

RF TEST REPORT

Applicant	COOSEA GROUP (HK)	
Applicant	COMPANY LIMITED	
FCC ID	2A28USL112	
Product	Smart Phone	
Model	SL112A; SL112C	
Report No.	R2212A1312-R7	
Issue Date	March 16, 2023	

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2022)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Xn Ying

Prepared by: Xu Ying

Ken

Approved by: Xu Kai

TA Technology (Shanghai) Co., Ltd. Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.Chinc TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	st Laboratory	4
1.1.	Notes of the test report	4
1.2.	Test facility	4
1.3.	Testing Location	4
2. Ger	neral Description of Equipment under Test	5
2.1.	Applicant and Manufacturer Information	5
2.2.	General information	5
3. App	blied Standards	7
4. Tes	st Configuration	8
5. Tes	st Case Results	11
5.1.	Occupied Bandwidth	11
5.2.	Average Power Output	61
5.3.	Frequency Stability	69
5.4.	Power Spectral Density	73
5.5.	Unwanted Emission	117
5.6.	Conducted Emission	224
6. Mai	in Test Instruments	227
ANNEX	A: The EUT Appearance	228
ANNEX	B: Test Setup Photos	229

Number	Test Case	Clause in FCC rules	Verdict		
1	Average output power	15.407(a)	PASS		
2	Occupied bandwidth	15.407(e)	PASS		
3	Frequency stability	15.407(g)	PASS		
4	Power spectral density	15.407(a)	PASS		
5	Unwanted Emissions	15.407(b)	PASS		
6	Conducted Emissions	15.207	PASS		
Date of Testing: January 28, 2023 ~ March 3, 2023					
Date of Sample Received: January 11, 2023					
Note: PASS: The EUT complies with the essential requirements in the standard.					
FAIL: The EUT does not comply with the essential requirements in the standard.					
All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai)					
Co., Ltd. based on interpretations and/or observations of test results. Measurement					
Uncertainties were not taken into account and are published for informational purposes only.					

Summary of measurement results

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	xukai@ta-shanghai.com

2. General Description of Equipment under Test

Applicant	COOSEA GROUP (HK) COMPANY LIMITED
Applicant address	UNIT 5-6 16/F MULTIFIELD PLAZA 3-7A PRAT AVENUE
Applicant address	TSIMSHATSUI KL, HONG KONG, CHINA
Manufacturer	COOSEA GROUP (HK) COMPANY LIMITED
	UNIT 5-6 16/F MULTIFIELD PLAZA 3-7A PRAT AVENUE
Manufacturer address	TSIMSHATSUI KL, HONG KONG, CHINA

2.1. Applicant and Manufacturer Information

TA

2.2. General information

applicant.

EUT Description				
Model	SL112A; SL112C			
IMEI	351384680003616			
Hardware Version	1.0			
Software Version	SL112A10010			
Power Supply	Battery / AC adapter			
Antenna Type	PIFA Antenna			
Antenna Connector	A permanently attached antenna (meet with the standard FCC Part 15.203 requirement)			
Antenna Gain	2.07 dBi			
	U-NII-1: 5150MHz-5250MHz			
Operating Frequency Range(s)	U-NII-2A:5250MHz -5350MHz			
Operating Frequency Range(s)	U-NII-2C:5470MHz-5725MHz			
	U-NII-3: 5725MHz -5850MHz			
Modulation Type	802.11a/n (HT20/HT40) : OFDM			
Modulation Type	802.11ac (VHT20/VHT40/VHT80): OFDM			
Max. Output Power	15.93 dBm			
Testing temperature range	-20 ° C to 50° C			
Operating temperature range	-10 ° C to 55 ° C			
Operating voltage range	3.6 V to 4.4 V			
State DC voltage	3.85 V			
	EUT Accessory			
Adapter	Manufacturer: ShenZhen BaiJunDa Electronic Co.,Ltd			
Adapter	Model: UT-592A-5200ZY			
Rattery	Manufacturer: Huizhou Highpower Technology Co., Ltd			
Dattery	Model: BL-A50CT			
USB Cable	Manufacturer: Shenzhen Yihuaxing Electronics Co.Ltd			
	Model: K342-002			
Note:				
1. The EUT is sent from the applic	cant to TA and the information of the EUT is declared by the			

Report No.: R2212A1312-R7

2. This device support automatically discontinue transmission, while the device is not transmitting any information, the device can automatically discontinue transmission and become standby mode for power saving. The device can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3. (a) Manufacturers implements security features in any digitally modulated devices capable of operating in any of the U-NII bands, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software prevents the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device.

Manufacturers uses means including, but not limited to the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for equipment authorization.

(b) Manufacturers take steps to ensure that DFS functionality cannot be disabled by the operator of the U-NII device.

4. The customer claims that SL112A and SL112C are only different in model, and the others are the same. This report only tests SL112A.

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15E (2022) Unlicensed National Information Infrastructure Devices

ANSI C63.10-2013

Reference standard:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Mode	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

Report No.: R2212A1312-R7

Wireless Technology and Frequency Range

Wiroloss	Technology	Bandwidth	Channel	Frequency	
WITCHESS	Technology	Daliuwiuli	26	5180MHz	
			40	5240MHz	
	U-NII-1		40		
		40 MHz	30	5020MUz	
			40	5230MHZ	
			42	5210WHZ	
			52	5200MHZ	
		20 MHZ	60	5300MHZ	
	U-NII-2A		64	5320MHZ	
		40 MHz	54	5270MHZ	
		00.1411	62	5310MHZ	
		80 MHz	58	5290MHz	
			100	5500MHz	
			104	5520MHz	
			116	5580MHz	
			120	5600MHz	
	U-NII-2C	20 MHz	124	5620MHz	
Wi-Fi			128	5640MHz	
			136	5680MHz	
			140	5700MHz	
			144	5720MHz	
		40 MHz	102	5510MHz	
			110	5550MHz	
			118	5590MHz	
			126	5630MHz	
			134	5670MHz	
			142	5710MHz	
			106	5530MHz	
		80 MHz	122	5610MHz	
			138	5690MHz	
			149	5745MHz	
		20 MHz	157	5785MHz	
			165	5825MHz	
	U-NII-3 -		151	5755MHz	
		40 MHz	159	5795MHz	
		80 MHz	155	5775MHz	
Does this device support TPC Function? $oxtimes$ Yes \Box No					
Does this device support TDWR Band? $oxtimes$ Yes \Box No					

5. Test Case Results

5.1. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity
20°C ~ 25°C	45% ~ 50%

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

For U-NII-1/U-NII-2A/U-NII-2C, set RBW \approx 1% OCB kHz, VBW \geq 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

For U-NII-3, Set RBW = 100 kHz, VBW \ge 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Use the 99 % power bandwidth function of the instrument

Test Setup

Limits

Rule FCC Part §15.407(e)

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

TA

Test Results:

U-NII-1

Mode	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
	5180	16.688	25.448	PASS
802.11a	5200	16.555	20.016	PASS
	5240	16.593	20.726	PASS
	5180	17.743	25.714	PASS
802.11n HT20	5200	17.641	21.385	PASS
	5240	17.627	20.197	PASS
	5190	36.063	49.987	PASS
ου <u>2.1111Π14</u> υ	5230	36.019	41.669	PASS
	5180	17.701	21.415	PASS
802.11ac VHT20	5200	17.601	20.357	PASS
	5240	17.595	20.299	PASS
802.11ac VHT40	5190	35.950	40.872	PASS
	5230	35.985	41.081	PASS
802.11ac VHT80	5210	75.289	81.122	PASS

U-NII-2A

Mode	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
	5260	16.565	19.920	PASS
802.11a	5300	16.555	20.013	PASS
	5320	16.576	20.125	PASS
	5260	17.628	21.428	PASS
802.11n HT20	5300	17.628	22.222	PASS
	5320	17.630	22.971	PASS
802.11n HT40	5270	36.034	40.813	PASS
	5310	36.020	49.621	PASS
	5260	17.596	20.318	PASS
802.11ac VHT20	5300	17.616	20.286	PASS
	5320	17.613	20.267	PASS
802.11ac VHT40	5270	36.046	40.807	PASS
	5310	35.941	41.002	PASS
802.11ac VHT80	5290	75.332	81.154	PASS

U-NII-2C

	Carrier	99%	Minimum 26 dB	
Mode	frequency	bandwidth	bandwidth	Conclusion
	(MHz)	(MHz)	(MHz)	
	5500	16.500	20.172	PASS
	5520	16.563	23.268	PASS
802 115	5580	16.585	22.974	PASS
002.114	5680	16.577	24.189	PASS
	5700	17.379	29.919	PASS
	5720	16.567	21.334	PASS
	5500	17.643	20.388	PASS
	5520	17.646	22.548	PASS
902 11p LIT20	5580	17.628	20.767	PASS
802.1111H120	5680	17.615	22.101	PASS
	5700	18.117	30.000	PASS
	5720	17.631	23.936	PASS
	5510	36.018	40.970	PASS
	5550	36.033	50.115	PASS
902 11p LIT 40	5590	36.048	40.186	PASS
002.1111H140	5630	36.031	41.546	PASS
	5670	36.029	41.185	PASS
	5710	36.012	40.881	PASS
	5500	17.628	20.502	PASS
902 11cc \// IT20	5580	17.628	20.329	PASS
602.11aC VH120	5700	17.622	20.285	PASS
	5720	17.616	20.178	PASS
	5510	36.021	40.797	PASS
802.11ac VHT40	5550	35.990	40.971	PASS
	5670	36.013	40.572	PASS
	5710	35.985	40.553	PASS
	5530	75.320	80.882	PASS
802.11ac VHT80	5610	75.196	80.720	PASS
	5690	75.366	80.771	PASS

U-NII-3

Carrier 99% Minimum 6 dB Limit Mode frequency bandwidth bandwidth Conclusion (kHz) (MHz) (MHz) (MHz) 15.443 500 PASS 5720 --5745 14.390 500 PASS 16.546 802.11a 15.030 500 PASS 5785 16.539 5825 16.556 15.086 500 PASS 5720 15.051 500 PASS --5745 17.653 16.083 500 PASS 802.11n HT20 15.030 5785 17.646 500 PASS 5825 14.649 500 PASS 17.612 5710 35.057 500 PASS ---802.11n HT40 5755 36.045 35.063 500 PASS 5795 36.068 35.053 500 PASS 500 5720 16.431 PASS --5745 17.594 15.041 500 PASS 802.11ac VHT20 5785 17.594 15.049 500 PASS 5825 15.077 500 PASS 17.610 5710 --35.007 500 PASS 500 802.11ac VHT40 5755 36.065 35.099 PASS 5795 36.052 35.096 500 PASS 75.105 500 PASS 5690 ---802.11ac VHT80 5775 75.124 500 PASS 75.367

TA

Report No.: R2212A1312-R7

RF Test Report 99% bandwidth U-NII-1

OBW 802.11a 5180MHz

OBW 802.11a 5200MHz

OBW 802.11a 5240MHz

OBW 802.11ac(VHT20) 5200MHz

OBW 802.11ac(VHT40) 5190MHz

OBW 802.11ac(VHT80) 5210MHz

OBW 802.11n(HT20) 5180MHz

OBW 802.11n(HT20) 5200MHz

OBW 802.11n(HT20) 5240MHz

OBW 802.11n(HT40) 5190MHz

OBW 802.11n(HT40) 5230MHz

Report No.: R2212A1312-R7

U-NII-2A

OBW 802.11a 5260MHz

OBW 802.11a 5300MHz

OBW 802.11a 5320MHz

OBW 802.11ac(VHT20) 5300MHz

OBW 802.11ac(VHT40) 5270MHz

OBW 802.11ac(VHT80) 5290MHz

OBW 802.11n(HT20) 5260MHz

OBW 802.11n(HT20) 5300MHz

OBW 802.11n(HT20) 5320MHz

OBW 802.11n(HT40) 5270MHz

OBW 802.11n(HT40) 5310MHz

U-NII-2C

Report No.: R2212A1312-R7

OBW 802.11a 5500MHz

OBW 802.11a 5520MHz

Report No.: R2212A1312-R7

OBW 802.11a 5580MHz

OBW 802.11a 5680MHz

OBW 802.11a 5700MHz

OBW 802.11a 5720MHz

OBW 802.11ac(VHT20) 5500MHz

OBW 802.11ac(VHT20) 5700MHz

OBW 802.11ac(VHT40) 5510MHz

OBW 802.11ac(VHT40) 5670MHz

OBW 802.11ac(VHT80) 5530MHz

OBW 802.11ac(VHT80) 5690MHz

OBW 802.11n(HT20) 5500MHz

OBW 802.11n(HT20) 5520MHz

OBW 802.11n(HT20) 5580MHz

OBW 802.11n(HT20) 5680MHz

OBW 802.11n(HT20) 5700MHz

OBW 802.11n(HT20) 5720MHz

OBW 802.11n(HT40) 5510MHz

OBW 802.11n(HT40) 5550MHz

OBW 802.11n(HT40) 5590MHz

OBW 802.11n(HT40) 5630MHz

OBW 802.11n(HT40) 5670MHz

OBW 802.11n(HT40) 5710MHz

U-NII-3

Report No.: R2212A1312-R7

OBW 802.11a 5745MHz

OBW 802.11a 5785MHz

OBW 802.11a 5825MHz

OBW 802.11ac(VHT20) 5785MHz

OBW 802.11ac(VHT40) 5755MHz

OBW 802.11ac(VHT80) 5775MHz

OBW 802.11n(HT20) 5745MHz

OBW 802.11n(HT20) 5785MHz

OBW 802.11n(HT20) 5825MHz

OBW 802.11n(HT40) 5755MHz

OBW 802.11n(HT40) 5795MHz

Report No.: R2212A1312-R7

Minimum 6 dB bandwidth U-NII-3

-6dB Bandwidth 802.11a 5720MHz

-6dB Bandwidth 802.11a 5745MHz

-6dB Bandwidth 802.11a 5785MHz

-6dB Bandwidth 802.11a 5825MHz

-6dB Bandwidth 802.11ac(VHT20) 5720MHz

-6dB Bandwidth 802.11ac(VHT20) 5785MHz

-6dB Bandwidth 802.11ac(VHT40) 5710MHz

-6dB Bandwidth 802.11ac(VHT40) 5795MHz

-6dB Bandwidth 802.11ac(VHT80) 5775MHz

-6dB Bandwidth 802.11n(HT20) 5745MHz

-6dB Bandwidth 802.11n(HT20) 5785MHz

-6dB Bandwidth 802.11n(HT20) 5825MHz

-6dB Bandwidth 802.11n(HT40) 5710MHz

-6dB Bandwidth 802.11n(HT40) 5755MHz

5.2. Average Power Output

Ambient condition

Temperature	Relative humidity	
20°C ~ 25°C	45% ~ 50%	

Methods of Measurement

During the process of the testing, The EUT was connected to the average power meter through an external attenuator and a known loss cable. The EUT is max power transmission with proper modulation. We use Maximum average Conducted Output Power Level Method in KDB789033 for this test

Test Setup

Limits

Rule FCC Part 15.407(a)(1)(2)(3)

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is

🛟 eurofins

RF Test Report

required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. (3)For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum conducted output power spectral density shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Test Results

Mode	Duty cycle	Duty cycle correction Factor(dB)			
802.11a	0.97	0.13			
802.11n HT20	0.97	0.14			
802.11n HT40	0.94	0.28			
802.11ac VHT20	0.97	0.14			
802.11ac VHT40	0.94	0.28			
802.11ac VHT80	0.88	0.55			
Note: when Duty cycle≥0.98, Duty cycle correction Factor not required.					

Power Index								
Channel	802.11a	802.11n HT20	802.11ac VHT20	Channel	802.11n HT40	802.11ac VHT40	Channel	802.11ac VHT80
CH36	17	16	15	CH38	16	14.5	CH42	14.5
CH40	17	16	15	CH46	16	14.5	/	/
CH48	17	16	15	/	/	/	/	/
CH52	17	16	15	CH54	16	14.5	CH58	14.5
CH60	17	16	15	CH62	16	14.5	/	/
CH64	17	16	15	/	/	/	/	/
CH100	15	15	15	CH102	13	14.5	CH106	13.5
CH104	17	16	/	CH110	16	14.5	1	/
CH116	17	16	15	CH118	16	/	1	/
CH136	17	16	/	CH126	16	/	CH122	14.5
CH140	14	14	15	CH134	15	14.5	CH138	14.5
CH144	17	16	15	CH142	16	14.5	/	/
CH149	17	16	15	CH151	16	14.5	CH155	14.5
CH157	17	16	15	CH159	16	14.5	/	/
CH165	17	16	15	/	/	/	/	/

TA

RF Test Report

		Channel/Eregueney	B=26 dB	Limit	
Те	est Mode		bandwidth	11 dBm + 10 log B	
			(MHz)	(dBm)	(автт)
		52/5260	20.57	24.13>24	24.00
8	802.11a	60/5300	20.01	24.01>24	24.00
		64/5320	20.13	24.04>24	24.00
	000 11-	52/5260	21.43	24.31>24	24.00
	802.11n HT20	60/5300	22.22	24.47>24	24.00
	11120	64/5320	22.97	24.61>24	24.00
	802.11n	54/5270	40.81	27.11>24	24.00
U-MII-ZA	HT40	62/5310	49.62	27.96>24	24.00
	000 11	52/5260	20.32	24.08>24	24.00
	802.11ac	60/5300	20.29	24.07>24	24.00
	VH120	64/5320	20.27	24.07>24	24.00
	802.11ac	54/5270	40.81	27.11>24	24.00
	VHT40	62/5310	41.00	27.13>24	24.00
	802.11ac VHT80	58/5290	81.15	30.09>24	24.00
	802.11a	100/5500	20.17	24.05>24	24.00
		104/5520	23.79	24.76>24	24.00
		116/5580	22.97	24.61>24	24.00
		136/5680	24.19	24.84>24	24.00
		140/5700	29.92	25.76>24	24.00
		144/5720	21.33	24.29>24	24.00
	802.11n	100/5500	20.39	24.09>24	24.00
		104/5520	22.55	24.53>24	24.00
		116/5580	20.77	24.17>24	24.00
	HT20	136/5680	22.10	24.44>24	24.00
		140/5700	30.00	25.77>24	24.00
0-NII-2C		144/5720	23.94	24.79>24	24.00
		102/5510	40.97	27.12>24	24.00
		110/5550	50.12	28.00>24	24.00
	802.11n	118/5590	40.19	27.04>24	24.00
	HT40	126/5630	41.55	27.19>24	24.00
		134/5670	41.19	27.15>24	24.00
		142/5710	40.88	27.12>24	24.00
		100/5500	20.50	24.12>24	24.00
	802.11ac	116/5580	20.33	24.08>24	24.00
	VHT20	140/5700	20.29	24.07>24	24.00
		144/5720	20.18	24.05>24	24.00

RF Test Report		Report No.: R2212A1312-R7					
	102/5510	40.80	27.11>24	24.00			
802.11ac	110/5550	40.97	27.12>24	24.00			
VHT40	134/5670	40.57	27.08>24	24.00			
	142/5710	40.55	27.08>24	24.00			
	106/5530	80.88	30.08>24	24.00			
802.11ac VHT80	122/5610	80.72	30.07>24	24.00			
	138/5690	80.77	30.07>24	24.00			
Note: 250mW=24dBm	lote: 250mW=24dBm						

Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	36/5180	14.74	14.87	24.00	PASS
802.11a	40/5200	14.69	14.82	24.00	PASS
	48/5240	14.79	14.92	24.00	PASS
802.11n HT20	36/5180	13.66	13.80	24.00	PASS
	40/5200	13.62	13.76	24.00	PASS
	48/5240	13.80	13.94	24.00	PASS
	38/5190	13.55	13.83	24.00	PASS
δUZ.11/1Π14U	46/5230	13.60	13.88	24.00	PASS
	36/5180	12.76	12.90	24.00	PASS
802.11ac VHT20	40/5200	12.71	12.85	24.00	PASS
	48/5240	12.64	12.78	24.00	PASS
902 11 cc \/UT40	38/5190	11.95	12.23	24.00	PASS
802.11ac VH140	46/5230	11.98	12.26	24.00	PASS
802.11ac VHT80	42/5210	11.53	12.08	24.00	PASS
Note [.] Average Power	with duty factor = A	verage Power M	easured +Duty c	vcle correct	ion factor

U-NII-1

U-NII-2A

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	52/5260	14.76	14.89	24.00	PASS
802.11a	60/5300	14.73	14.86	24.00	PASS
	64/5320	14.60	14.73	24.00	PASS
802.11n HT20	52/5260	13.75	13.89	24.00	PASS
	60/5300	13.51	13.65	24.00	PASS
	64/5320	13.47	13.61	24.00	PASS
902 11p UT40	54/5270	13.52	13.80	24.00	PASS
002.11111140	62/5310	13.40	13.68	24.00	PASS
	52/5260	12.52	12.66	24.00	PASS
802.11ac VHT20	60/5300	12.54	12.68	24.00	PASS
	64/5320	12.48	12.62	24.00	PASS
902 11cc \/UT40	54/5270	11.63	11.91	24.00	PASS
002.1180 VH140	62/5310	11.74	12.02	24.00	PASS

TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPage 66 of 229This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

RF Test Report	Rep	ort No.: R2212	2A1312-R7			
802.11ac VHT80	58/5290	11.50	12.05	24.00	PASS	
Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor						

U-NII-2C

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	100/5500	13.51	13.64	24.00	PASS
	104/5520	15.64	15.77	24.00	PASS
902 112	116/5580	15.80	15.93	24.00	PASS
002.118	136/5680	14.95	15.08	24.00	PASS
	140/5700	12.72	12.85	24.00	PASS
	144/5720	14.32	14.45	24.00	PASS
	100/5500	13.10	13.24	24.00	PASS
	104/5520	14.33	14.47	24.00	PASS
900 11p LIT20	116/5580	14.25	14.39	24.00	PASS
002.11111120	136/5680	14.24	14.38	24.00	PASS
	140/5700	12.05	12.19	24.00	PASS
	144/5720	12.87	13.01	24.00	PASS
	102/5510	10.87	11.15	24.00	PASS
	110/5550	14.23	14.51	24.00	PASS
902 11p UT40	118/5590	14.09	14.37	24.00	PASS
002.11111140	126/5630	14.39	14.67	24.00	PASS
	134/5670	12.90	13.18	24.00	PASS
	142/5710	13.33	13.61	24.00	PASS
	100/5500	12.98	13.12	24.00	PASS
902 11aa V/UT20	116/5580	13.63	13.77	24.00	PASS
002.1180 00120	140/5700	12.96	13.10	24.00	PASS
	144/5720	12.12	12.26	24.00	PASS
	102/5510	12.03	12.31	24.00	PASS
	110/5550	12.28	12.56	24.00	PASS
602.11aC VH140	134/5670	11.94	12.22	24.00	PASS
	142/5710	11.58	11.86	24.00	PASS
	106/5530	11.01	11.56	24.00	PASS
802.11ac VHT80	122/5610	12.56	13.11	24.00	PASS
	138/5690	12.03	12.58	24.00	PASS
Note: Average Power	with duty factor = A	Average Power M	easured +Duty c	ycle correct	ion factor

U-NII-3

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	144/5720	6.74	6.87	30.00	PASS
000 44-	149/5745	14.76	14.89	30.00	PASS
802.11a	157/5785	14.24	14.37	30.00	PASS
	165/5825	14.13	14.26	30.00	PASS
	144/5720	5.57	5.71	30.00	PASS
	149/5745	13.58	13.72	30.00	PASS
802.11h H120	157/5785	13.14	13.28	30.00	PASS
	165/5825	13.08	13.22	30.00	PASS
	142/5710	0.97	1.25	30.00	PASS
802.11n HT40	151/5755	13.17	13.45	30.00	PASS
	159/5795	12.93	13.21	30.00	PASS
	144/5720	5.10	5.24	30.00	PASS
902 11aa \//JT20	149/5745	12.48	12.62	30.00	PASS
002.1180 01120	157/5785	12.16	12.30	30.00	PASS
	165/5825	12.05	12.19	30.00	PASS
	142/5710	-0.31	-0.03	30.00	PASS
802.11ac VHT40	151/5755	11.95	12.23	30.00	PASS
	159/5795	11.55	11.83	30.00	PASS
902 11aa \/UT90	138/5690	-3.77	-3.22	30.00	PASS
	155/5775	11.57	12.12	30.00	PASS
Note: Average Power	with duty factor = A	verage Power M	easured +Duty c	vcle correct	ion factor

5.3. Frequency Stability

Ambient condition

Temperature	Relative humidity
20°C ~ 25°C	45% ~ 50%

Method of Measurement

1. Frequency stability with respect to ambient temperature

a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies shown in 5.6.

b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument, through an attenuator if necessary.

c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.

e) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.

f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.

g) Measure the frequency at each of frequencies specified in 5.6.

h) Switch OFF the EUT but do not switch OFF the oscillator heater.

i) Lower the chamber temperature by not more that 10°C, and allow the temperature inside the chamber to stabilize.

j) Repeat step f) through step i) down to the lowest specified temperature.

2. Frequency stability when varying supply voltage

Unless otherwise specified, these tests shall be made at ambient room temperature (+15°C to +25 °C). An antenna shall be connected to the antenna output terminals of the EUT if possible. If the EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.

a) Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency-measuring instrument.

b) Tune the EUT to one of the number of frequencies required in 5.6. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal

Report No.: R2212A1312-R7

level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

c) Measure the frequency at each of the frequencies specified in 5.6.

d) Repeat the above procedure at 85% and 115% of the nominal supply voltage.

Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936Hz

Test Results

	Tamananatura	U-NII-1 Test Results						
			5200MHz					
(V)	(0)	1min	2min	5min	10min			
3.85	-10	5200.002107	5199.998391	5199.992706	5199.991083			
3.85	0	5200.001230	5199.997422	5199.983733	5199.990076			
3.85	10	5199.995405	5199.995857	5199.978059	5199.981444			
3.85	20	5199.993219	5199.990724	5199.977841	5199.972549			
3.85	25	5199.995609	5199.987412	5199.969456	5199.972249			
3.85	30	5199.998201	5199.978254	5199.961900	5199.971848			
3.85	40	5199.990641	5199.977959	5199.961599	5199.967143			
3.85	50	5199.992427	5199.974699	5199.961106	5199.964226			
3.60	25	5200.002185	5199.973555	5199.958049	5199.954939			
4.40	25	5200.004202	5199.970782	5199.948269	5199.954577			
Ма	x. ΔMHz	-0.009359	-0.029218	-0.051731	-0.045423			
	PPM	-1.799808	-5.618846	-9.948269	-8.735192			

Voltage (V)	Temperature (°C)	U-NII-2A Test Results			
		5300MHz			
		1min	2min	5min	10min
3.85	-10	5299.994461	5299.986434	5299.983140	5299.980299
3.85	0	5299.989885	5299.982999	5299.982924	5299.974472
3.85	10	5299.989912	5299.977834	5299.977192	5299.971314
3.85	20	5299.987693	5299.972401	5299.974475	5299.962227
3.85	25	5299.987797	5299.967841	5299.968009	5299.959309
3.85	30	5299.984594	5299.963596	5299.961378	5299.955655
3.85	40	5299.994186	5299.960801	5299.959587	5299.949495
3.85	50	5299.988474	5299.960202	5299.953376	5299.939724
3.60	25	5299.988099	5299.954810	5299.950235	5299.930982
4.40	25	5299.997547	5299.952563	5299.950213	5299.925112
Max. ΔMHz		-0.015406	-0.047437	-0.049787	-0.074888
PPM		-2.906792	-8.950377	-9.393774	-14.129811

DE	Teet	De	
ĸr	iest	ĸe	port

🛟 eurofins

TA

Voltage (V)	Temperature (°C)	U-NII-2C Test Results			
		5580MHz			
		1min	2min	5min	10min
3.85	-10	5579.992886	5579.984424	5579.983655	5579.979532
3.85	0	5579.995484	5579.975494	5579.983299	5579.970038
3.85	10	5579.991059	5579.967998	5579.979363	5579.968837
3.85	20	5579.989855	5579.967242	5579.976200	5579.964702
3.85	25	5579.995632	5579.963505	5579.968405	5579.963764
3.85	30	5579.995409	5579.958541	5579.963864	5579.957343
3.85	40	5580.004558	5579.956646	5579.959377	5579.953624
3.85	50	5580.005784	5579.947051	5579.951251	5579.950886
3.60	25	5579.997812	5579.941521	5579.944477	5579.948940
4.40	25	5580.000763	5579.934457	5579.942487	5579.945934
Max. ΔMHz		-0.010145	-0.065543	-0.057513	-0.054066
PPM		-1.818100	-11.746057	-10.306989	-9.689247

Voltage (V)	Temperature (°C)	U-NII-3 Test Results			
		5785MHz			
		1min	2min	5min	10min
3.85	-10	5785.001145	5784.992960	5784.984697	5784.982268
3.85	0	5784.992944	5784.988443	5784.978539	5784.972797
3.85	10	5784.991020	5784.986498	5784.969063	5784.964081
3.85	20	5785.000380	5784.976805	5784.960808	5784.954432
3.85	25	5784.995268	5784.972216	5784.951263	5784.949015
3.85	30	5784.999640	5784.971741	5784.944002	5784.944277
3.85	40	5785.008901	5784.969914	5784.940884	5784.943013
3.85	50	5785.006451	5784.966325	5784.940422	5784.933530
3.60	25	5785.015203	5784.958647	5784.937222	5784.927746
4.40	25	5785.006058	5784.958421	5784.928947	5784.921307
Max. ΔMHz		-0.008980	-0.041579	-0.071053	-0.078693
PPM		-1.552290	-7.187381	-12.282282	-13.602939

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity		
20°C ~ 25°C	45% ~ 50%		

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

Set RBW = 1MHz, VBW =3MHz for the band 5.150-5.250GHz, 5.250-5.350GHz, 5.470-5.725GHz. Set RBW = 470kHz, VBW =1.5MHz for the band 5.725-5.850GHz

The conducted PSD is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test setup

Limits

Rule FCC Part 15.407(a)(1)/ Part 15.407(a)(2) / Part 15.407(a)(3)

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500kHz band. If transmittingantennas of directional gain greater than 6 dBi are used, both the maximum conducted output power spectral density shall not exceed 30 dBm in any 500kHz band. If transmittingantennas of directional gain greater than 6 dBi are used, both the

amount in dB that the directional gain of the antenna exceeds 6 dBi.

Frequency Bands/MHz	Limits
5150-5250	11dBm/MHz
5.25-5.35 GHz and 5.47-5.725 GHz	11dBm/MHz
5725-5850	30dBm/500kHz

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

Test Results:

Note: Power Spectral Density =Read Value+Duty cycle correction factor

U-NII-1

Mode	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	36	5.27	5.40	11	PASS
802.11a	40	5.09	5.22	11	PASS
	48	5.26	5.39	11	PASS
	36	3.87	4.01	11	PASS
802.11n HT20	40	3.78	3.92	11	PASS
	48	4.25	4.39	11	PASS
902 11 5 UT40	38	0.74	1.02	11	PASS
802.11h H140	46	0.88	1.16	11	PASS
	36	3.21	3.35	11	PASS
802.11ac VHT20 802.11ac VHT40	40	2.95	3.09	11	PASS
	48	2.76	2.90	11	PASS
	38	-0.77	-0.49	11	PASS
	46	-0.89	-0.61	11	PASS
802.11ac VHT80	42	-3.98	-3.43	11	PASS

U-NII-2A

Mode	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	52	5.43	5.56	11	PASS
802.11a	60	5.08	5.21	11	PASS
	64	5.21	5.34	11	PASS
	52	4.32	4.46	11	PASS
802.11n HT20	60	3.71	3.85	11	PASS
	64	3.61	3.75	11	PASS
902 44 5 UT 40	54	0.82	1.10	11	PASS
802.11h H140	62	0.66	0.94	11	PASS
	52	3.10	3.24	11	PASS
802.11ac VHT20	60	2.93	3.07	11	PASS
	64	2.87	3.01	11	PASS
802.11ac VHT40	54	-1.10	-0.82	11	PASS

TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPage 75 of 229This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

RF Test Report				Report No.: R221	2A1312-R7
	62	-0.84	-0.56	11	PASS
802.11ac VHT80	58	-4.22	-3.67	11	PASS

U-NII-2C

Mode	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	100	4.04	4.17	11	PASS
	104	6.01	6.14	11	PASS
902 110	116	6.24	6.37	11	PASS
002.11a	136	5.49	5.62	11	PASS
	140	3.08	3.21	11	PASS
	144	5.05	5.18	11	PASS
	100	3.58	3.72	11	PASS
	104	4.70	4.84	11	PASS
802.11n	116	4.30	4.44	11	PASS
HT20	136	4.30	4.44	11	PASS
	140	2.24	2.38	11	PASS
	144	3.80	3.94	11	PASS
	102	-1.81	-1.53	11	PASS
	110	1.41	1.69	11	PASS
802.11n	118	1.41	1.69	11	PASS
HT40	126	1.66	1.94	11	PASS
	134	0.51	0.79	11	PASS
	142	0.93	1.21	11	PASS
	100	3.28	3.42	11	PASS
802.11ac	116	3.97	4.11	11	PASS
VHT20	140	3.41	3.55	11	PASS
	144	3.09	3.23	11	PASS
	102	-0.63	-0.35	11	PASS
802.11ac VHT40	110	-0.21	0.07	11	PASS
	134	-0.56	-0.28	11	PASS
	142	-0.80	-0.52	11	PASS
902 11aa \/UT90	106	-4.42	-3.87	11	PASS
002.11aC VH180	122	-3.21	-2.66	11	PASS

TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPageThis report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd. Page 76 of 229

RF Test Report				Report No.: R22	212A1312-R7
	13	-3.69	-3.14	11	PASS

U-NII-3

Mode	Channel Number	Read Value (dBm/470kHz)	Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)	Conclusion		
	144	0.03	0.43	30	PASS		
902 11-	149	1.83	2.23	30	PASS		
602.1Ta	157	1.41	1.81	30	PASS		
	165	1.52	1.92	30	PASS		
	144	-1.26	-0.85	30	PASS		
902 11p HT20	149	0.54	0.95	30	PASS		
δ02.111 H120	157	0.13	0.54	30	PASS		
	165	-0.19	0.22	30	PASS		
	142	-5.93	-5.38	30	PASS		
802.11n HT40	151	-3.10	-2.55	30	PASS		
	159	-3.11	-2.56	30	PASS		
	144	-2.24	-1.83	30	PASS		
902 11aa V/HT20	149	-0.58	-0.17	30	PASS		
002.11aC VH120	157	-0.95	-0.54	30	PASS		
	165	-0.54	-0.13	30	PASS		
	142	-7.48	-6.93	30	PASS		
802.11ac VHT40	151	-4.04	-3.49	30	PASS		
	159	-4.20	-3.65	30	PASS		
802.11ac VHT80	138	-11.15	-10.33	30	PASS		
	155	-7.69	-6.87	30	PASS		
Note: PSD=Read Value+Duty cycle correction factor +10*log(500/470) correction factor							

Report No.: R2212A1312-R7

U-NII-1

PSD 802.11a 5180MHz

PSD 802.11a 5200MHz

PSD 802.11a 5240MHz

PSD 802.11ac(VHT20) 5180MHz

PSD 802.11ac(VHT20) 5200MHz

PSD 802.11ac(VHT20) 5240MHz

Keysight Spectrum Analyzer - Swept SA R T RF 50 Ω AC 11:21:53 AM Jan 30, 202 SENSE:PULSE #Avg Type: RMS Avg|Hold: 100/100 TRACE 1 2 3 4 5 TYPE A Center Freq 5.190000000 GHz Trig: Free Run #Atten: 40 dB PNO: Fast IFGain:Low \rightarrow Mkr1 5.192 016 GHz -0.769 dBm Ref Offset 11.01 dB Ref 20.00 dBm 10 dB/div Log 1 Span 60.00 MHz Sweep 1.333 ms (10001 pts) Center 5.19000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* STATUS

PSD 802.11ac(VHT40) 5190MHz

PSD 802.11ac(VHT40) 5230MHz

PSD 802.11ac(VHT80) 5210MHz

PSD 802.11n(HT20) 5180MHz

PSD 802.11n(HT20) 5200MHz

PSD 802.11n(HT20) 5240MHz

PSD 802.11n(HT40) 5190MHz

PSD 802.11n(HT40) 5230MHz

Report No.: R2212A1312-R7

RF Test Report

PSD 802.11a 5260MHz

PSD 802.11a 5300MHz

PSD 802.11a 5320MHz

PSD 802.11ac(VHT20) 5260MHz

PSD 802.11ac(VHT20) 5300MHz

PSD 802.11ac(VHT20) 5320MHz

PSD 802.11ac(VHT40) 5270MHz

PSD 802.11ac(VHT40) 5310MHz

PSD 802.11ac(VHT80) 5290MHz

PSD 802.11n(HT20) 5260MHz

PSD 802.11n(HT20) 5300MHz

PSD 802.11n(HT20) 5320MHz

PSD 802.11n(HT40) 5270MHz

PSD 802.11n (HT40) 5310MHz

Report No.: R2212A1312-R7

RF Test Report

PSD 802.11a 5520MHz

PSD 802.11a 5580MHz

PSD 802.11a 5680MHz

PSD 802.11a 5700MHz

PSD 802.11a 5710MHz

Keysight Spectrum Analyzer - Swept SA R T RF 50 Ω AC 02:48:46 PM Jan 28, 202 #Avg Type: RMS Avg|Hold: 100/100 Center Freq 5.500000000 GHz TRACE 1 2 3 4 5 TYPE A WWWW DET A NNNN Trig: Free Run #Atten: 40 dB PNO: Fast IFGain:Low \rightarrow Mkr1 5.498 908 GHz 3.282 dBm Ref Offset 11.03 dB Ref 20.00 dBm 10 dB/div Log Ø Span 30.00 MHz Sweep 1.333 ms (10001 pts) Center 5.50000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz*

PSD 802.11ac(VHT20) 5500MHz

PSD 802.11ac(VHT20) 5580MHz

Keysight Spectrum Analyzer - Swept SA R T RF 50 Ω AC 02:53:27 PM Jan 28, 202 SE:PULSE #Avg Type: RMS Avg|Hold: 100/100 TRACE 1 2 3 4 5 TYPE A WWWW DET A NNNN Center Freg 5.700000000 GHz Trig: Free Run #Atten: 40 dB PNO: Fast IFGain:Low \rightarrow Ø

PSD 802.11ac(VHT20) 5700MHz

PSD 802.11ac(VHT20) 5710MHz

Keysight Spectrum Analyzer - Swept SA R T RF 50 Ω AC 11:35:29 AM Jan 30, 202 SENSE:PULSE #Avg Type: RMS Avg|Hold: 100/100 TRACE 1 2 3 4 5 TYPE A DET A NNNN Center Freg 5.510000000 GHz Trig: Free Run #Atten: 40 dB PNO: Fast IFGain:Low \rightarrow Mkr1 5.507 798 GHz -0.632 dBm Ref Offset 11.09 dB Ref 20.00 dBm 10 dB/div Log **V** Span 60.00 MHz Sweep 1.333 ms (10001 pts) Center 5.51000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* STATUS

PSD 802.11ac(VHT40) 5510MHz

PSD 802.11ac(VHT40) 5550MHz

PSD 802.11ac(VHT40) 5670MHz

PSD 802.11ac(VHT40) 5695MHz

PSD 802.11ac(VHT80) 5530MHz

PSD 802.11ac(VHT80) 5610MHz

PSD 802.11ac(VHT80) 5665MHz

PSD 802.11n(HT20) 5500MHz

PSD 802.11n(HT20) 5520MHz

PSD 802.11n(HT20) 5580MHz

PSD 802.11n(HT20) 5680MHz

PSD 802.11n(HT20) 5700MHz

PSD 802.11n(HT20) 5710MHz

PSD 802.11n(HT40) 5510MHz

PSD 802.11n(HT40) 5550MHz

PSD 802.11n(HT40) 5590MHz

PSD 802.11n(HT40) 5630MHz

PSD 802.11n(HT40) 5670MHz

PSD 802.11n(HT40) 5695MHz

Report No.: R2212A1312-R7

RF Test Report

PSD 802.11a 5740MHz

PSD 802.11a 5745MHz

PSD 802.11a 5785MHz

PSD 802.11a 5825MHz

PSD 802.11ac(VHT20) 5740MHz

PSD 802.11ac(VHT20) 5745MHz

PSD 802.11ac(VHT20) 5785MHz

PSD 802.11ac(VHT20) 5825MHz

PSD 802.11ac(VHT40) 5755MHz

PSD 802.11ac(VHT40) 5755MHz

PSD 802.11ac(VHT40) 5795MHz

PSD 802.11ac(VHT80) 5785MHz

PSD 802.11ac(VHT80) 5775MHz

PSD 802.11n (HT20) 5740MHz

PSD 802.11n(HT20) 5745MHz

PSD 802.11n(HT20) 5785MHz

PSD 802.11n(HT20) 5825MHz

PSD 802.11n(HT40) 5755MHz

PSD 802.11n(HT40) 5755MHz

PSD 802.11n(HT40) 5795MHz

5.5. Unwanted Emission

Ambient condition

Temperature	Relative humidity
20°C ~ 25°C	45% ~ 50%

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band range from 9kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

9kHz~150 kHz

RBW=200Hz, VBW=1kHz/ Sweep=AUTO

150 kHz~30MHz

RBW=9KHz, VBW=30KHz,/ Sweep=AUTO

Below 1GHz

RBW=100kHz / VBW=300kHz / Sweep=AUTO

a) Peak emission levels are measured by setting the instrument as follows:

Above 1GHz

PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

b) Average emission levels are measured by setting the instrument as follows:

Above 1GHz

AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)

e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific

Report No.: R2212A1312-R7

emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.

2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.

3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. For regulatory requirements that specify averaging only over the transmit duration (e.g., digital transmission system [DTS] and Unlicensed National Information Infrastructure [U-NII]), the video bandwidth shall be greater than [1 / (minimum transmitter on time)] and no less than 1 Hz.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the loop antenna is vertical, others antenna are vertical and horizontal.

The test is in transmitting mode.

Test setup

9KHz~ 30MHz

30MHz~ 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

Limits

- (1) For transmitters operating in the 5725-5850 MHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).
- (3) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).
- (4) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).

Note: the following formula is used to convert the EIRP to field strength

 $1 = EIRP[dBm] - 20 \log(d[meters]) + 104.77$, where E = field strength and

d = distance at which field strength limit is specified in the rules;

 $2 \in E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters

(5) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table.

Frequency of emission (MHz)	Field strength(µV/m)	Field strength(dBµV/m)
0.009–0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54