

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 24.APR.2023 17:18:35

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Ref Level 30.00 dBm Att 30 dB	Offset 11.50 dB SWT 230 ms	● VBW 300 kHz	Mode Auto Swe	еер	
1Pk View					
			M1[1]		0.60 dBr 2.4830 GH
20 dBm			M2[1]		-40.00 dBr
			T.	Τ. T	15.8630 GH
10 dBm				2	
M1					
D1 0.600 dB	m				
10 dBm					
20 dBm D2 -19.	400 dBm				
30 dBm					
			M2		
40 dBm	4	A . LAN ANK ON LANG	numer Mushing	morenau	AMULA CO. LAND & A LAND
40 dBm dharllwyddiadair 50 dBm	manutation	and arrest and and			
JU UBIII					
60 dBm					
Start 2.0 GHz		691 pt			Stop 25.0 GHz

Date: 24.APR.2023 17:19:07

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

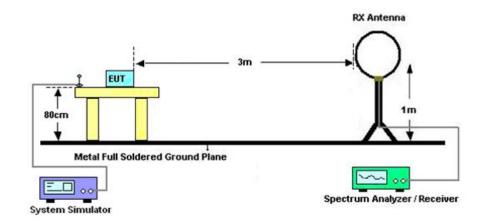
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

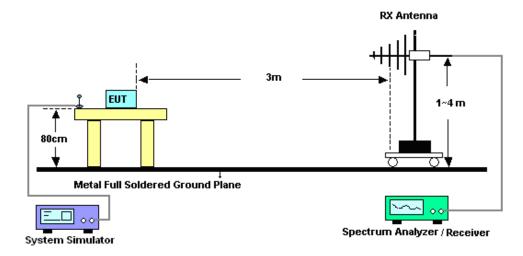
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

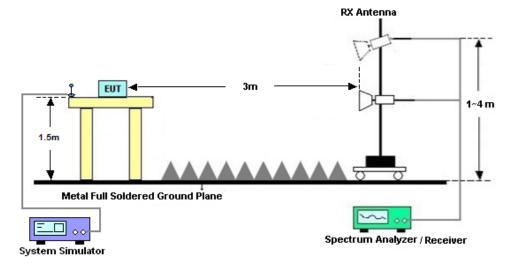
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: 2A28USL006D Page Number : 52 of 58 Report Issued Date : Jul. 04, 2023 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Apr. 23, 2023~ Apr. 24, 2023	Apr. 05, 2024	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 27, 2022	Apr. 23, 2023~ Apr. 24, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1542004	50MHz Bandwidth	Dec. 27, 2022	Apr. 23, 2023~ Apr. 24, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 07, 2022	May 16, 2023	Jul. 06, 2023	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Sep. 15, 2022	May 16, 2023	Sep. 14, 2023	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 17, 2022	May 16, 2023	Oct. 16, 2023	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000891	100Vac~250Vac	Jul. 07, 2022	May 16, 2023	Jul. 06, 2023	Conduction (CO01-SZ)
EMI Test Receiver&SA	Agilent	N9038A	MY52260185	20Hz~26.5GHz	Dec. 26, 2022	May 22, 2023~ Jun. 28, 2023	Dec. 25, 2023	Radiation (03CH01-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY55150213	10Hz~44GHz	Jul. 07, 2022	May 22, 2023~ Jun. 28, 2023	Jul. 06, 2023	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	May 22, 2023~ Jun. 28, 2023	Jun. 27, 2024	Radiation (03CH01-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Sep. 28, 2021	May 22, 2023~ Jun. 28, 2023	Sep. 27, 2023	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Jul. 07, 2022	May 22, 2023~ Jun. 28, 2023	Jul. 06, 2023	Radiation (03CH01-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr. 08,2023	May 22, 2023~ Jun. 28, 2023	Apr. 07,2024	Radiation (03CH01-SZ)
LF Amplifier	Burgeon	BPA-530	102209	0.01~3000Mhz	Apr. 04, 2023	May 22, 2023~ Jun. 28, 2023	Apr. 03,2024	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 19,2022	May 22, 2023~ Jun. 28, 2023	Oct. 18,2023	Radiation (03CH01-SZ)
HF Amplifier	KEYSIGHT	83017A	MY53270105	0.5GHz~26.5Gh z	Oct. 19,2022	May 22, 2023~ Jun. 28, 2023	Oct. 18,2023	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 06, 2022	May 22, 2023~ Jun. 28, 2023	Jul. 05, 2023	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	616010001985	N/A	Nov. 10, 2022	May 22, 2023~ Jun. 28, 2023	Nov. 09, 2023	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	May 22, 2023~ Jun. 28, 2023	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	May 22, 2023~ Jun. 28, 2023	NCR	Radiation (03CH01-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Power	±1.34 dB
Conducted Emissions	±1.34 dB
Occupied Channel Bandwidth	±0.012 %

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

	Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.7 dB
--	--	--------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.2 dB
--	--------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.3 dB
--	--------

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR340708A

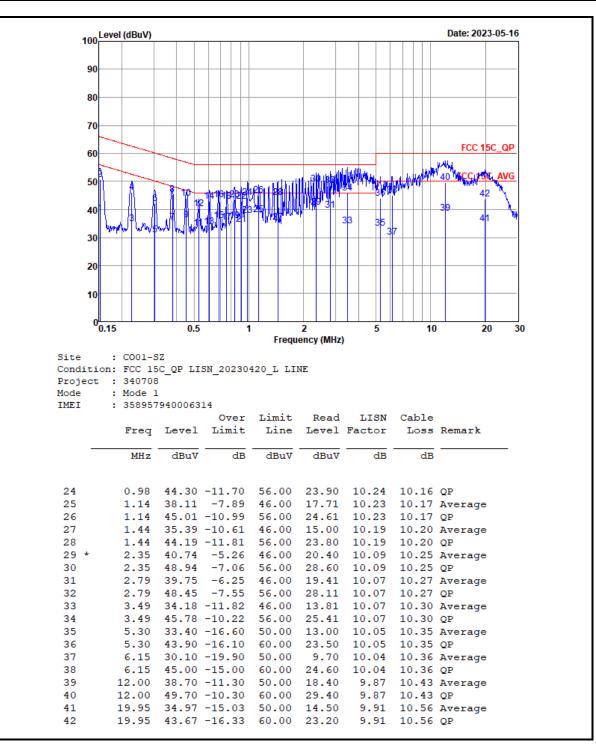
Appendix A. Test Result of Conducted Test Items

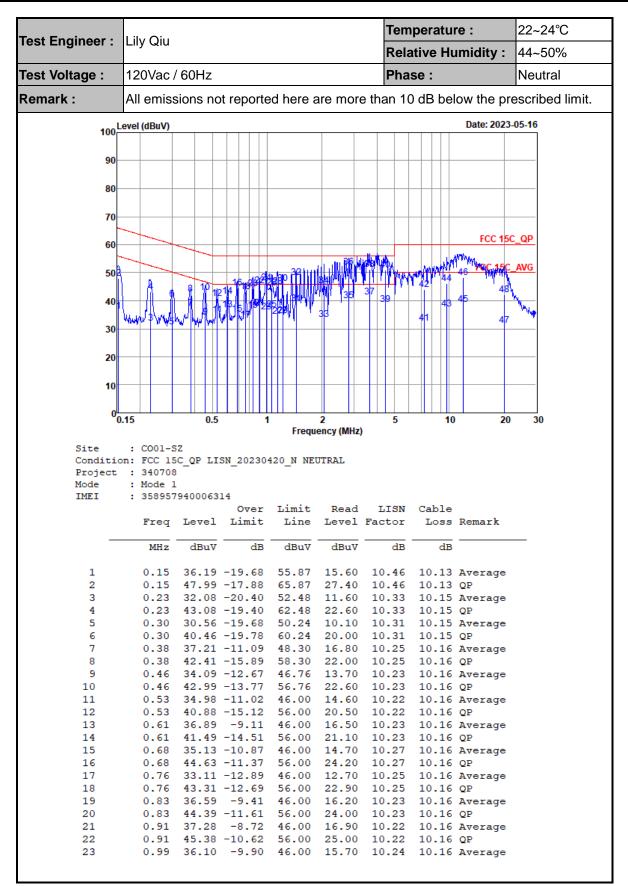
est English					ohng Zhang /23~2023/4/2		Temperature: Relative Humidity:		21~25 51~54	°(%
			<u>200</u>	dB and	99% Occu		<u>ULTS DATA</u> th and Hopping (Channel Separati	<u>on</u>	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail	
DH	1Mbps	1	0	2402	1.036	0.906	0.999	0.6908	Pass	
DH	1Mbps	1	39	2441	1.030	0.906	1.003	0.6869	Pass	
DH	1Mbps	1	78	2480	1.039	0.906	0.999	0.6927	Pass	
2DH	2Mbps	1	0	2402	1.276	1.164	0.999	0.8509	Pass	
2DH	2Mbps	1	39	2441	1.285	1.169	0.994	0.8567	Pass	
2DH	2Mbps	1	78	2480	1.285	1.166	0.999	0.8567	Pass	
3DH	3Mbps	1	0	2402	1.276	1.164	0.999	0.8509	Pass	
3DH	3Mbps	1	39	2441	1.285	1.169	1.003	0.8567	Pass	
3DH	3Mbps	1	78	2480	1.276	1.166	1.003	0.8509	Pass	

			<u>TE</u> :	ST RESULTS Dwell Time			
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail	
Nomal	79	106.67	2.89	0.31	0.4	Pass	
AFH	20	53.33	2.89	0.15	0.4	Pass	

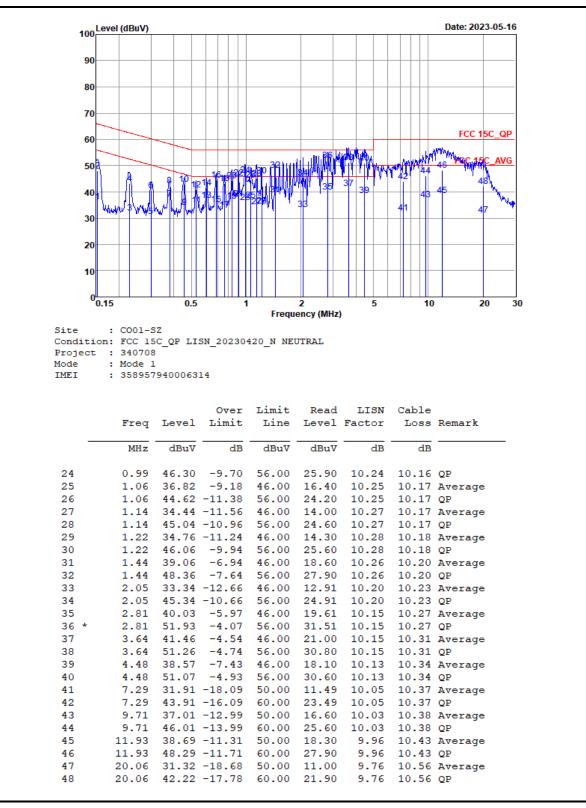
					<u>ST RESUL</u> Peak Powe
					_
DH	CH.	NTX	Peak Power	Power Limit	Test
DIT	CH.	NIA	(dBm)	(dBm)	Result
	0	1	7.60	20.97	Pass
DH5	39	1	7.60	20.97	Pass
	78	1	7.40	20.97	Pass
	0	1	6.80	20.97	Pass
2DH5	39	1	6.80	20.97	Pass
	78	1	6.40	20.97	Pass
	0	1	6.80	20.97	Pass
3DH5	39	1	6.80	20.97	Pass
	78	1	6.60	20.97	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>								
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)				
DH5	0 39	1	7.20	1.14				
	78	1	7.10	1.14				
	0	1	4.60	1.14	•			
2DH5	39 78	1	4.60 4.50	1.14				
	0	1	4.60	1.14	1			
3DH5	39	1	4.60	1.14	1			
	78	1	4.40	1.14				


<u>TEST RESULTS DATA</u> <u>Number of Hopping Frequency</u>								
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail					
79	20	> 15	Pass					


Appendix B. AC Conducted Emission Test Results

Toot Engineer				Ter	nperatu	22~24°C 44~50% Line		
Fest Engineer :				Rel	ative H			
Fest Voltage :	120Vac /	60Hz		Pha	ase :			
Remark :	All emissi	ons not reporte	d here are mo	ore than 1	0 dB be	elow the pr	rescribed limit.	
	00 Level (dBuV)					Date: 2023-0		
1	00							
	90							
	80							
	70							
						500 450		
	60					FCC 15C	<u>_QP</u>	
				and the second	LI WANT	40 15CC 15C	AVG	
	50 4	8 10 141012013	e61124111111111	1 <u>64 1</u> 361	Shelper.	42	N	
	40	12	2 			39	<u> </u>	
	word have		10,6380	33 35	7	41	77	
	30							
	20							
	20							
	10							
	0.15	0.5 1	2	5	10	20	30	
	0 <mark>0.15</mark>	0.5 1	2 Frequency (MI	-	10	20	30	
Site	: CO01-5	5Z	Frequency (MI	-	10	20	30	
Condi	: CO01-5 tion: FCC 15	SZ SC_QP LISN_202304	Frequency (MI	-	10	20	30	
Condi Proje Mode	: CO01-5 tion: FCC 15 ct : 340708 : Mode 1	SZ SC_QP LISN_202304 3	Frequency (MI	-	10	20] 30	
Condi Proje	: CO01-5 tion: FCC 15 ct : 340708 : Mode 1	3Z SC_QP_LISN_202304 3 L 7940006314	Frequency (M	łz)		20] 30	
Condi Proje Mode	: CO01-5 tion: FCC 15 ct : 340708 : Mode 1 : 358957	3Z SC_QP_LISN_202304 3 L 7940006314	Frequency (Mi 420_L LINE Limit Rea	iz) d LISN	Cable] 30	
Condi Proje Mode	: C001-5 tion: FCC 15 ct : 340706 : Mode 1 : 358957 Freq	52 56 QP LISN_202304 7940006314 Over Level Limit	Frequency (Mi 420_L LINE Limit Rea Line Leve	d LISN l Factor	Cable Loss] 30	
Condi Proje Mode	: CO01-5 tion: FCC 15 ct : 340708 : Mode 1 : 358957	52 5C_QP_LISN_202304 5 1 7940006314 Over	Frequency (Mi 420_L LINE Limit Rea	d LISN l Factor	Cable] 30 	
Condi Proje Mode	: C001-5 tion: FCC 15 ct : 340705 : Mode 1 : 358957 Freq 	52 56 QP LISN_202304 7940006314 Over Level Limit	Frequency (Mi 420_L LINE Limit Rea Line Leve dBuV dBu	d LISN l Factor V dB	Cable Loss dB] 30 	
Condi Proje Mode IMEI 1 1 2	: C001-5 tion: FCC 15 ct : 340700 : Mode 1 : 358957 Freq MHz 0.15 0.15	32 30 30 30 30 30 30 30 30 30 30 40 30 40 30 40 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1	d LISN 1 Factor V dB 0 10.47 0 10.47	Cable Loss dB 10.13 10.13	Remark Average QP] 30 	
Condi Proje Mode IMEI 1 2 3	: C001-5 tion: FCC 15 ct : 340700 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23	SZ SC_QP LISN_202304 P940006314 Over Level Limit dBuV dB 38.60 -17.31 50.70 -15.21 34.84 -17.73	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3	d LISN l Factor v dB 0 10.47 0 10.47 0 10.39	Cable Loss dB 10.13 10.13 10.15	Remark Average QP Average] 	
Condi Proje Mode IMEI 1 1 2	: C001-5 tion: FCC 15 ct : 340706 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23 0.23 0.30	52 50 QP LISN_202304 7940006314 Ver Level Limit dBuV dB 38.60 -17.31 50.70 -15.21 34.84 -17.73 46.14 -16.43 30.92 -19.23	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4	d LISN 1 Factor V dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36	Cable Loss dB 10.13 10.13 10.15 10.15 10.15	Remark Average QP Average QP Average] 	
Condi Proje Mode IMEI 1 2 3 4 5 6	: C001-5 tion: FCC 15 ct : 340706 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.15 0.23 0.23 0.30 0.30	SZ SC_QP LISN_202304 P940006314 Cover Level Limit dBuV dB 38.60 -17.31 50.70 -15.21 34.84 -17.73 46.14 -16.43 30.92 -19.23 42.02 -18.13	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5	d LISN Factor dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36 1 10.36	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.15	Remark Average QP Average QP Average QP		
Condi Proje Mode IMEI 1 2 3 4 5 6 7	: C001-5 tion: FCC 15 : 340706 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.15 0.23 0.23 0.23 0.30 0.30 0.38	52 50_QP LISN_202304 50 50 50 50 50 50 50 50 50 50	Frequency (Mi 420_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9	d LISN Factor d 10.47 0 10.47 0 10.39 1 10.36 1 10.36 0 10.29	Cable Loss dB 10.13 10.15 10.15 10.15 10.15 10.15	Remark Average QP Average QP Average QP] 	
Condi Proje Mode IMEI 1 2 3 4 5 6	: C001-5 tion: FCC 15 : 340706 : Mode 1 : 358957 Freq 	SZ SC_QP LISN_202304 P940006314 Cover Level Limit dBuV dB 38.60 -17.31 50.70 -15.21 34.84 -17.73 46.14 -16.43 30.92 -19.23 42.02 -18.13	Frequency (Mi 420_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0	d LISN l Factor V dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36 1 10.36 0 10.29 0 10.29	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16	Remark Average QP Average QP Average QP	30 	
Condi Proje Mode IMEI 1 2 3 4 5 6 7 8 9 10	: C001-5 tion: FCC 15 ct : 340706 : Mode 1 : 358957 Freq MHz 0.15 0.23 0.23 0.23 0.30 0.30 0.30 0.38 0.38 0.38 0.45 0.45	32 32 32 32 32 32 32 32 32 32	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.9 58.30 25.9 46.85 15.8 56.85 23.5	d LISN l Factor V dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36 0 10.29 0 10.29 0 10.27 0 10.27	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.15 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP] 	
Condi Proje Mode IMEI 1 2 3 4 5 6 7 7 8 9 10 11	: C001-5 tion: FCC 15 ct : 340706 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23 0.23 0.23 0.30 0.30 0.30 0.38 0.38 0.45 0.45 0.53	32 32 32 34 34 34 34 35 36 37 36 37 40006314 0ver Level Limit 38.60 -17.31 50.70 -15.21 34.84 -17.73 46.14 -16.43 30.92 -19.23 42.02 -18.13 35.35 -12.95 45.45 -12.85 36.23 -10.62 43.93 -12.92 33.32 -12.68	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0 46.85 15.8 56.85 23.5 46.00 12.9	d LISN l Factor V dB 0 10.47 0 10.47 0 10.39 1 10.36 1 10.36 1 0.29 0 10.27 0 10.27 0 10.27 0 10.26	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average	30	
Condi Proje Mode IMEI 1 2 3 4 5 6 7 8 9 10	: C001-5 tion: FCC 15 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23 0.23 0.30 0.30 0.30 0.38 0.45 0.45 0.45 0.53 0.53	32 32 32 32 32 32 32 32 32 32	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0 46.85 15.88 56.85 23.5 46.00 12.9 56.00 19.8	d LISN l Factor v dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36 1 10.36 1 10.36 0 10.29 0 10.27 0 10.27 0 10.26 0 10.26	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average	 	
Condi Proje Mode IMEI 1 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14	: C001-5 tion: FCC 15 : 340706 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23 0.23 0.23 0.30 0.30 0.30 0.38 0.45 0.45 0.45 0.53 0.53 0.53 0.61 0.61	52 52_QP LISN_202304 53 54 5940006314 Over Level Limit dBuV dB 38.60 -17.31 50.70 -15.21 34.84 -17.73 46.14 -16.43 30.92 -19.23 42.02 -18.13 35.35 -12.95 45.45 -12.85 36.23 -10.62 43.93 -12.92 33.32 -12.68 40.22 -15.78 33.83 -12.17 43.03 -12.97	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0 46.85 15.8 56.85 23.5 46.00 12.9 56.00 19.8 46.00 13.4 56.00 22.6	d LISN Factor V dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36 1 10.36 1 10.36 0 10.29 0 10.27 0 10.27 0 10.27 0 10.27 0 10.27	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP		
Condi Proje Mode IMEI 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15	: C001-5 tion: FCC 15 : 340700 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23 0.23 0.30 0.30 0.30 0.38 0.45 0.45 0.45 0.53 0.53 0.53 0.61 0.61 0.68	52 50_QP LISN_202304 50 50 50 50 50 50 50 50 50 50	Frequency (Mi 420_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0 46.85 15.8 56.85 23.5 46.00 12.9 56.00 19.8 46.00 13.4 56.00 22.6 46.00 13.5	d LISN Factor Factor d 10.47 0 10.47 0 10.39 1 10.36 1 10.36 1 10.36 0 10.29 0 10.27 0 10.25	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP		
Condi Proje Mode IMEI 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16	: C001-5 tion: FCC 15 : 340700 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23 0.23 0.23 0.30 0.30 0.30 0.38 0.45 0.45 0.45 0.53 0.53 0.53 0.61 0.61 0.68 0.68	52 50 QP LISN_202304 50 50 50 50 50 50 50 50 50 50	Frequency (Mi 420_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0 46.85 15.8 56.85 23.5 46.00 12.9 56.00 19.8 46.00 13.4 56.00 22.6 46.00 13.4	d LISN l Factor V dB 0 10.47 0 10.47 0 10.39 1 10.36 1 10.36 1 10.36 1 10.36 0 10.29 0 10.27 0 10.27 0 10.27 0 10.27 0 10.27 0 10.27 0 10.25 0 10.25	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP		
Condi Proje Mode IMEI 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15	: C001-5 tion: FCC 15 : 340700 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23 0.23 0.30 0.30 0.30 0.30 0.38 0.45 0.45 0.45 0.53 0.53 0.53 0.61 0.61 0.68 0.68 0.75	52 50_QP LISN_202304 50 50 50 50 50 50 50 50 50 50	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0 46.85 15.8 56.85 23.5 46.00 12.9 56.00 19.8 46.00 13.4 56.00 22.6 46.00 15.5 56.00 23.0 46.00 15.0	d LISN l Factor V dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36 1 10.36 1 10.36 1 10.36 0 10.29 0 10.27 0 10.27 0 10.27 0 10.27 0 10.25 0 10.25	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP		
Condi Proje Mode IMEI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	: C001-5 tion: FCC 15 : Mode 1 : 358957 Freq 	32 32 34 37 37 37 37 37 37 37 38 38 38 38 38 40 40 40 40 40 40 40 40 40 40	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0 46.85 15.8 56.85 23.5 46.00 12.9 56.00 12.4 46.00 15.5 56.00 23.0 46.00 15.0 56.00 22.4 46.00 15.6	d LISN l Factor V dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36 1 10.36 0 10.29 0 10.27 0 10.27 0 10.27 0 10.27 0 10.26 0 10.25 0 10.25 0 10.25 0 10.24	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP	 	
Condi Proje Mode IMEI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	: C001-5 tion: FCC 15 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23 0.23 0.30 0.30 0.30 0.30 0.38 0.45 0.45 0.45 0.53 0.53 0.61 0.61 0.68 0.68 0.75 0.75 0.83 0.83	32 32 34 37 37 37 37 37 37 37 37 38 38 30 38 40 40 40 40 40 40 40 40 40 40	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0 46.85 15.8 56.85 23.5 46.00 12.9 56.00 12.4 46.00 15.5 56.00 23.0 46.00 15.0 56.00 22.4 46.00 15.6 56.00 23.1	d LISN l Factor V dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36 1 0.36 0 10.29 0 10.27 0 10.27 0 10.27 0 10.27 0 10.25 0 10.25 0 10.24 0 10.24	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP		
Condi Proje Mode IMEI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	: C001-5 tion: FCC 15 : Mode 1 : 358957 Freq MHz 0.15 0.15 0.23 0.23 0.23 0.30 0.30 0.30 0.30 0.38 0.45 0.45 0.45 0.53 0.53 0.53 0.61 0.61 0.61 0.68 0.68 0.75 0.75 0.75 0.83 0.83 0.91	32 32 34 37 37 37 37 37 37 37 38 38 38 38 38 40 40 40 40 40 40 40 40 40 40	Frequency (Mi 220_L LINE Limit Rea Line Leve dBuV dBu 55.91 18.0 65.91 30.1 52.57 14.3 62.57 25.6 50.15 10.4 60.15 21.5 48.30 14.9 58.30 25.0 46.85 15.8 56.85 23.5 46.00 12.9 56.00 12.9 56.00 12.4 56.00 22.6 46.00 15.5 56.00 23.0 46.00 15.0 56.00 23.1 46.00 14.2	d LISN l Factor v dB 0 10.47 0 10.47 0 10.39 0 10.39 1 10.36 1 10.36 1 10.36 1 10.29 0 10.27 0 10.27 0 10.27 0 10.27 0 10.25 0 10.25 0 10.25 0 10.25 0 10.24 0 10.24 0 10.24 0 10.24 0 10.24 0 10.24 0 10.24 0 10.25 0 10.25 0 10.25 0 10.25 0 10.25 0 10.24 0 10.25 0 10.2	Cable Loss dB 10.13 10.13 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average QP Average		



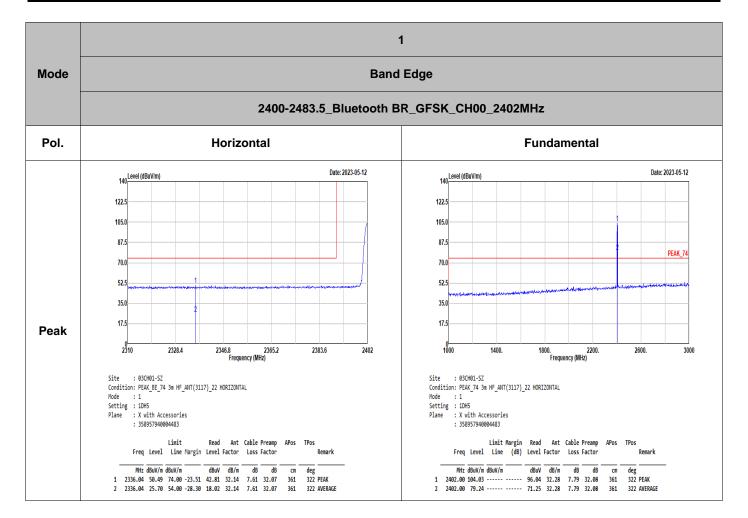
Note:

1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)

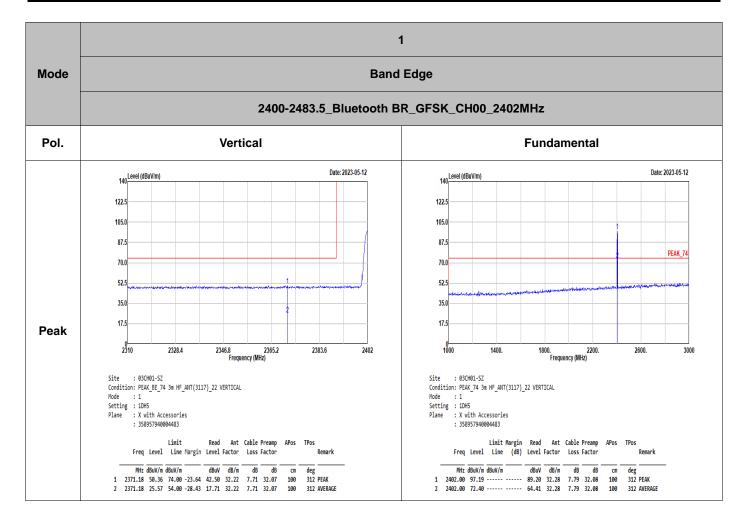
2. Over Limit(dB) = Level(dBµV) – Limit Line(dBµV)

Appendix C Radiated Spurious Emission Test Data

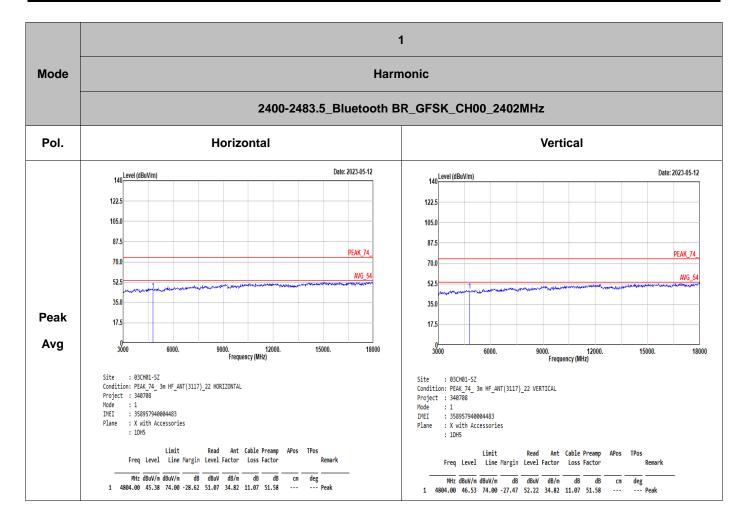
Test Engineer :	7bishens Li	Relative Humidity :	48~49%
Test Engineer .	Zhicheng Li	Temperature :	24~25 ℃


Radiated Spurious Emission Test Modes

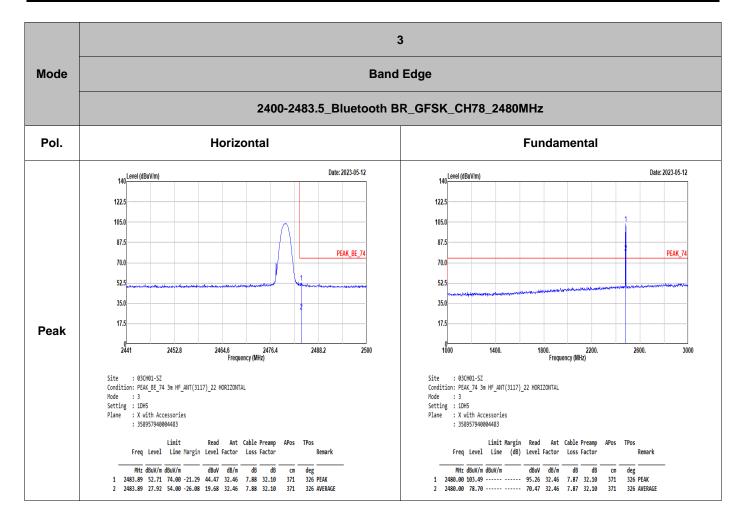
Mode	Band (MHz)	Modulation Channel Fr		Frequency	Data Rate	Remark
Mode 1	2400-2483.5	Bluetooth BR_GFSK	00	2402	1DH5	-
Mode 2	2400-2483.5	Bluetooth BR_GFSK	39	2441	1DH5	-
Mode 3	2400-2483.5	Bluetooth BR_GFSK	78	2480	1DH5	-
Mode 4	2400-2483.5	Bluetooth BR_GFSK	78	2480	1DH5	LF

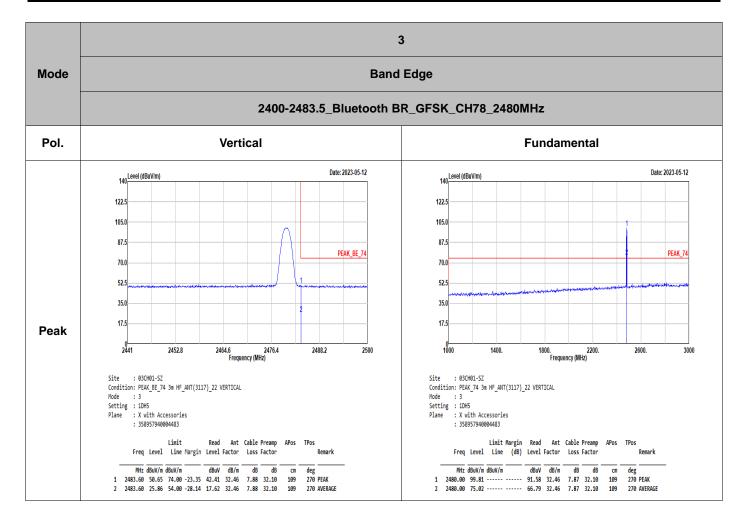

Summary of each worse mode

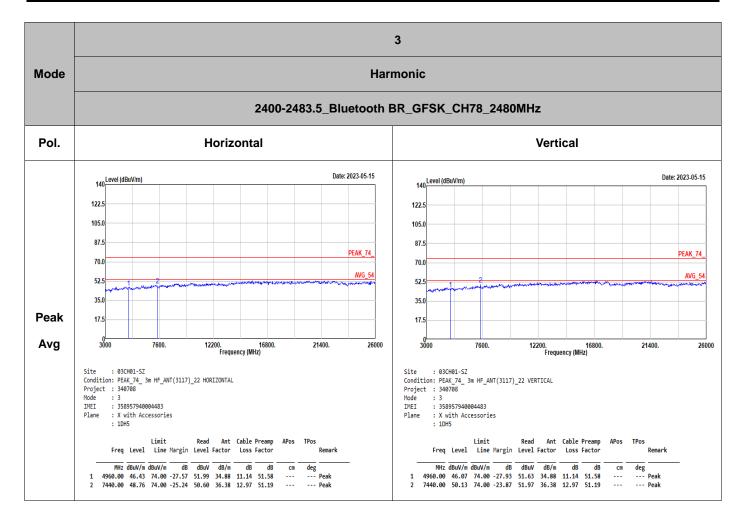
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth BR_GFSK	00	2336.04	50.49	74.00	-23.51	Н	PEAK	Pass	Band Edge
1	Bluetooth BR_GFSK	00	4804.00	46.53	74.00	-27.47	V	Peak	Pass	Harmonic
2	Bluetooth BR_GFSK	39	-	-	-	-	-	-	-	Band Edge
2	Bluetooth BR_GFSK	39	7323.00	47.94	74.00	-26.06	Н	Peak	Pass	Harmonic
3	Bluetooth BR_GFSK	78	2483.89	52.71	74.00	-21.29	Н	PEAK	Pass	Band Edge
3	Bluetooth BR_GFSK	78	7440.00	50.13	74.00	-23.87	V	Peak	Pass	Harmonic
4	Bluetooth BR_GFSK	78	491.72	41.91	46	-4.09	V	Peak	Pass	LF

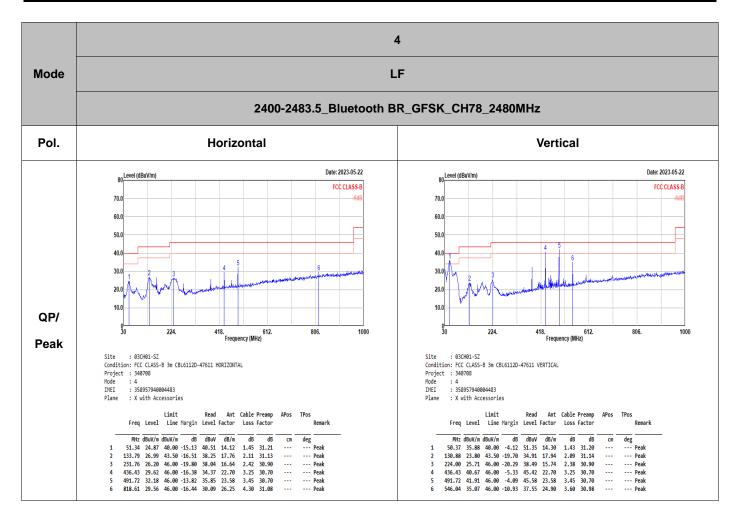


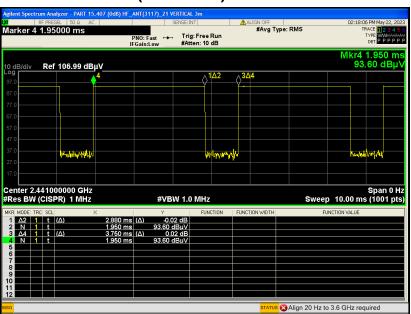


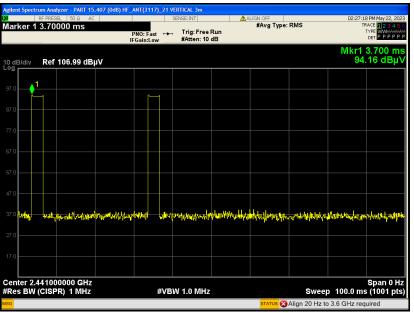












Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.880 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.