

TEST REPORT

Applicant Name :	ShenZhen Lami Technology Co. Ltd
Address :	B1, 4th floor, No.105, Langkou Industrial Park, Langkou Community,
	Dalang St., Longhua Dist. Shenzhen, Guangdong China
Report Number :	SZNS210913-47770E-RF
FCC ID:	2A29C-L1

Test Standard (s) FCC PART 15.247

Sample Description

Product:	Game Controller
Tested Model:	L1 pro
Trademark:	/
Date Received:	2021-09-13
Date of Test:	2022-02-28 to 2022-03-09
Report Date:	2022-03-11

* In the configuration tested, the EUT complied with the standards above.

Pass*

Prepared and Checked By:

Test Result:

Ting Lü EMC Engineer

Approved By:

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk **.

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk ^{1**}. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 63

FCC-BT

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) Objective	
Test Methodology	
Measurement Uncertainty	5
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	
TEST RESULT:	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
TEST PROCEDURE TRANSD FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver & Spectrum Analyzer Setup Test Procedure	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	23
APPLICABLE STANDARD	23
TEST PROCEDURE	
TEST DATA	23
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	38

Test Procedure	
TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	41
Test Procedure	41
TEST DATA	41
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	51
APPLICABLE STANDARD	
Test Procedure	51
TEST DATA	51
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	57
Test Procedure	
TEST DATA	57

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Game Controller
Tested Model	L1 pro
Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 1.81dBm
Modulation Technique	Bluetooth: GFSK, $\pi/4$ -DQPSK, 8DPSK
Antenna Specification*	Internal Antenna: -0.58dBi(provided by the applicant)
Voltage Range	DC 3.7V from battery or DC 5V from USB port
Sample number	SZNS1220222-05348E-RF-S1 (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty		
Occupied Channel Bandwidth		5%		
RF output power, conducted		0.73dB		
Unwanted Emission, conducted		1.6dB		
AC Power Lines Conducted Emissions		2.72dB		
.	30MHz - 1GHz	4.28dB		
Emissions, Radiated	1GHz - 18GHz	4.98dB		
	18GHz - 26.5GHz	5.06dB		
Temperature		1 °C		
Humidity		6%		
Supply	voltages	0.4%		

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

Software "FCC_assist_1.0.2.2"* was used during testing and the power level was Default Power level 10*.

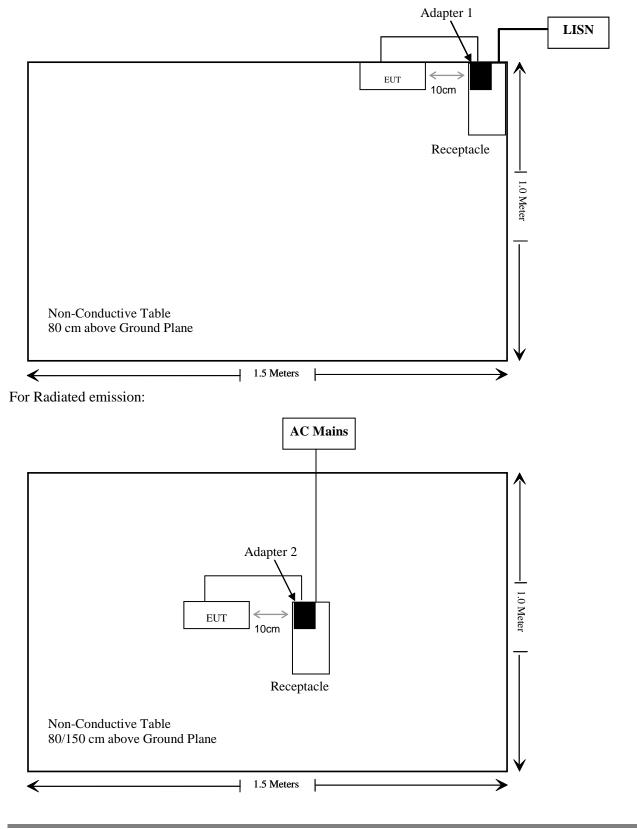
Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number	
SHENZHEN KEYU POWER SUPPLY TECHNOLOGY CO.,LTD	Adapter 1	KA1803A-US	2045	
W&T	Adapter 2	W&T-AD1806a050120UU	Unknown	

External I/O Cable

Cable Description	Length (m)	From Port	То	
Unshielded Detachable USB Cable	1.2	Adapter 1/2	EUT	

Block Diagram of Test Setup

For conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result	
FCC§15.247 (i), §1.1307 (b) (1) &§2.1093	RF Exposure	Compliant	
§15.203	Antenna Requirement	Compliant	
§15.207(a)	AC Line Conducted Emissions	Compliant	
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant	
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant	
§15.247(a)(1)	Channel Separation Test	Compliant	
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant	
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant	
§15.247(b)(1)	Peak Output Power Measurement	Compliant	
§15.247(d)	Band edges	Compliant	

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Model Serial Number		Calibration Due Date			
Conducted Emissions Test								
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12			
R & S	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12			
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12			
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13			
		Radiated Emissi	ons Test					
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12			
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08			
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04			
Schwarzbeck	Horn Antenna	BBHA9170	9170-359	2020/01/05	2023/01/04			
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13			
		RF Conducted	d Test					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12			
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12			
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.32	RF-02	Each time				

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Test Result:

Worst case for this handheld device:

Mode Frequency		Maximum Tune-up power		Calculated Distance	Calculated	Threshold (10-g	SAR Test
Mode	(MHz)	(dBm)	(mW)	(mm)	Value	extremity SAR)	Exclusion
Bluetooth	2402-2480	2	1.58	5	0.5	7.5	Yes

Result: Compliant.

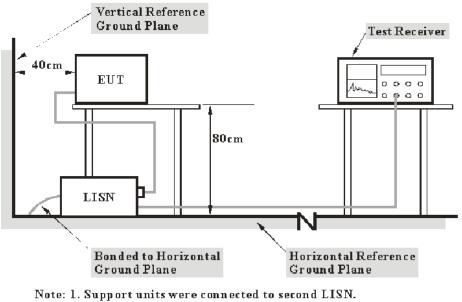
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal PCB antenna arrangement for Bluetooth, which was permanently attached and the antenna gain is -0.58dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Solver 1. Support units were connected to second LISN.
 Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

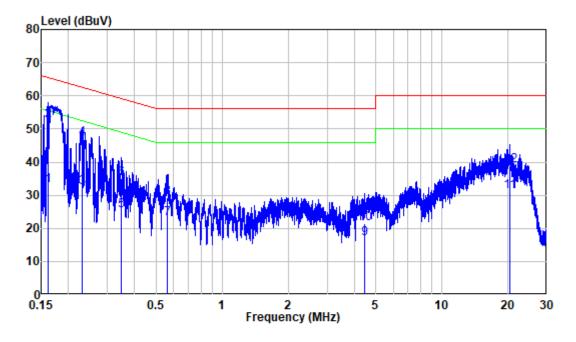
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

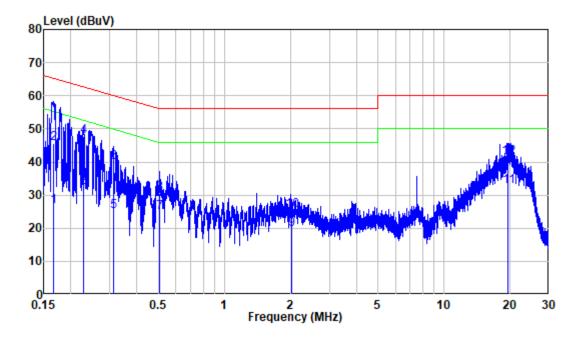
Test Data


Environmental Conditions

Temperature:	23 °C
Relative Humidity:	53 %
ATM Pressure:	101.3 kPa

The testing was performed by Caro Hu on 2022-03-09.

EUT operation mode: Charging+BT Transmitting


AC 120V/60 Hz, Line

Site	:	Shielding Room
Condition	:	Line
Mode	:	Charging+Type C Connected
Model	:	L1 pro

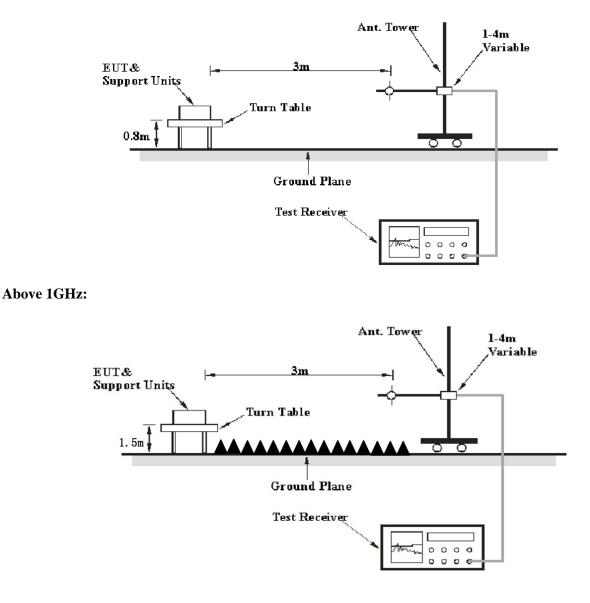
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.161	9.87	23.15	33.02	55.39	-22.37	Average
2	0.161	9.87	42.81	52.68	65.39	-12.71	QP
3	0.231	9.80	22.52	32.32	52.43	-20.11	Average
4	0.231	9.80	37.22	47.02	62.43	-15.41	QP
5	0.347	9.80	15.65	25.45	49.04	-23.59	Average
6	0.347	9.80	25.25	35.05	59.04	-23.99	QP
7	0.565	9.81	13.04	22.85	46.00	-23.15	Average
8	0.565	9.81	19.58	29.39	56.00	-26.61	QP
9	4.463	9.96	6.80	16.76	46.00	-29.24	Average
10	4.463	9.96	11.42	21.38	56.00	-34.62	QP
11	20.283	10.21	20.86	31.07	50.00	-18.93	Average
12	20.283	10.21	28.72	38.93	60.00	-21.07	QP

AC 120V/60 Hz, Neutral

Site	:	Shielding Room
Condition	:	Neutral
Mode	:	Charging+Type C Connected
Model	:	L1 pro

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.166	9.80	16.82	26.62	55.14	-28.52	Average
2	0.166	9.80	35.73	45.53	65.14	-19.61	QP
3	0.228	9.80	22.39	32.19	52.52	-20.33	Average
4	0.228	9.80	37.93	47.73	62.52	-14.79	QP
5	0.312	9.80	15.27	25.07	49.91	-24.84	Average
6	0.312	9.80	30.13	39.93	59.91	-19.98	QP
7	0.508	9.80	14.93	24.73	46.00	-21.27	Average
8	0.508	9.80	20.81	30.61	56.00	-25.39	QP
9	2.025	9.82	9.91	19.73	46.00	-26.27	Average
10	2.025	9.82	15.57	25.39	56.00	-30.61	QP
11	19.557	10.10	22.60	32.70	50.00	-17.30	Average
12	19.557	10.10	31.23	41.33	60.00	-18.67	QP

Version 11: 2021-11-09


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 CHr	1 MHz	3 MHz	/	РК
Above 1 GHz	1 MHz	10 Hz	/	Average

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

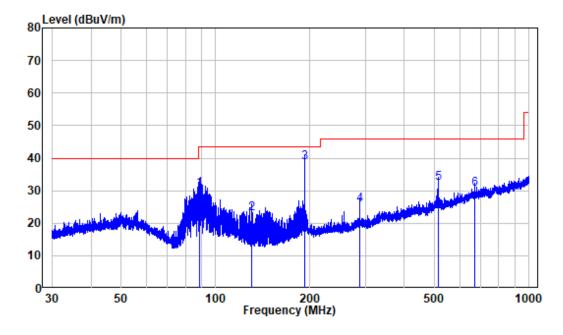
The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

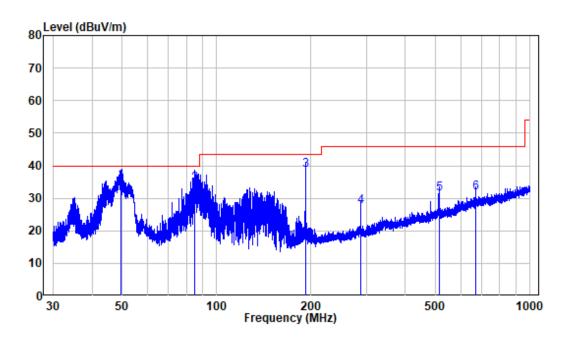
Temperature:	19 °C~22°C
Relative Humidity:	54 %~56 %
ATM Pressure:	101.0~101.2 kPa


The testing was performed by Chao Mo from 2022-2-28 to 2022-3-1.

EUT operation mode: Charging + BT Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode at X axis, Y axis, Z axis, the worst case is 8DPSK Mode at X axis)

30MHz-1GHz: 8DPSK Low channel (Worst case)


Horizontal:

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	SZNS210913-47770E-RF
Test Mode:	BT Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	88.691	-14.38	44.85	30.47	43.50	-13.03	QP
2	129.923	-14.89	37.85	22.96	43.50	-20.54	QP
3	192.082	-11.25	49.86	38.61	43.50	-4.89	QP
4	288.117	-9.36	35.16	25.80	46.00	-20.20	QP
5	512.060	-4.27	36.52	32.25	46.00	-13.75	QP
6	671.960	-1.64	32.02	30.38	46.00	-15.62	QP

Site : chamber Condition: 3m VERTICAL Job No. : SZNS210913-47770E-RF Test Mode: BT Transmitting

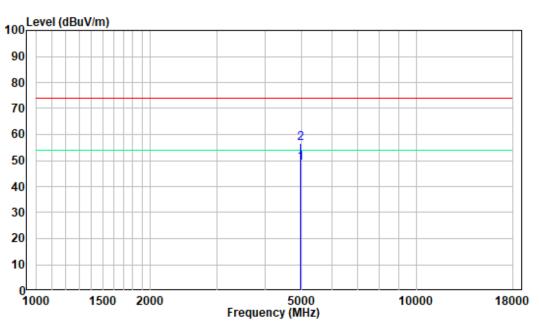
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	49.511	-9.93	45.25	35.32	40.00	-4.68	QP
2	85.335	-15.49	50.02	34.53	40.00	-5.47	QP
3	192.082	-11.25	49.87	38.62	43.50	-4.88	QP
4	288.117	-9.36	36.77	27.41	46.00	-18.59	QP
5	512.060	-4.27	35.76	31.49	46.00	-14.51	QP
6	671.960	-1.64	33.29	31.65	46.00	-14.35	QP

Above 1GHz (Worst case)

Frequency	Receiver		Turntable Rx An		itenna	Factor	Absolute	Limit	Margin
(MHz)	Reading (dBuV)	PK/AV	Angle Degree Height Polor (dB/m		(dB / m)	Level (dBuV/m)	(dBuV/m)	(dB)	
]	BT 3DH1, Lo	w Channel				
2310	44.91	РК	43	1.8	Н	-7.23	37.68	74	-36.32
2310	44.36	РК	259	2.0	V	-7.23	37.13	74	-36.87
2390	64.87	РК	259	2.0	Н	-7.21	57.66	74	-16.34
2390	56.98	AV	259	2.0	Н	-7.21	49.77	54	-4.23
2390	57.84	РК	221	1.5	V	-7.21	50.63	74	-23.37
4804	57.4	РК	246	1.9	Н	-3.52	53.88	74	-20.12
4804	59.17	РК	25	1.7	V	-3.52	55.65	74	-18.35
4804	50.94	AV	25	1.7	V	-3.52	47.42	54	-6.58
			B	T 3DH1, Mic	ldle Channel		•		
4882	57.81	РК	72	1.5	Н	-3.37	54.44	74	-19.56
4882	50.88	AV	72	1.5	Н	-3.37	47.51	54	-6.49
4882	59.68	РК	266	1.3	V	-3.37	56.31	74	-17.69
4882	52.01	AV	266	1.3	V	-3.37	48.64	54	-5.36
			I	3T 3DH1, Hi	gh Channel				
2483.5	51.35	РК	317	1.2	Н	-7.2	44.15	74	-29.85
2483.5	46.62	РК	210	1.6	V	-7.2	39.42	74	-34.58
2500	48.78	РК	172	1.1	Н	-7.18	41.6	74	-32.4
2500	45.98	РК	292	1.2	V	-7.18	38.8	74	-35.2
4960	59.8	РК	231	1.2	Н	-3.01	56.79	74	-17.21
4960	52.16	AV	231	1.2	Н	-3.01	49.15	54	-4.85
4960	60.08	РК	252	1.4	V	-3.01	57.07	74	-16.93
4960	53.5	AV	252	1.4	V	-3.01	50.49	54	-3.51

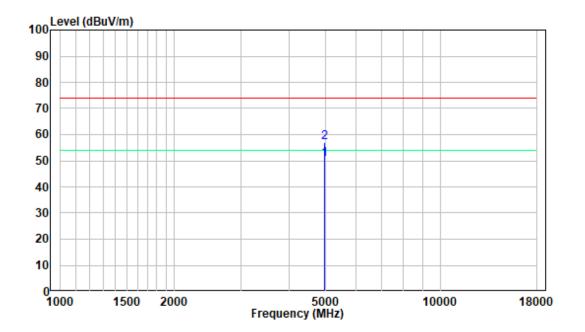
Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

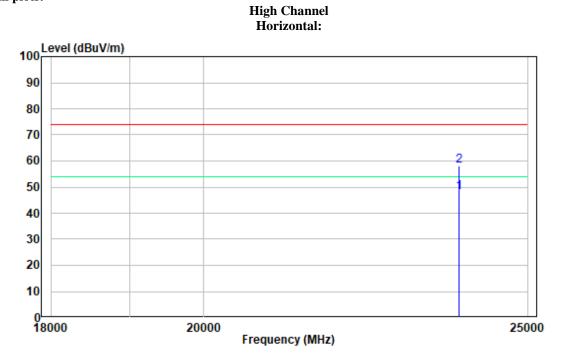

Corrected Amplitude = Corrected Factor + Reading Margin = Corrected Amplitude – Limit

The other spurious emission which is in the noise floor level was not recorded.

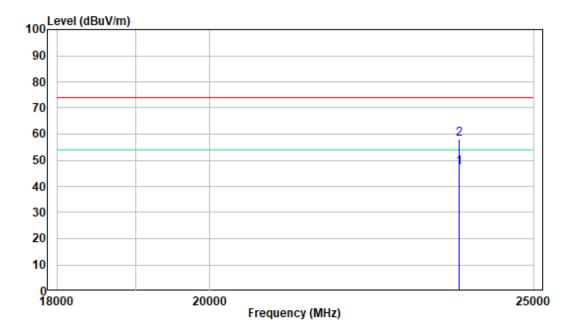
The test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.


1-18GHz

Pre-scan plots:


High Channel Horizontal:

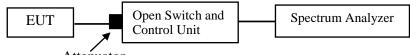
Vertical:



18-25GHz

Pre-scan plots:

Vertical:


FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Attenuator

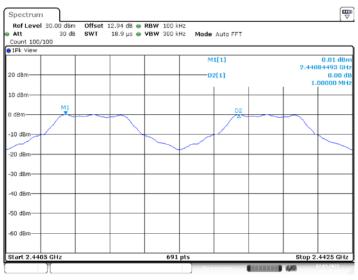
Test Data

Environmental Conditions

Temperature:	19 °C	
Relative Humidity:	48 %	
ATM Pressure:	101.2 kPa	

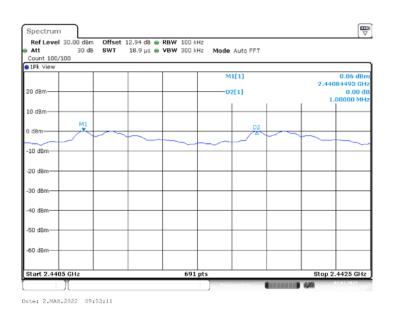
The testing was performed by Key Pei on 2022-03-02.

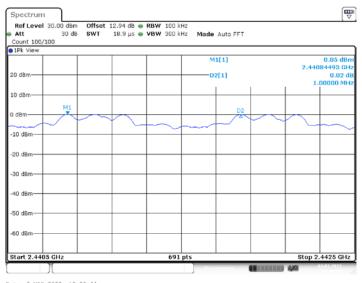
EUT operation mode: Transmitting


Test Result: Compliant.

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Hop	1	>=0.562	PASS
2DH1	Ant1	Нор	1	>=0.808	PASS
3DH1	Ant1	Нор	1	>=0.804	PASS

Note: Limit=2/3*20dB Emission Bandwidth


Please refer to the below plots:


Date: 2.MAR.2022 09:43:26

2DH1_Ant1_Hop

Version 11: 2021-11-09

3DH1_Ant1_Hop

Date: 2.MAR.2022 10:00:44

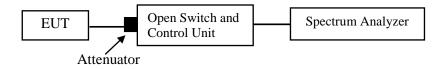
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth: • The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

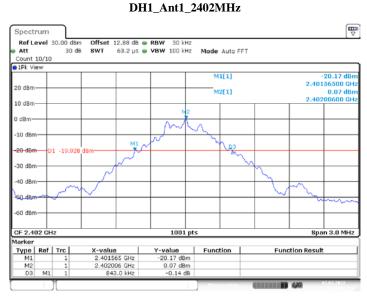
Test Data

Environmental Conditions

Temperature:	19 °C	
Relative Humidity:	48 %	
ATM Pressure:	101.2 kPa	

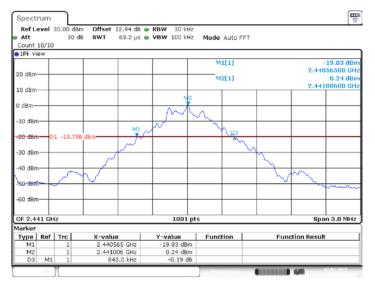
The testing was performed by Key Pei on 2022-03-02.

EUT operation mode: Transmitting

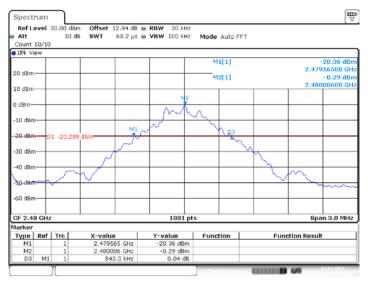

Test Result: Compliant.

Test Mode	Antenna	Channel[MHz]	20db EBW[MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.843		PASS
DH1		2441	0.843		PASS
		2480	0.843		PASS
2DH1	Ant1	2402	1.209		PASS
		2441	1.212		PASS
		2480	1.209		PASS
3DH1	Ant1	2402	1.203		PASS
		2441	1.206		PASS
		2480	1.203		PASS

Test Mode	Antenna	Channel[MHz]	99% Occupied Bandwidth [MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.815		PASS
DH1		2441	0.812		PASS
		2480	0.818		PASS
2DH1	Ant1	2402	1.163		PASS
		2441	1.160		PASS
		2480	1.166		PASS
3DH1	Ant1	2402	1.142		PASS
		2441	1.142		PASS
		2480	1.142		PASS

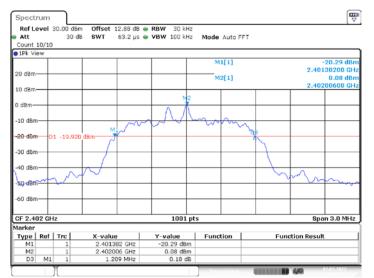

Please refer to the below plots:

20 dB EMISSION BANDWIDTH

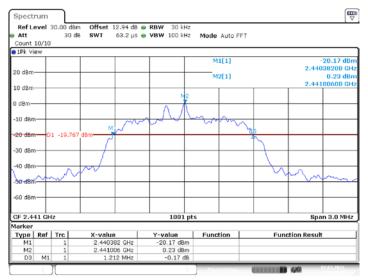

Date: 2.MAR.2022 08:56:53

DH1_Ant1_2441MHz

Date: 2.MAR.2022 08:59:04

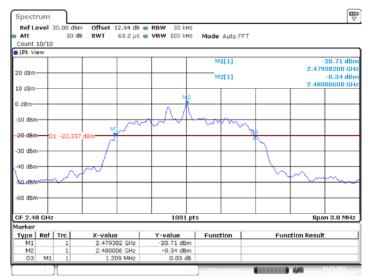

Version 11: 2021-11-09

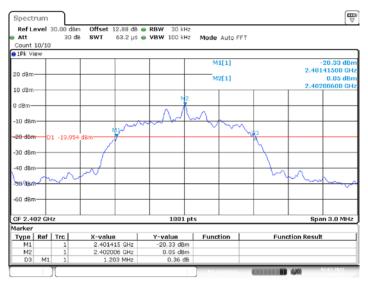
DH1_Ant1_2480MHz


Date: 2.MAR.2022 08:59:57

2DH1_Ant1_2402MHz

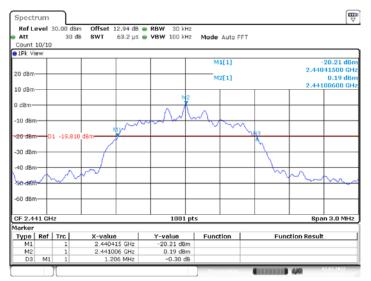
Date: 2.MAR.2022 09:01:24

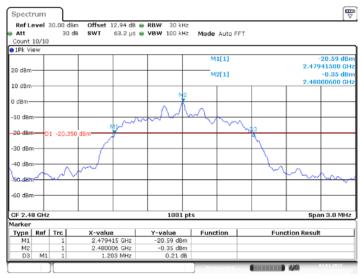

Version 11: 2021-11-09


2DH1_Ant1_2441MHz

Date: 2.MAR.2022 09:02:44

2DH1_Ant1_2480MHz


Date: 2.MAR.2022 09:03:38


3DH1_Ant1_2402MHz

Date: 2.MAR.2022 09:05:57

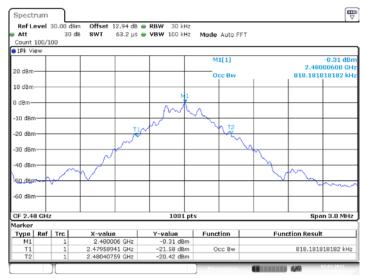
3DH1_Ant1_2441MHz


Date: 2.MAR.2022 09:07:26

3DH1_Ant1_2480MHz

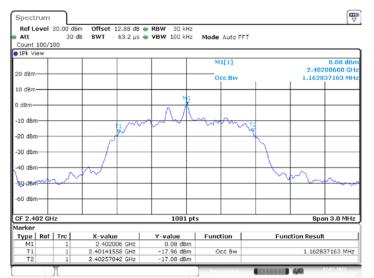
Date: 2.MAR.2022 09:10:07

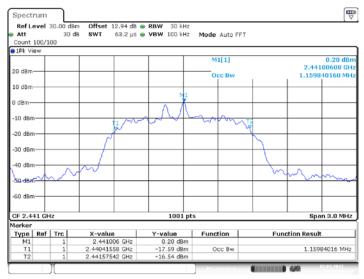
99% OCCUPIED BANDWIDTH



Date: 2.MAR.2022 08:57:10

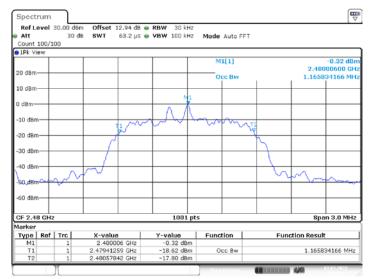
DH1_Ant1_2441MHz

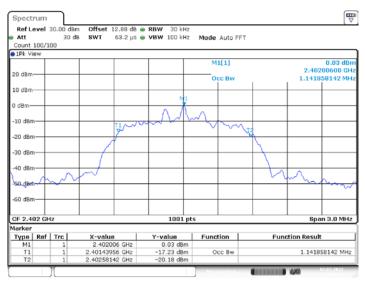

Date: 2.MAR.2022 08:59:21


DH1_Ant1_2480MHz

Date: 2.MAR.2022 09:00:13

2DH1_Ant1_2402MHz

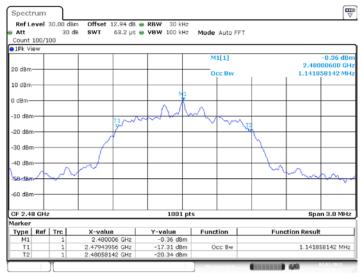

Date: 2.MAR.2022 09:01:41


2DH1_Ant1_2441MHz

Date: 2.MAR.2022 09:03:00

2DH1_Ant1_2480MHz

Date: 2.MAR.2022 09:03:55


3DH1_Ant1_2402MHz

Date: 2.MAR.2022 09:06:14

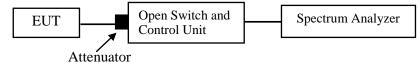
3DH1_Ant1_2441MHz

Spectrur Ref Leve	1 30.00 di	Bm Offset 12,94 dB	RBW 30 kHz			
Att	30		VBW 100 kHz	Mode Auto FF	т	
Count 100	/100					
1Pk View						
				M1[1]		0.18 dBr
20 dBm						2.44100600 GH
				Occ Bw		1.141858142 MH
10 dBm						
			M1			
0 dBm						
				\sim		
-10 dBm—		11~~~	And the la	·· \/ \~~		
-20 dBm-		8		•	1	
-20 ubiii					~	
-30 dBm						
-40 dBm-					-	
	h_{n}				1 ~~	hr ah
59 d8m	1.4		+			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm-						
-60 dBm-						
CF 2.441	GHz		1001 pt	s		Span 3.0 MHz
larker	1 - 1					
Type Re		X-value	Y-value	Function	Fund	ction Result
M1 T1	1	2.441006 GHz 2.44043956 GHz	0.18 dBm -16.80 dBm	Occ Bw		1.141858142 MHz
T2	1	2.44158142 GHz	-19.29 dBm	000 84		A: ATA000142 MIT2
	NC					ALM 02.02.2022

Date: 2.MAR.2022 09:09:01

3DH1_Ant1_2480MHz

Date: 2.MAR.2022 09:10:24


FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	19 °C
Relative Humidity:	48 %
ATM Pressure:	101.2 kPa

The testing was performed by Key Pei on 2022-03-02.

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	>=15	PASS
2DH1	Ant1	Нор	79	>=15	PASS
3DH1	Ant1	Нор	79	>=15	PASS

Ref Level 3 Att	30.00 dBm 30 dB		12.88 dB 🖷	RBW 100 VBW 300		Auto Curre	_		
1Pk View	30 06	3111	1 ms 🖷	VBW 3001	mode	Auto Swee	9		
0 dBm									
0 dBm									
ABRAADA			NINDANDO	ABAADAAZ	harres.	LIKKALN	ALLAD LA C		14.580
NIA IA IA.	UBHA	INAMA	MUTAR	MUNUU	URMURA.	UNATROT	MIRAN	NUM	111,044
10 JBm	HUN YAN	tid tid	add a ddfr	WINYIW	1011		10.00		NUSH
and all h	Manad	AdlAntar	ALLOLAN	Lealled.	an a lot a ta	n mand and	Indika	and hours	n a k k k (
20 dBm									
30 dBm									
									- L
40 dBm									N
									יי
50 dBm									
50 dBm									
tart 2.4 GH	z			691	pts			Stop 2.	4835 GHz

DH1_Ant1_Hop

Date: 2.MAR.2022 09:43:54

2DH1_Ant1_Hop

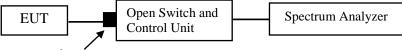
Ref Level Att	30.00 dBm 30 dB		12.88 dB	RBW 100 k VBW 300 k		Auto Swee	n		
1Pk View	00.00	0					*	-	
0 dBm									
0 dBm									
CREAT AND	MMM	MAMM	www		MAAAAAA		anana	ANAANAA	MAN
l0 dBm						0.0.0408	184-1444	VIVIV	
20 dBm			-						
30 dBm									
40 dBm									L
50 dBm									
NO GOAL									
50 dBm									
			1	1	1	1	1	1	1

Date: 2.MAR.2022 09:53:52

Ref Level : Att	30 de		12.88 dB 👄 1 ms 👄				Auto Swee	p		
1Pk View										
20 dBm										
10 dBm				<u> </u>						
dam-										
ANNANIA.	MADAGA	NUMMU.	MMMU	MU	ЛЛ	NIAMA	IMMAN	MIMAN	DARAMAN	UAMA
0 dBm	DALADA.	40.00.00	4140.004		- frai	- 40 40 404	88.80.00	1 A . 10 M D /		*****
20 dBm				<u> </u>						
30 dBm										
40 dBm										
NO GOM										V
-50 dBm				<u> </u>						
-60 dBm				-						
Start 2.4 GH	z				691	pts			Stop 2.	4835 GHz

3DH1_Ant1_Hop

Version 11: 2021-11-09


FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

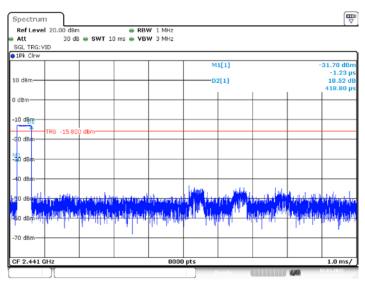
Test Data

Environmental Conditions

Temperature:	19 °C
Relative Humidity:	48 %
ATM Pressure:	101.2 kPa

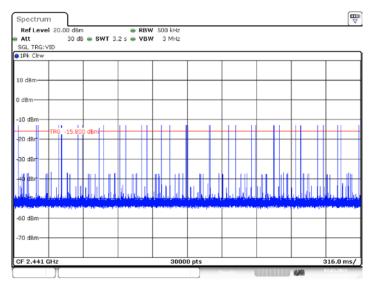
The testing was performed by Key Pei on 2022-03-02.

EUT operation mode: Transmitting

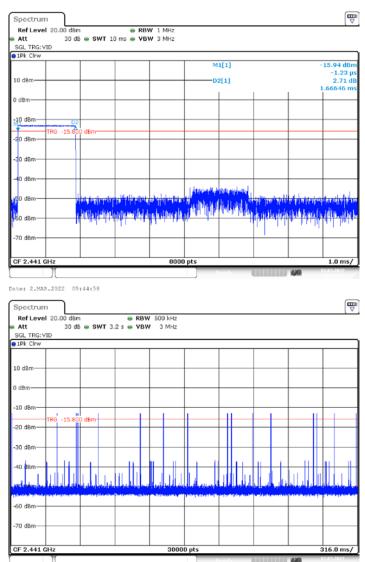

Test Result: Compliant.

Test Mode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.42	330	0.138	<=0.4	PASS
DH3	Ant1	Нор	1.67	170	0.283	<=0.4	PASS
DH5	Ant1	Нор	2.91	90	0.262	<=0.4	PASS
2DH1	Ant1	Нор	0.43	320	0.137	<=0.4	PASS
2DH3	Ant1	Нор	1.67	170	0.284	<=0.4	PASS
2DH5	Ant1	Нор	2.91	130	0.379	<=0.4	PASS
3DH1	Ant1	Нор	0.43	330	0.142	<=0.4	PASS
3DH3	Ant1	Нор	1.67	180	0.301	<=0.4	PASS
3DH5	Ant1	Нор	2.92	110	0.321	<=0.4	PASS

Note 1: A period time=0.4*79=31.6(S), Result=Burst Width*Total Hops

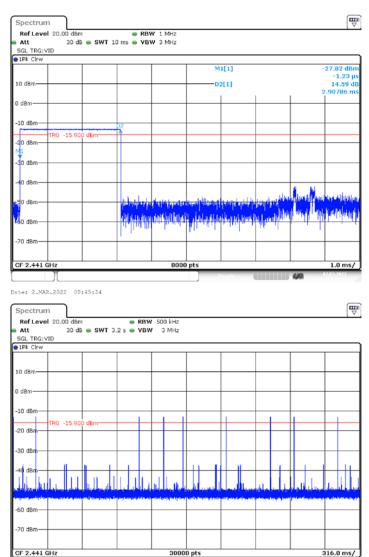

Note 2: Total Hops =Hopping Number in 3.16s*10

Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)



DH1_Ant1_Hop

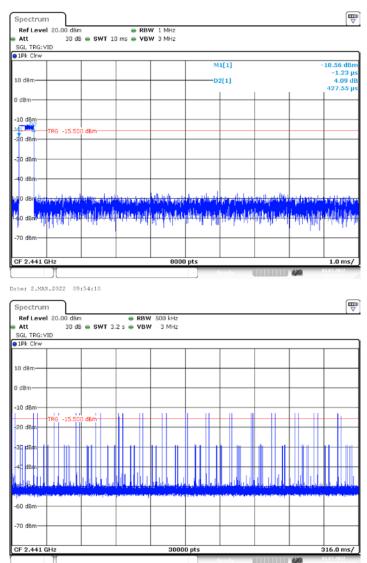
Date: 2.MAR.2022 09:44:12


Date: 2.MAR.2022 09:44:18

DH3_Ant1_Hop

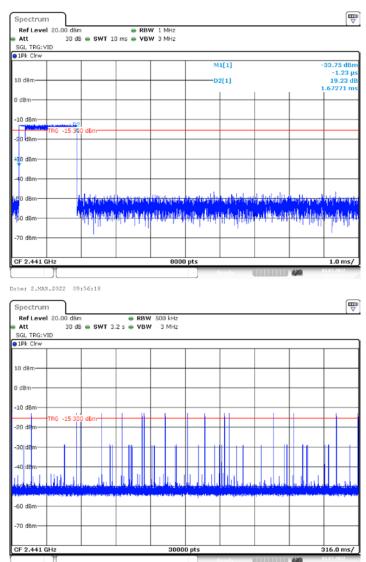
Date: 2.MAR.2022 09:45:03

Version 11: 2021-11-09

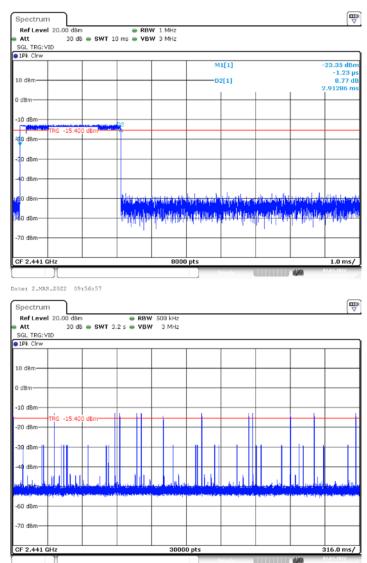


DH5_Ant1_Hop

Date: 2.MAR.2022 09:45:39


Version 11: 2021-11-09

430


2DH1_Ant1_Hop

Date: 2.MAR.2022 09:54:15

2DH3_Ant1_Hop

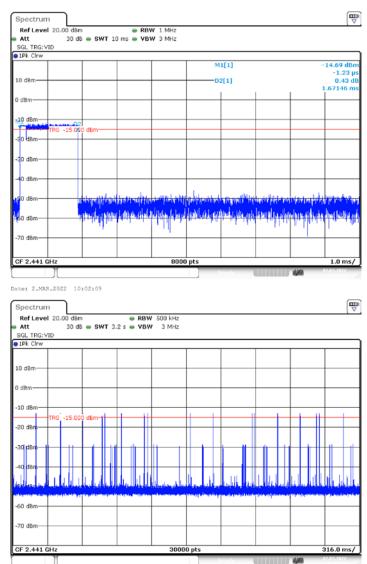
Date: 2.MAR.2022 09:56:24

2DH5_Ant1_Hop

Date: 2.MAR.2022 09:58:10

Att 30	m 18 👄 SWT 10	ms 👄 VBV	N 3 MHz					
SGL TRG:VID 1Pk Clrw								
JIPK CIFW				м	1[1]			-21.21 dB
10 dBm								-1.23 μ
10 dBm				0	2[1]			7.07 d 428.80 µ
0 dBm								
-10 dBm TRG -14.9								
-50 dBm	UU dBm							
-30 dBm	+ +							
-40 dBm								
FO dBroth June have	the strates.	identitad	triff, http://www.	a kiá latalat.	ter de la constant	(date in the	d the second	datas auto
	abiliti na da						ikaka Hinaka.	Jana
60 dBm	utist hits a	a falition of	line inter	1. satisfies	anni an	1.1.1.114	and the second second	Andred A
-70 dBm							1	·
/ 0 00111								1
								1
	0:01:34		8000	pts	teady.		4,40	1.0 ms/
ate: 2.MAR.2022 1	0:01:34		8000	i pts	leady.		dijKli	02.63.2622
ate: 2.MAR.2022 1		e RBW		pts	teady.		ujili	1.0 ms/
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 de Att 30			500 kHz	pts	teady.		1000	02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 dB Att 30 0 SGL TRG:VID	m		500 kHz	pts	leady.		ujan -	02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 dB Att 30 0 SGL TRG:VID	m		500 kHz	pts	leady.		uper	02.63.2622
Att: 2,MAR,2022 1 Spectrum Ref Level 20.00 df Att 30 1 SGL TRG:VID 1Pk Clrw	m		500 kHz	pts	te aify		الكترك 	02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 d Att 30 i SGL TRG:VID 10 dBm	m		500 kHz	pts	ieady.		6/6)	02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 d Att 30 i SGL TRG:VID 10 dBm	m		500 kHz	pts			4,451	02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 db Att SGL TRG:VID D1Pk Clrw 0 dBm 0 dBm 0 dBm	m		500 kHz	pts			4,49	02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 de Att 30 i SGL TRG:VID IPk Clrw 0 dBm10 dBm	m		500 kHz	pts			656	02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 de Att 30 i SGL TRG:VID 10 dBm 0 dBm -10 dB	m JB • SWT 3.2		500 kHz	pts				02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 db Att SGL TRG:VID D1Pk Cirw 10 dBm -10 dBm -20 dBm	m JB • SWT 3.2		500 kHz	pts				02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 d Att 30 i SGL TRG:VID 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm	m JB • SWT 3.2		500 kHz	pts				02.63.2622
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 db Att SGL TRG:VID D1Pk Cirw 10 dBm -10 dBm -20 dBm	m JB • SWT 3.2		500 kHz	pts				02.03.2022
Ate: 2.MAR.2022 1 Spectrum Ref Level 20.00 dB Att 30 (SGL TRG: VID IPk Chw 10 dBm 0 dBm -10 dBm -30 d	m JB • SWT 3.2		500 kHz	pts				02.03.2022
Ate: 2.MAR.2022 1 Spectrum RefLevel 20.00 dB Other SGL TRG:VID IPk Chw O dBm O dBm O dBm -10 dBm -30 d	m JB • SWT 3.2		500 kHz	pts				02.03.2022
Att 30 / SGL TRG:VID IPK Clrw I0 dBm O dBm TRG -14.9 -30 #Bm I0 dBm I0	m JB • SWT 3.2		500 kHz	pts				02.03.2022

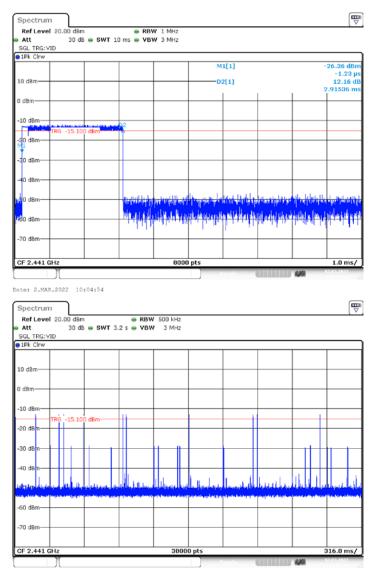
30000 pts


316.0 ms/

3DH1_Ant1_Hop

Version 11: 2021-11-09

CF 2.441 GHz


Date: 2.MAR.2022 10:01:39

3DH3_Ant1_Hop

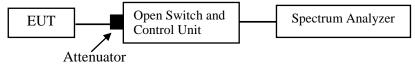
Date: 2.MAR.2022 10:02:14

Version 11: 2021-11-09

3DH5_Ant1_Hop

Date: 2.MAR.2022 10:04:59

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT


Applicable Standard

According to \$15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

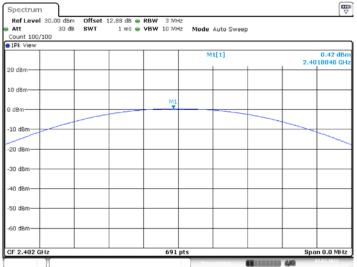
1. Place the EUT on a bench and set in transmitting mode.

- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	19 °C
Relative Humidity:	48 %
ATM Pressure:	101.2 kPa

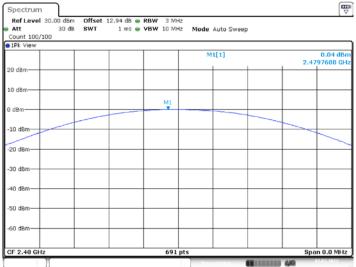

The testing was performed by Key Pei on 2022-03-02.

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	0.42	<=20.97	PASS
DH1	Ant1	2441	0.61	<=20.97	PASS
		2480	0.04	<=20.97	PASS
		2402	1.16	<=20.97	PASS
2DH1	Ant1	2441	1.28	<=20.97	PASS
		2480	0.7	<=20.97	PASS
		2402	1.67	<=20.97	PASS
3DH1	Ant1	2441	1.81	<=20.97	PASS
		2480	1.25	<=20.97	PASS

DH1_Ant1_2402


Date: 2.MAR.2022 08:52:49

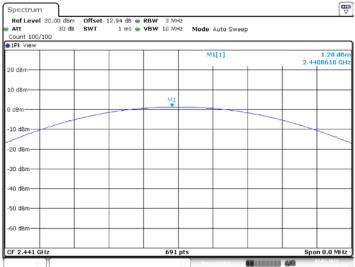
DH1_Ant1_2441

Att Count 100/100	30 dB 8WT	1 ms 🖕 🗸	BW 10 MHz M	ode Auto Sweep	,	
1Pk View				M1[1]		0.61 dB 2.4408730 GH
20 dBm						
10 dBm						
0 dBm			M1 ¥			
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						

Date: 2.MAR.2022 08:53:11

DH1_Ant1_2480

Date: 2.MAR.2022 08:53:31


2DH1_Ant1_2402

Count 100/100 IPk View		Mode Auto Swe	
		M1[1]	 1.16 dB 2.4018840 G
20 dBm			
10 dBm			
) dBm-	 M1		
-10 dBm			
20 dBm			
30 dBm			
40 dBm			
50 dBm			
60 dBm			
CF 2.402 GHz	691 pt	s	 Span 8.0 MF

Date: 2.MAR.2022 08:53:55

Version 11: 2021-11-09

2DH1_Ant1_2441

Date: 2.MAR.2022 08:54:17

2DH1_Ant1_2480

Count 100/100 1Pk View					
			M1[1]	2.47	0.70 dE 799310 G
20 dBm					
10 dBm		 		 	
) dBm		M3			
10 dBm					
20 dBm					
30 dBm					
40 dBm	-				
50 dBm	_			 	
60 dBm					

Date: 2.MAR.2022 08:54:34

3DH1_Ant1_2402 Spectrum 1.67 dBm 2.4020000 GHz M1[1] 20 dBm 10 dBm 0 dBm--10 dBm--20 dBm -30 dBm -40 dBm -50 dBm -60 dBm CF 2.402 GHz Span 8.0 MHz 691 pts A20

Date: 2.MAR.2022 08:54:54

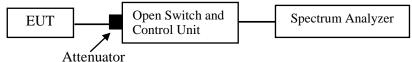
3DH1_Ant1_2441

Ref Level 30.00 d Att 30 Count 100/100		12.94 dB 👄 1 ms 👄	RBW 3 MHz VBW 10 MHz		Auto Sweep)		
1Pk View								
				м	1[1]			1.81 dBi 09420 GH
20 dBm	_					-	2.44	109420 GH
10 dBm								<u> </u>
0 dBm			M1					
u dem	-							
-10 dBm	-							
-20 dBm								
-30 dBm								
-50 0611								
-40 dBm								<u> </u>
-50 dBm								
-60 dBm								
oo dom								
CF 2.441 GHz			691 p					n 8.0 MHa

Date: 2.MAR.2022 08:55:18

3DH1_Ant1_2480 Spectrum Ref Level 30.00 dBm Offset 12.94 dB RBW 3 MHz Att 30 dB SWT 1 ms VBW 10 MHz Node Auto Sweep Count 100/100 IPk View Image 1.25 dBn 2.4800350 GHa M1[1] 20 dBrr 10 dBm 0 dBm--10 dBm--20 dBm -30 dBm -40 dBm -50 dBm -60 dBm Span 8.0 MHz CF 2.48 GHz 691 pts 420

Date: 2.MAR.2022 08:55:38


FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

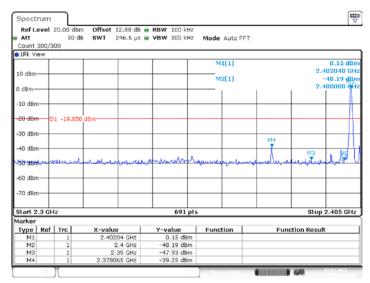
Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	19 °C
Relative Humidity:	48 %
ATM Pressure:	101.2 kPa

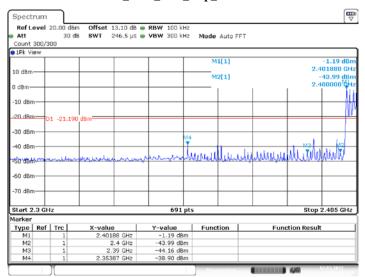

The testing was performed by Key Pei on 2022-03-02.

EUT operation mode: Transmitting

Test Result: Compliant.

Conducted Band Edge Result:

DH1_Ant1_Low_2402MHz



Date: 2.MAR.2022 08:57:25

DH1_Ant1_High_2480MHz

Ref Le	vel 20.0	0 dBm	Offset 12	.94 dB 🧉	RBW 100 kHz					-
Att		30 dB	SWT	1.1 ms 🦷	VBW 300 kHz	Mode Au	to Sweep			
Count :	300/300									
■1Pk Vie	ew									
						M1[1	1		-0.21	dBn
10 dBm·							-		2.480010	GH
TO OBILI-	M1					M2[1	1		-38.90	dBr
0 dBm—	M1								2.483500	GH
o dom										
-10 dBm					+					
	- 1 8									
20 dBm	-01 -2	0.210	dBm-		+ +					
					1 1					
-30 dBm		M2			M4					
40 d0m		NT I		MS	7					
-40 dBm	with the	Mu	Summer sha	dramate	more lemons and	monull	man	hoursells	manships	, may
-50 dBm										
					1 1					
-60 dBm		-			++					
					1 1					
-70 dBm		-			+ +					
Start 2	.47 GHz				691 p	ts			Stop 2.55	GHz
1arker										
Type	Ref Tro	:	X-value		Y-value	Function	n	Functio	in Result	
M1		1	2.48001	GHz	-0.21 dBm					
M2		1	2.4835		-38.90 dBm					
M3 M4		1		GHz	-44.29 dBm					
		1	2.503971		-36.84 dBm					

Date: 2.MAR.2022 09:00:29

DH1_Ant1_Low_Hop_2402MHz

Date: 2.MAR.2022 09:39:41

DH1_Ant1_High_Hop_2480MHz

Pofle	um	20.00 dBm	Offect	12 04 dB	RBW 100 kHz			
Att	ver 2	20.00 dem 30 de			VBW 300 kHz		Sween	
Count 3	ann/ar			1.1 10.5	FBR 500 Kin	Mode Auto :	Sweep	
1Pk Vie								
				1		M1[1]		-0.39 dBn
10 dBm-								2.473880 GH
M1						M2[1]		-39.64 dBn
a dam-								2.483500 GH
100/01	1N DA	n i			1 1			
-10 cB-m	#							
111.01	1	Ц			1 1			
20 dBm	-01	1 -20.390	dBm		+ +			
30 dBm								
30 dBm		1.142.1		M				
40 dBm		147.14	LINANIAA	110401	AAAAAAAAAA	MULLIN	MARIN	
ie dem		1.440	AAAAAAA	00000000	2000000000	างกอกงานการการเป	UNACCARA CONTRA	a some and a second
50 dBm	+				+ +			
					1 1			
60 dBm	+							
					1 1			
70 dBm	-							
Start 2.	47 G	Ηz			691 pt	5		Stop 2.55 GHz
larker								
	Ref	Trc	X-valu		Y-value	Function	Fur	nction Result
M1		1		88 GHz	-0.39 dBm			
M2		1		35 GHz	-39.64 dBm			
M3		1		2.5 GHz	-36.15 dBm			
M4		1	2.5009	57 GHz	-34.51 dBm			

Date: 2.MAR.2022 09:46:47

Att		20.00 dBr 30 d		 RBW 100 kHz VBW 300 kHz 	Mode Auto Fi	FT	
Count		00					
AFK TO	<u> </u>				M1[1]		0.13 dBn
10 dBm							2.401880 GH
TO OBIII					M2[1]		-46.98 dBn
0 dBm—	\rightarrow			_	<u> </u>		2.400000 QH
							1 A
-10 dBm	+						
20 dBm							
20 000	-0	1 -19.870	0 dBm				
30 dBm	\rightarrow						
	·					M4	
40 dBm	-						M3 M9
			and the lot of the	Marca marca		. Let	M3
50 den		بالريائة والرائدة	a service and the service of the ser	~ [~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- A Carlor - Carlor	and and a start	- and an and a grant of the second
-60 dBm							
00 4011							
-70 dBm	-			_		_	
Start 2	.3 GH	z		691 pts			Stop 2.405 GHz
larker							
Type	Ref	Trc	X-value	Y-value	Function	Funct	ion Result
M1		1	2.40188 GHz	0.13 dBm	. anotion	Tanca	
M2		1	2.4 GHz	-46.98 dBm			
M3		1	2.39 GHz	-48.41 dBm			
M4		1	2.377913 GHz	-41.33 dBm			

2DH1_Ant1_Low_2402MHz

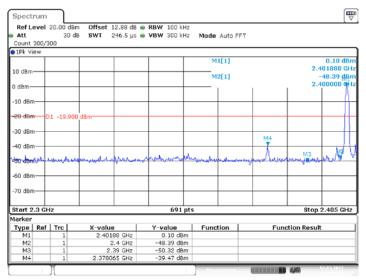
Date: 2.MAR.2022 09:01:56

2DH1_Ant1_High_2480MHz

	evel :	20.00 dBm		• RBW 100 kHz			
Att		30 dE	SWT 1.1 ms (VBW 300 kHz	Mode Auto S	weep	
Count 1Pk Vi		00					
1PK VI	ew				M1[1]		-0.22 dBn
					witti		2.480010 GH
LO dBm					M2[1]		-41.41 dBr
) dBm-	P	11					2.483500 GH
ubili-		Λ					
10 dBn	n	4					
20 dBn	n	1 -20.220	dBm				
30 dBn	n-+-	-		M4			
40 dBe	. 4	12 12	M				
40 dBn	w	Martin	menning	is known	monder	unter all more thank	nonuman
50 dBn	n						
60 dBn	n+						
70 dBn	n- -						
	.47 G	Hz		691 pts			Stop 2.55 GHz
larker		Trc	X-value	Y-value	Function	Function	Result
larker Type	Ker	1	2.48001 GHz	-0.22 dBm			
larker Type M1	Ker		9 409E CUs				
Start 2 Iarker Type M1 M2 M3	Ker	1	2.4835 GHz 2.5 GHz	-41.41 dBm -43.54 dBm			

Date: 2.MAR.2022 09:04:10

Spectrum RefLevel 20.00 dBm Att 30 dB Offset 13.10 dB ● RBW 100 kHz SWT 246.5 µs ● VBW 300 kHz Mode Auto FFT 30 dB Count 300/300 1Pk Viev M1[1] -0.77 dBn 2.404920 GH -42.90 dBn 2.400000 GH 10 dBm M2[1] 0 dBrr -10 dBm -20 dBm 01 -20.77 -30 dBm <u>M4</u> -40 dBm willow the Joular -SO 387 -60 dBm -70 dBr 691 pts Stop 2.405 GHz Start 2.3 GHz Marker -0.77 dBm -42.90 dBm -43.74 dBm -40.57 dBm Marker Type Ref Trc M1 1 M2 1 M3 1 M4 1 X-value 2.40492 GHz 2.4 GHz 2.39 GHz 2.377913 GHz Function Function Result 1000 C

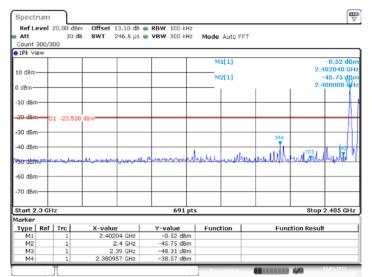

2DH1_Ant1_Low_Hop_2402MHz

Date: 2.MAR.2022 09:47:15

2DH1_Ant1_High_Hop_2480MHz

Ref Le	vel 20.00 d	IBm Offset 12.94 dB	RBW 100 kHz			()
Att	30	dB SWT 1.1 ms	👄 VBW 300 kHz	Mode Auto 9	Sweep	
Count 3	00/300					
●1Pk Vie	W					
				M1[1]		-0.39 dBr
10 dBm-						2.474920 GH
M1				M2[1]		-43.35 dBr
Q dBm	0.1.1					2.483500 GH
111111	1/////					
-10 dBm-						
20 dBm-						
20 0000	01 -20.3	IAD GRW				
-30 dBm-			1012			
	1 1 1				.	
-40 dBm-		MAANAAMAAN	Maryland	WARNER ALLAND	starka.	
	1			100 0p - 000	and taken were	and a state of the
-50 dBm-	-					
-60 dBm-						
-ou abm-						
-70 dBm-						
Start 2.4	17 CHz		691 pts			Stop 2.55 GHz
larker	ir dite		001 pt	,		0100 2100 0112
	Ref Trc	X-value	Y-value	Function	Eupe	tion Result
M1	1	2.47492 GHz	-0.39 dBm	Function	Func	tion result
M2	1	2.4835 GHz	-43.35 dBm			
M3	1	2.5 GHz	-36.25 dBm			
M4	1	2.501072 GHz	-35.94 dBm			

Date: 2.MAR.2022 09:58:54


3DH1_Ant1_Low_2402MHz

Date: 2.MAR.2022 09:06:29

3DH1_Ant1_High_2480MHz

	vel 2	0.00 dBm					
Att		30 dB	SWT 1.1 ms	VBW 300 kHz	Mode Auto S	weep	
Count 3)0					
1Pk Vie	w						
					M1[1]		-0.29 dBn
LO dBm-	+			+	M2[1]		2.480010 GH
	N	11			M2[1]		-39.49 dBn 2.483500 GH
) dBm—	-+-			+ +		1 I	2.483300 GH
10 dBm		1					
TO GBW-							
20-dBm-		-20,290	dam				
20 0011	1	-20,290	ubili				
30 dBm	\rightarrow						
		M2		M4			
40 dBm	11	N.	M	and manuelan	ليحسب وحساسا	in planes in	where the bid mat
		a me	and a stand the second s	and consider	contraction of the second	ware and the second second	week and the second
50 dBm	-						
60 dBm							
oo ubiii							
70 dBm	\rightarrow						
Start 2.	47 GI	-lz		691 pts			Stop 2.55 GHz
larker							
Type	Ref	Trc	X-value	Y-value	Function	Euncti	on Result
M1		1	2.48001 GHz	-0.29 dBm		T diffect	
M2		1	2.4835 GHz	-39.49 dBm			
M3		1	2.5 GHz	-44.95 dBm			
M4		1	2.504087 GHz	-37.45 dBm			

Date: 2.MAR.2022 09:10:39

3DH1_Ant1_Low_Hop_2402MHz

Date: 2.MAR.2022 09:59:28

3DH1_Ant1_High_Hop_2480MHz

Rofl	evel 20	.00 dBm	Offset 12.94	dB 👄 RBW 10	0 kHz			(
Att	ave i 20	30 dB		ms - VBW 30		Mode Auto S	ween	
	300/300		0111 1.1		U KITE I	Houe Auto a	weeh.	
1Pk Vi		,						
						M1[1]		-0.41 dBr
10 dBm								2.473880 GH
M1						M2[1]		-41.99 dBr
dem-					_			2.483500 GH
NVVN	NUU							
-10 dBn	i – Ť							
20 dBn								
50 gBu	01	-20.410	dBm		_			
-30 dBr				M3				
	·	Jună .						
-40 dBri		W/MU	UNHUMM	460 Lahrta	Month	ALLA AND	Mitchen	a la cata marta da astrola da
-50 dBri					_			
-60 dBr								
00 001	.							
-70 dBn	∩——							
Start 2	.47 GH	z		6	91 pts			Stop 2.55 GHz
larker								
Type	Ref	[rc	X-value	Y-valu	e	Function	Fu	nction Result
M1		1	2.47388 GH	iz -0.41	dBm			
M2		1	2.4835 GH					
		1	2.5 GH	z -35.69	dBm			
M3 M4		1	2.500145 GH	z -34.75				

Date: 2.MAR.2022 10:04:05

***** END OF REPORT *****