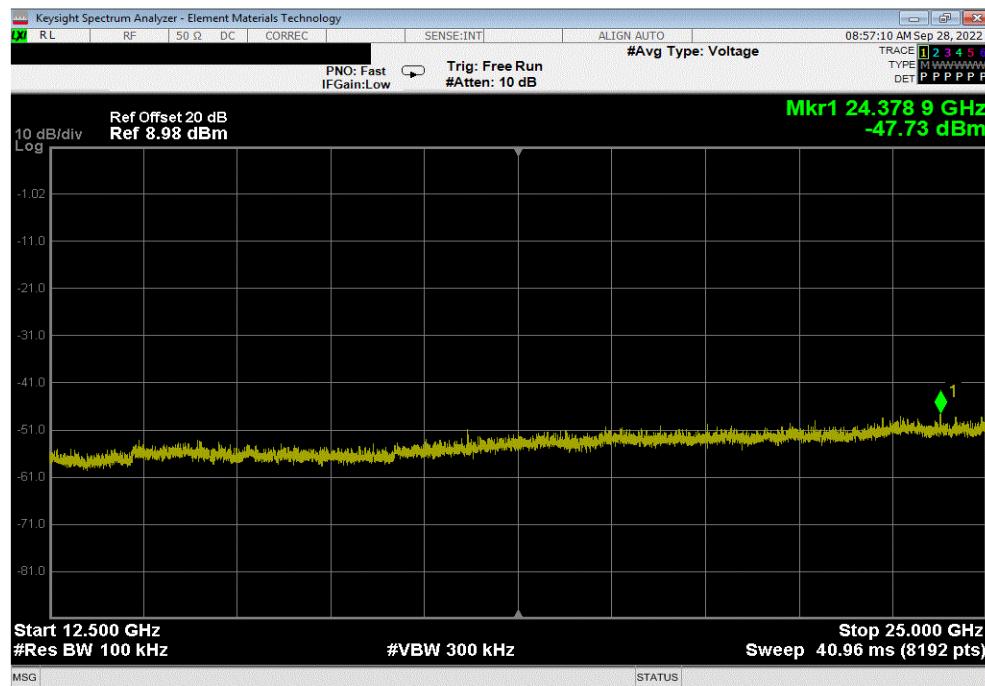
SPURIOUS CONDUCTED EMISSIONS



TbTx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, High Channel, 2480 MHz					
Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result	
Fundamental	2479.84	N/A	N/A	N/A	

BLE/GFSK, 1 Mbps, High Channel, 2480 MHz					
Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result	
30 MHz - 12.5 GHz	4961.52	-43.2	-20	Pass	



SPURIOUS CONDUCTED EMISSIONS

TbtTx 2022.06.03.0 XMit 2022.02.07.0

BLE/GFSK, 1 Mbps, High Channel, 2480 MHz				
Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit \leq (dBc)	Result
12.5 GHz - 25 GHz	24378.89	-37.53	-20	Pass

SPURIOUS RADIATED EMISSIONS

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These “pre-scans” are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = CISPR Average Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the CISPR Average measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of $20 \times \log(1/dc)$.

SPURIOUS RADIATED EMISSIONS

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	2022-03-22	2023-03-22
Antenna - Biconilog Cable	ETS Lindgren	3143B	AYF	2022-09-02	2024-09-02
Amplifier - Pre-Amplifier	Fairview Microwave	FMAM63001	PAS	2022-04-19	2023-04-19
Filter - Low Pass	Micro-Tronics	LPM50004	HHV	2022-07-22	2023-07-22
Antenna - Double Ridge	ETS Lindgren	3115	AJL	2020-10-20	2022-10-20
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAJ	2022-04-19	2023-04-19
Cable	Northwest EMC	1-8.2 GHz	TXC	2022-04-19	2023-04-19
Antenna - Standard Gain	ETS Lindgren	3160-07	AJF	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	PAK	2022-09-09	2023-09-09
Cable	Northwest EMC	8-18GHz	TXD	2022-04-12	2023-04-12
Antenna - Standard Gain	ETS Lindgren	3160-08	AJG	NCR	NCR
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	PAL	2022-09-09	2023-09-09
Antenna - Double Ridge	A.H. Systems, Inc.	SAS-574	AXW	2022-09-09	2024-09-09
Amplifier - Pre-Amplifier	Miteq	JSDWK42-18004000-60-5P	PAM	2022-09-14	2023-09-14
Cable	Northwest EMC	18-40GHz	TXE	2022-09-09	2023-09-09

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	5.1 dB	-5.1 dB

FREQUENCY RANGE INVESTIGATED

30 MHz TO 26 GHz

POWER INVESTIGATED

110VAC/60Hz

3VDC via Battery

CONFIGURATIONS INVESTIGATED

PAYC0009-4

PAYC0009-6

MODES INVESTIGATED

BLE Tx Continuous, 1 Mbps Data Rate, 100% Duty Cycle

SPURIOUS RADIATED EMISSIONS

EUT:	PMF-002 Microfence BLE Beacon	Work Order:	PAYC0009
Serial Number:	004	Date:	2022-08-30
Customer:	Paycom Software, Inc.	Temperature:	21.9°C
Attendees:	Mike Pearson	Relative Humidity:	55.1%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Jarrod Brenden	Job Site:	TX02
Power:	110VAC/60Hz	Configuration:	PAYC0009-4

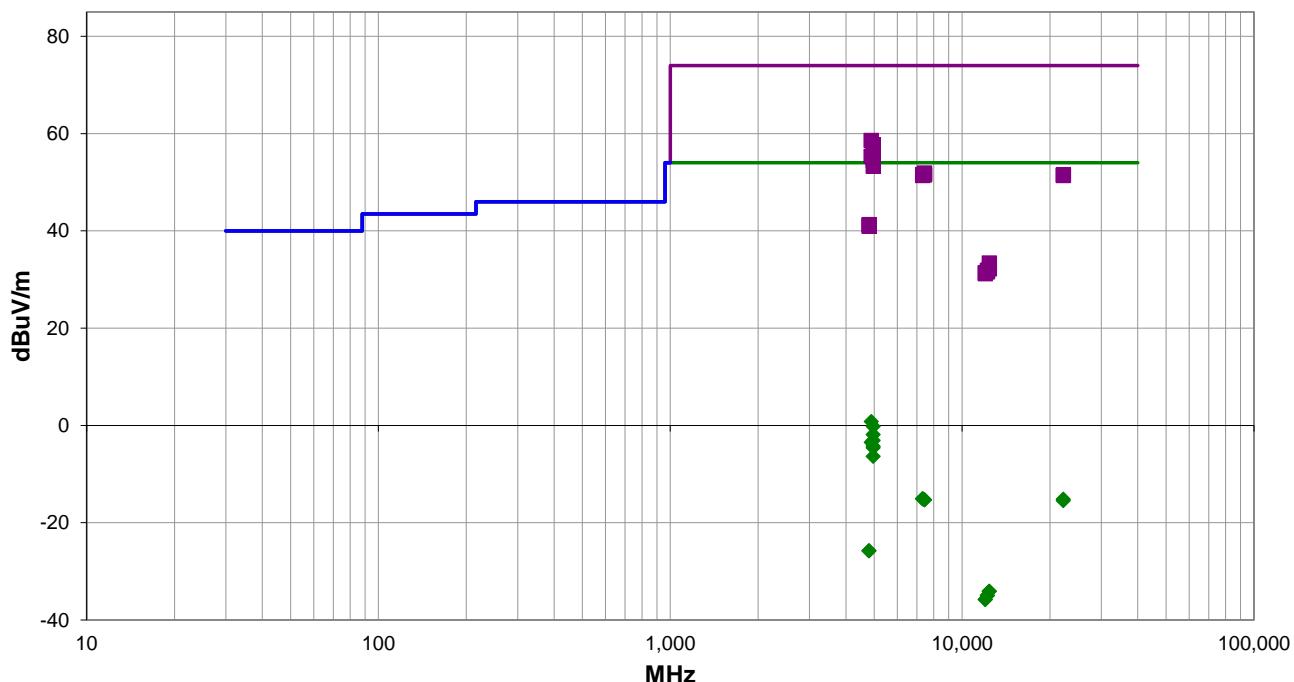
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2022	ANSI C63.10:2013
RSS-247 Issue 2:2017	ANSI C63.10:2013

TEST PARAMETERS

Run #:	32	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	----	--------------------	---	---------------------	-----------

COMMENTS


Low channel 2404.0 MHz, Mid Channel 2442.0 MHz, High Channel 2480.0 MHz. Using a client provided on-time, a downward correction was applied per FCC part 15.35 sections c and KDB 558074 Q&A (3) using the following calculation: $20 \log(0.248 \text{mSec}/100 \text{mSec}) = -52.1 \text{dB}$. This correction factor was applied to all average values.

EUT OPERATING MODES

BLE Tx Continuous, 1 Mbps Data Rate, 100% Duty Cycle

DEVIATIONS FROM TEST STANDARD

None

Run #: 32

■ PK ♦ AV ● QP

SPURIOUS RADIATED EMISSIONS

RESULTS - Run #32

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4883.660	53.6	5.0	2.3	130.9	0.0	0.0	Horz	PK	0.0	58.6	74.0	-15.4	EUT horz, mid ch, 1 Mbps
4959.720	52.7	5.0	2.0	9.0	0.0	0.0	Horz	PK	0.0	57.7	74.0	-16.3	EUT horz, high ch, 1 Mbps
4959.750	51.5	5.0	3.8	76.9	0.0	0.0	Horz	PK	0.0	56.5	74.0	-17.5	EUT vert, high ch, 1 Mbps
4960.505	50.8	5.0	1.5	81.0	0.0	0.0	Vert	PK	0.0	55.8	74.0	-18.2	EUT side, high ch, 1 Mbps
4883.585	50.3	5.0	1.7	57.9	0.0	0.0	Vert	PK	0.0	55.3	74.0	-18.7	EUT side, mid ch, 1 Mbps
4959.730	50.1	5.0	1.5	37.0	0.0	0.0	Vert	PK	0.0	55.1	74.0	-18.9	EUT vert, high ch, 1 Mbps
4959.895	49.5	5.0	1.4	206.0	0.0	0.0	Horz	PK	0.0	54.5	74.0	-19.5	EUT side, high ch, 1 Mbps
4960.650	48.3	5.0	1.5	90.0	0.0	0.0	Vert	PK	0.0	53.3	74.0	-20.7	EUT horz, high ch, 1 Mbps
7439.645	40.5	11.4	1.5	213.9	0.0	0.0	Horz	PK	0.0	51.9	74.0	-22.1	EUT horz, high ch, 1 Mbps
7324.635	40.3	11.3	1.5	82.9	0.0	0.0	Vert	PK	0.0	51.6	74.0	-22.4	EUT side, mid ch, 1 Mbps
7439.155	40.1	11.4	1.5	189.9	0.0	0.0	Vert	PK	0.0	51.5	74.0	-22.5	EUT side, high ch, 1 Mbps
22249.180	60.1	-8.6	1.5	45.0	0.0	0.0	Horz	PK	0.0	51.5	74.0	-22.5	EUT horz, high ch, 1 Mbps
7326.815	40.1	11.3	1.2	102.0	0.0	0.0	Horz	PK	0.0	51.4	74.0	-22.6	EUT horz, mid ch, 1 Mbps
22249.830	60.0	-8.6	1.5	241.0	0.0	0.0	Vert	PK	0.0	51.4	74.0	-22.6	EUT side, high ch, 1 Mbps
4803.340	36.1	5.2	1.7	195.0	0.0	0.0	Vert	PK	0.0	41.3	74.0	-32.7	EUT side, mid ch, 1 Mbps
4803.200	35.8	5.2	1.5	261.0	0.0	0.0	Horz	PK	0.0	41.0	74.0	-33.0	EUT horz, low ch, 1 Mbps
12398.820	36.4	-3.0	1.9	192.0	0.0	0.0	Horz	PK	0.0	33.4	74.0	-40.6	EUT horz, high ch, 1 Mbps
12399.850	35.2	-3.0	1.3	73.0	0.0	0.0	Vert	PK	0.0	32.2	74.0	-41.8	EUT horz, high ch, 1 Mbps
12208.560	35.4	-3.5	1.7	235.0	0.0	0.0	Horz	PK	0.0	31.9	74.0	-42.1	EUT horz, mid ch, 1 Mbps
12210.830	35.1	-3.5	2.0	352.9	0.0	0.0	Vert	PK	0.0	31.6	74.0	-42.4	EUT side, mid ch, 1 Mbps
12009.170	35.9	-4.5	2.2	82.9	0.0	0.0	Vert	PK	0.0	31.4	74.0	-42.6	EUT side, low ch, 1 Mbps
12009.410	35.7	-4.5	3.1	73.0	0.0	0.0	Horz	PK	0.0	31.2	74.0	-42.8	EUT horz, low ch, 1 Mbps
4884.170	47.9	5.0	2.3	130.9	-52.1	0.0	Horz	AV	0.0	0.8	54.0	-53.2	EUT horz, mid ch, 1 Mbps
4960.170	46.9	5.0	2.0	9.0	-52.1	0.0	Horz	AV	0.0	-0.2	54.0	-54.2	EUT horz, high ch, 1 Mbps
4960.185	45.2	5.0	3.8	76.9	-52.1	0.0	Horz	AV	0.0	-1.9	54.0	-55.9	EUT vert, high ch, 1 Mbps
4960.170	44.0	5.0	1.5	81.0	-52.1	0.0	Vert	AV	0.0	-3.1	54.0	-57.1	EUT side, high ch, 1 Mbps
4884.170	43.6	5.0	1.7	57.9	-52.1	0.0	Vert	AV	0.0	-3.5	54.0	-57.5	EUT side, mid ch, 1 Mbps
4960.185	42.8	5.0	1.5	37.0	-52.1	0.0	Vert	AV	0.0	-4.3	54.0	-58.3	EUT vert, high ch, 1 Mbps
4960.170	42.5	5.0	1.4	206.0	-52.1	0.0	Horz	AV	0.0	-4.6	54.0	-58.6	EUT side, high ch, 1 Mbps
4960.195	40.7	5.0	1.5	90.0	-52.1	0.0	Vert	AV	0.0	-6.4	54.0	-60.4	EUT horz, high ch, 1 Mbps
7324.555	25.7	11.3	1.2	102.0	-52.1	0.0	Horz	AV	0.0	-15.1	54.0	-69.1	EUT horz, mid ch, 1 Mbps
7324.560	25.7	11.3	1.5	82.9	-52.1	0.0	Vert	AV	0.0	-15.1	54.0	-69.1	EUT side, mid ch, 1 Mbps
22248.540	45.5	-8.6	1.5	45.0	-52.1	0.0	Horz	AV	0.0	-15.2	54.0	-69.2	EUT horz, high ch, 1 Mbps
7438.590	25.4	11.4	1.5	213.9	-52.1	0.0	Horz	AV	0.0	-15.3	54.0	-69.3	EUT horz, high ch, 1 Mbps
7439.655	25.4	11.4	1.5	189.9	-52.1	0.0	Vert	AV	0.0	-15.3	54.0	-69.3	EUT side, high ch, 1 Mbps
22248.860	45.2	-8.6	1.5	241.0	-52.1	0.0	Vert	AV	0.0	-15.5	54.0	-69.5	EUT side, high ch, 1 Mbps
4802.775	21.1	5.2	1.5	261.0	-52.1	0.0	Horz	AV	0.0	-25.8	54.0	-79.8	EUT horz, low ch, 1 Mbps
4802.660	21.1	5.2	1.7	195.0	-52.1	0.0	Vert	AV	0.0	-25.8	54.0	-79.8	EUT side, mid ch, 1 Mbps
12398.890	21.0	-3.0	1.9	192.0	-52.1	0.0	Horz	AV	0.0	-34.1	54.0	-88.1	EUT horz, high ch, 1 Mbps
12398.820	21.0	-3.0	1.3	73.0	-52.1	0.0	Vert	AV	0.0	-34.1	54.0	-88.1	EUT side, high ch, 1 Mbps

SPURIOUS RADIATED EMISSIONS

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
12211.020	20.6	-3.5	1.7	235.0	-52.1	0.0	Horz	AV	0.0	-35.0	54.0	-89.0	EUT horz, mid ch, 1 Mbps
12209.460	20.6	-3.5	2.0	352.9	-52.1	0.0	Vert	AV	0.0	-35.0	54.0	-89.0	EUT side, mid ch, 1 Mbps
12008.200	20.8	-4.5	2.2	82.9	-52.1	0.0	Vert	AV	0.0	-35.8	54.0	-89.8	EUT side, low ch, 1 Mbps
12007.720	20.8	-4.5	3.1	73.0	-52.1	0.0	Horz	AV	0.0	-35.8	54.0	-89.8	EUT horz, low ch, 1 Mbps

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS

EUT:	PMF-002 Microfence BLE Beacon	Work Order:	PAYC0009
Serial Number:	004	Date:	2022-09-02
Customer:	Paycom Software, Inc.	Temperature:	21.8°C
Attendees:	Mike Pearson	Relative Humidity:	55.3%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Jarrod Brenden	Job Site:	TX02
Power:	110VAC/60Hz	Configuration:	PAYC0009-4

TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2022	ANSI C63.10:2013
RSS-247 Issue 2:2017	ANSI C63.10:2013

TEST PARAMETERS

Run #:	38	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	----	--------------------	---	---------------------	-----------

COMMENTS

Low channel 2404.0 MHz, Mid Channel 2442.0 MHz, High Channel 2480.0 MHz. Using a client provided on-time, a downward correction was applied per FCC part 15.35 sections c and KDB 558074 Q&A (3) using the following calculation: $20 \log(0.248 \text{mSec}/100 \text{mSec}) = -52.1 \text{dB}$. This correction factor was applied to all average values.

EUT OPERATING MODES

BLE Tx Continuous, 1 Mbps Data Rate, 100% Duty Cycle

DEVIATIONS FROM TEST STANDARD

None

Run #: 38

PK AV QP

SPURIOUS RADIATED EMISSIONS

RESULTS - Run #38

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2388.150	44.7	-6.3	1.5	24.0	0.0	20.0	Horz	PK	0.0	58.4	74.0	-15.6	EUT vert, low ch, 1 Mbps
2388.342	44.5	-6.3	1.5	123.0	0.0	20.0	Vert	PK	0.0	58.2	74.0	-15.8	EUT side, low ch, 1 Mbps
2388.492	44.3	-6.3	1.5	21.0	0.0	20.0	Horz	PK	0.0	58.0	74.0	-16.0	EUT horz, low ch, 1 Mbps
2387.842	44.3	-6.3	1.5	188.0	0.0	20.0	Vert	PK	0.0	58.0	74.0	-16.0	EUT horz, low ch, 1 Mbps
2388.450	44.2	-6.3	3.1	198.0	0.0	20.0	Horz	PK	0.0	57.9	74.0	-16.1	EUT side, low ch, 1 Mbps
2483.500	42.7	-6.0	3.7	169.0	0.0	20.0	Vert	PK	0.0	56.7	74.0	-17.3	EUT horz, high ch, 1 Mbps
2483.500	42.5	-6.0	3.4	309.9	0.0	20.0	Horz	PK	0.0	56.5	74.0	-17.5	EUT horz, high ch, 1 Mbps
2483.500	42.4	-6.0	2.9	182.0	0.0	20.0	Horz	PK	0.0	56.4	74.0	-17.6	EUT vert, high ch, 1 Mbps
2483.500	42.2	-6.0	3.7	153.0	0.0	20.0	Vert	PK	0.0	56.2	74.0	-17.8	EUT vert, high ch, 1 Mbps
2483.500	42.2	-6.0	3.3	334.9	0.0	20.0	Vert	PK	0.0	56.2	74.0	-17.8	EUT side, high ch, 1 Mbps
2483.500	41.9	-6.0	1.0	219.0	0.0	20.0	Horz	PK	0.0	55.9	74.0	-18.1	EUT side, high ch, 1 Mbps
2390.000	41.9	-6.3	1.5	267.9	0.0	20.0	Vert	PK	0.0	55.6	74.0	-18.4	EUT vert, low ch, 1 Mbps
2483.500	29.6	-6.0	3.4	309.9	-52.1	20.0	Horz	AV	0.0	-8.5	54.0	-62.5	EUT horz, high ch, 1 Mbps
2483.500	29.5	-6.0	2.9	182.0	-52.1	20.0	Horz	AV	0.0	-8.6	54.0	-62.6	EUT vert, high ch, 1 Mbps
2483.500	29.5	-6.0	3.7	153.0	-52.1	20.0	Vert	AV	0.0	-8.6	54.0	-62.6	EUT vert, high ch, 1 Mbps
2483.500	29.5	-6.0	1.0	219.0	-52.1	20.0	Horz	AV	0.0	-8.6	54.0	-62.6	EUT side, high ch, 1 Mbps
2483.500	29.5	-6.0	3.3	334.9	-52.1	20.0	Vert	AV	0.0	-8.6	54.0	-62.6	EUT side, high ch, 1 Mbps
2483.500	29.5	-6.0	3.7	169.0	-52.1	20.0	Vert	AV	0.0	-8.6	54.0	-62.6	EUT horz, high ch, 1 Mbps
2390.000	29.4	-6.3	1.5	24.0	-52.1	20.0	Horz	AV	0.0	-9.0	54.0	-63.0	EUT vert, low ch, 1 Mbps
2388.308	29.4	-6.3	1.5	267.9	-52.1	20.0	Vert	AV	0.0	-9.0	54.0	-63.0	EUT vert, low ch, 1 Mbps
2390.000	29.4	-6.3	3.1	198.0	-52.1	20.0	Horz	AV	0.0	-9.0	54.0	-63.0	EUT side, low ch, 1 Mbps
2390.000	29.4	-6.3	1.5	123.0	-52.1	20.0	Vert	AV	0.0	-9.0	54.0	-63.0	EUT side, low ch, 1 Mbps
2390.000	29.4	-6.3	1.5	21.0	-52.1	20.0	Horz	AV	0.0	-9.0	54.0	-63.0	EUT horz, low ch, 1 Mbps
2390.000	29.4	-6.3	1.5	188.0	-52.1	20.0	Vert	AV	0.0	-9.0	54.0	-63.0	EUT horz, low ch, 1 Mbps

CONCLUSION

Pass

Tested By

SPURIOUS RADIATED EMISSIONS

EUT:	PMF-002 Microfence BLE Beacon	Work Order:	PAYC0009
Serial Number:	004	Date:	2022-09-02
Customer:	Paycom Software, Inc.	Temperature:	21.8°C
Attendees:	Mike Pearson	Relative Humidity:	55.3%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Jarrod Brenden	Job Site:	TX02
Power:	3VDC via Battery	Configuration:	PAYC0009-6

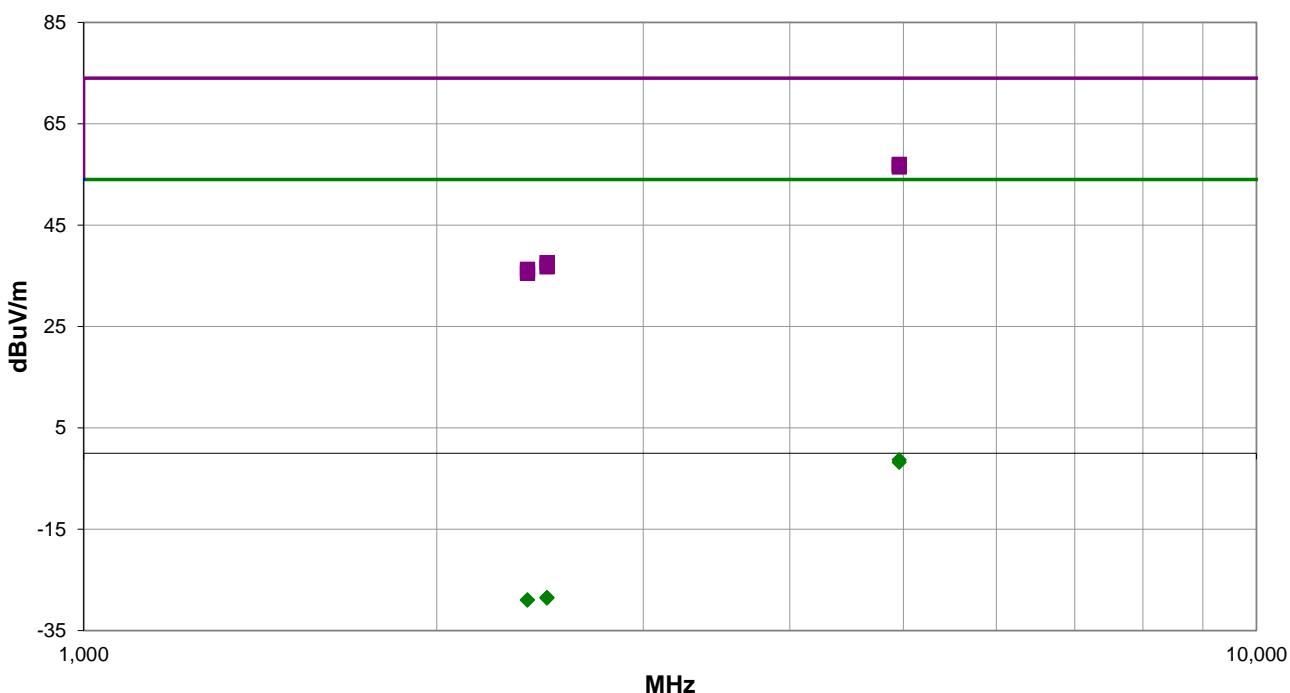
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.247:2022	ANSI C63.10:2013
RSS-247 Issue 2:2017	ANSI C63.10:2013

TEST PARAMETERS

Run #:	40	Test Distance (m):	3	Ant. Height(s) (m):	1 to 4(m)
--------	----	--------------------	---	---------------------	-----------

COMMENTS


Battery operation spot check of second harmonic and band edges based on worst case determined for AC powered operation. Low channel 2404.0 MHz, Mid Channel 2442.0 MHz, High Channel 2480.0 MHz. Using a client provided on-time, a downward correction was applied per FCC part 15.35 sections c and KDB 558074 Q&A (3) using the following calculation: $20 \times \log(0.248 \text{mSec}/100 \text{mSec}) = -52.1 \text{dB}$. This correction factor was applied to all average values.

EUT OPERATING MODES

BLE Tx Continuous, 1 Mbps Data Rate, 100% Duty Cycle

DEVIATIONS FROM TEST STANDARD

None

Run #: 40

PK AV QP

SPURIOUS RADIATED EMISSIONS

RESULTS - Run #40

Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4959.617	52.0	5.0	2.9	156.0	0.0	0.0	Horz	PK	0.0	57.0	74.0	-17.0	EUT horz, high ch, 1 Mbps
4959.650	51.5	5.0	1.8	81.0	0.0	0.0	Vert	PK	0.0	56.5	74.0	-17.5	EUT side, high ch, 1 Mbps
2483.500	43.6	-6.0	3.0	300.0	0.0	0.0	Vert	PK	0.0	37.6	74.0	-36.4	EUT side, high ch, 1 Mbps
2483.500	42.8	-6.0	3.4	306.0	0.0	0.0	Horz	PK	0.0	36.8	74.0	-37.2	EUT horz, high ch, 1 Mbps
2390.000	42.6	-6.3	1.5	280.9	0.0	0.0	Horz	PK	0.0	36.3	74.0	-37.7	EUT vert, low ch, 1 Mbps
2390.000	41.8	-6.3	1.5	274.9	0.0	0.0	Vert	PK	0.0	35.5	74.0	-38.5	EUT side, low ch, 1 Mbps
4960.200	45.8	5.0	2.9	156.0	-52.1	0.0	Horz	AV	0.0	-1.3	54.0	-55.3	EUT horz, high ch, 1 Mbps
4960.192	45.3	5.0	1.8	81.0	-52.1	0.0	Vert	AV	0.0	-1.8	54.0	-55.8	EUT side, high ch, 1 Mbps
2483.500	29.6	-6.0	3.4	306.0	-52.1	0.0	Horz	AV	0.0	-28.5	54.0	-82.5	EUT horz, high ch, 1 Mbps
2483.500	29.5	-6.0	3.0	300.0	-52.1	0.0	Vert	AV	0.0	-28.6	54.0	-82.6	EUT side, high ch, 1 Mbps
2390.000	29.4	-6.3	1.5	280.9	-52.1	0.0	Horz	AV	0.0	-29.0	54.0	-83.0	EUT vert, low ch, 1 Mbps
2390.000	29.4	-6.3	1.5	274.9	-52.1	0.0	Vert	AV	0.0	-29.0	54.0	-83.0	EUT side, low ch, 1 Mbps

CONCLUSION

Pass

Tested By

End of Test Report