GTS Global United Technology Services Co., Ltd.

Report No.: GTSL202109000169F01

TEST REPORT

Applicant:	AI-ELINK TECHNOLOGY CO., LIMITED
Address of Applicant:	Room 408, 4th Floor, Lingyun Building, Honglang North 2nd Road, Baoan District, Shenzhen
Manufacturer/Factory:	AI-ELINK TECHNOLOGY CO., LIMITED
Address of Manufacturer/Factory:	Room 408, 4th Floor, Lingyun Building, Honglang North 2nd Road, Baoan District, Shenzhen
Equipment Under Test (E	:UT)
Product Name:	Conference Camera
Model No.:	CP30, CP30S, CP30W
Trade Mark:	N/A
FCC ID:	2A285-CP30
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Sep. 14,2021
Date of Test:	Sep. 14,2021-Sep. 23,2021
Date of report issued:	Sep. 23,2021
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description		
00	Sep. 23,2021	Original		
		6		
8 8 8 8	2 2 2 2	2 8 8 8 8		
	C B 2 B B	8 2 8 8		
9 19 19 19 19		0 0 0 0 0		

Prepared By:

sand

Date:

Sep. 23,2021

Project Engineer

Check By:

objuson (un)

Date:

Sep. 23,2021

Reviewer

Report No.: GTSL202109000169F01

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	4
5 GENERAL INFORMATION	5
5.1 GENERAL DESCRIPTION OF EUT	45 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1
5.2 TEST MODE 5.3 DESCRIPTION OF SUPPORT UNITS	
5.4 DEVIATION FROM STANDARDS	7
5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
5.6 TEST FACILITY	
5.8 ENVIRONMENTAL CONDITIONS	
6 TEST INSTRUMENTS LIST	8
7 TEST RESULTS AND MEASUREMENT DATA	10
7.1 ANTENNA REQUIREMENT	10
7.2 CONDUCTED EMISSIONS	
7.3 CONDUCTED PEAK OUTPUT POWER	
7.4 20DB EMISSION BANDWIDTH 7.5 CARRIER FREQUENCIES SEPARATION	
7.5 CARRIER FREQUENCIES SEPARATION 7.6 HOPPING CHANNEL NUMBER	
7.7 DWELL TIME	
7.8 BAND EDGE	
7.8.1 Conducted Emission Method	
7.8.2 Radiated Emission Method	
7.9 Spurious Emission	
7.9.1 Conducted Emission Method	
7.9.2 Radiated Emission Method	
8 TEST SETUP PHOTO	47
9 EUT CONSTRUCTIONAL DETAILS	

Report No.: GTSL202109000169F01

4 Test Summary

Test Item	Section in CFR 47	Result	
Antenna Requirement	15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Conducted Peak Output Power	15.247 (b)(1)	Pass	
20dB Occupied Bandwidth	15.247 (a)(1)	Pass	
Carrier Frequencies Separation	15.247 (a)(1)	Pass	
Hopping Channel Number	15.247 (a)(1)(iii)	Pass	
Dwell Time	15.247 (a)(1)(iii)	Pass	
Radiated Emission	15.205/15.209	Pass	
Band Edge	15.247(d)	Pass	

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz	3.8039dB	(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)	

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Product Name:	Conference Camera
Model No.:	CP30, CP30S, CP30W
Model Declaration	PCB board, structure and internal of these model(s) are the same,
0 0 0 0	So no additional models were tested.
Test sample(s) ID:	GTSL202109000169-1
Sample(s) Status:	Engineer sample
Hardware Version:	V3.1
Software Version:	V317
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	PCB ANT
Antenna gain:	0.00dBi
Power supply:	DC 12V/1A From External Circuit
Adapter Information:	Mode: AS1201A-1201000USL
8 8 ? S	Input: AC 100-240V, 50/60Hz, 0.35A MAX
6 8 8 8	Output: DC 12V, 1A

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		\sim

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

 FCC—Registration No.: 38 	1383
--	------

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

8	All tests were performed at:
	Global United Technology Services Co., Ltd.
	Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang
4	Road, Baoan District, Shenzhen, Guangdong, China 518102
Sec. 1	Tel: 0755-27798480
	Fax: 0755-27798960

5.8 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Conducted testing:

Temperature:	25 ° C
	10 10 10
Humidity:	51 %
6 6 6 6 6	6 6
Atmospheric pressure:	950-1050mbar

6 Test Instruments list

nau	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022		
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022		
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022		
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022		
14	Amplifier (18-26GHz) Rohde & Schwarz		AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022		
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022		
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022		

Conducted Emission								
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022		
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022		
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022		
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022		

RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022		

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022		
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

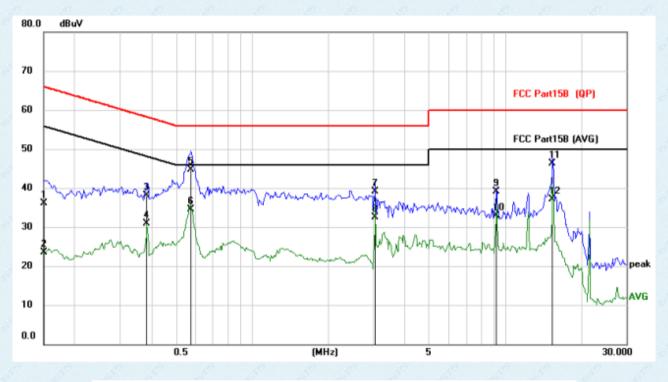
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the is 0.00dBi, reference to the appendix II for details

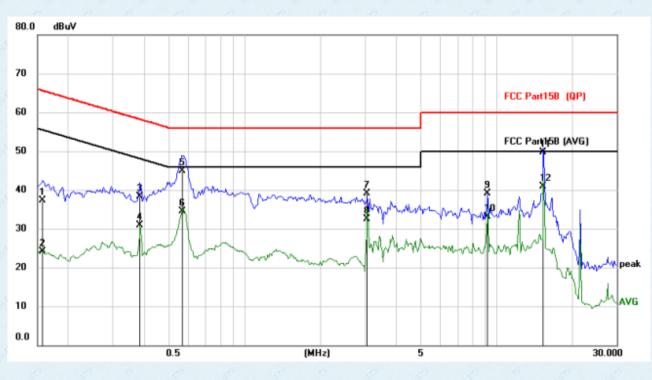
Test Requirement:	FCC Part15 C Section 15.207	0 0 0		
Test Method:	ANSI C63.10:2013	10 IS	9 9	10
Test Frequency Range:	150KHz to 30MHz			S.
Class / Severity:	Class B	e e e	8 8 C	6
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto	2 6	S
Limit:		Limi	t (dBuV)	L.
	Frequency range (MHz)	Quasi-peak	Avera	ge
	0.15-0.5	66 to 56*	56 to 4	46*
	0.5-5	56	46	L.
	5-30	60	50	
	* Decreases with the logarithr		6	1 Contraction of the second se
Test setup:	Reference Plane	•		
	Equipment E.U.T	EMI Receiver		
Test procedure:	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Receiver	main power th	rough a
Test procedure:	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN! Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impo 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer the	Receiver are connected to the n network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling imp	This provides a uring equipmer ne main power bedance with 50	a nt. through Dohm
Test procedure:	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impo 2. The peripheral devices are LISN that provides a 50ohr	Receiver are connected to the n network (L.I.S.N.). edance for the meas also connected to the n/50uH coupling imp o the block diagram checked for maximud d the maximum emist all of the interface of	This provides a uring equipmer bedance with 50 of the test setu um conducted ssion, the relative cables must be	a nt. through a Dohm Ip and ve
Test procedure:	 Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling import The peripheral devices are LISN that provides a 500hr termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and 	Receiver are connected to the n network (L.I.S.N.). edance for the meas also connected to th m/50uH coupling imp o the block diagram checked for maximum d the maximum emis all of the interface of 2013 on conducted in	This provides a uring equipmer bedance with 50 of the test setu um conducted ssion, the relative cables must be	a nt. through a Dohm Ip and ve
	 Test table/Insulation plane Remark: E U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling import 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10: 	Receiver are connected to the n network (L.I.S.N.). edance for the meas also connected to the n/50uH coupling imp o the block diagram checked for maximud d the maximum emist all of the interface of 2013 on conducted to s	This provides a uring equipmer bedance with 50 of the test setu um conducted ssion, the relative cables must be	a nt. through a Dohm Ip and ve
Test Instruments:	Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators at line impedance stabilization 500hm/50uH coupling impedences are LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details	Receiver are connected to the n network (L.I.S.N.). edance for the meas also connected to the n/50uH coupling imp o the block diagram checked for maximud d the maximum emist all of the interface of 2013 on conducted to s	This provides a uring equipment bedance with 50 of the test setu um conducted ssion, the relative cables must be measurement.	a ht. through a Dohm Ip and ve
Test Instruments: Test mode:	 Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling import The peripheral devices are LISN that provides a 50ohr termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details Refer to section 5.2 for details 	Receiver are connected to the n network (L.I.S.N.). edance for the meas also connected to the m/50uH coupling imp o the block diagram checked for maximum d the maximum emist all of the interface of 2013 on conducted to s	This provides a uring equipment bedance with 50 of the test setu um conducted ssion, the relative cables must be measurement.	a ht. through a Dohm ip and ve changed


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Report No.: GTSL202109000169F01

Measurement data:

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of GFSK 2402MHz


Line:

No. M		Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	25.19	10.92	36.11	66.00	-29.89	QP
2	0.1500	12.58	10.92	23.50	56.00	-32.50	AVG
3	0.3840	27.21	10.92	38.13	58.19	-20.06	QP
4	0.3840	19.89	10.92	30.81	48.19	-17.38	AVG
5 *	0.5751	33.82	10.92	44.74	56.00	-11.26	QP
6	0.5751	23.57	10.92	34.49	46.00	-11.51	AVG
7	3.0702	28.13	11.02	39.15	56.00	-16.85	QP
8	3.0702	21.57	11.02	32.59	46.00	-13.41	AVG
9	9.2166	27.77	11.32	39.09	60.00	-20.91	QP
10	9.2166	21.60	11.32	32.92	50.00	-17.08	AVG
11	15.3630	34.88	11.47	46.35	60.00	-13.65	QP
12	15.3630	25.73	11.47	37.20	50.00	-12.80	AVG

Neutral:

Report No.: GTSL202109000169F01

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1578	26.41	10.93	37.34	65.58	-28.24	QP
2	0.1578	13.21	10.93	24.14	55.58	-31.44	AVG
3	0.3840	27.34	10.92	38.26	58.19	-19.93	QP
4	0.3840	20.00	10.92	30.92	48.19	-17.27	AVG
5	0.5641	33.92	10.92	44.84	56.00	-11.16	QP
6	0.5641	23.50	10.92	34.42	46.00	-11.58	AVG
7	3.0702	28.01	11.02	39.03	56.00	-16.97	QP
8	3.0702	21.57	11.02	32.59	46.00	-13.41	AVG
9	9.2166	27.85	11.32	39.17	60.00	-20.83	QP
10	9.2166	21.69	11.32	33.01	50.00	-16.99	AVG
11	15.3591	38.23	11.47	49.70	60.00	-10.30	QP
12 *	15.3591	29.46	11.47	40.93	50.00	-9.07	AVG

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

The contractor to an output t			
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Limit:	30dBm(for GFSK),20.97dBm(for EDR)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.3 Conducted Peak Output Power

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
2 2	Lowest	0.15	0 0	2 2	
GFSK	Middle	-4.36	30.00	Pass	
	Highest	-7.45		6	
	Lowest	-0.17		6	
π/4-DQPSK	Middle	-4.48	20.97	Pass	
	Highest	-7.74	S	8 8	
0 2 2	Lowest	-0.27	8 8 3	R A	
8-DPSK	Middle	-4.55	20.97	Pass	
0 0 0	Highest	-7.81			

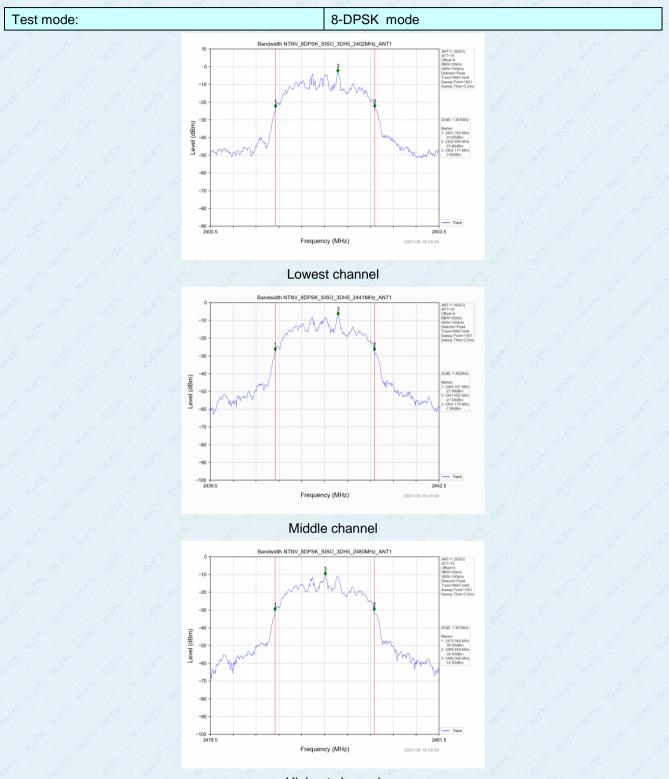
FCC Part15 C Section 15.247 (a)(1) Test Requirement: ANSI C63.10:2013 Test Method: Limit: N/A Test setup: Spectrum Analyzer E.U.T Non-Conducted Table **Ground Reference Plane Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Test results: Pass

7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
0 0 0	Lowest	0.972	0 0 0
GFSK	Middle	0.950	Pass
	Highest	0.976	6
a - a	Lowest	1.325	6 6 6
π/4-DQPSK	Middle	1.319	Pass
	Highest	1.310	8 8 6
0 8 8	Lowest	1.301	2 8 8
8-DPSK	Middle	1.302	Pass
	Highest	1.301	

Test plot as follows: GFSK mode Test mode: SISO DH5 2402MHz ANT1 h NTNV GFSK 0 -10 -20 dB:0.9 Level (dBm) -50 -60 -70 -80 1 03.0 24 Frequency (MHz) Lowest channel SISO DH5 2441MHz ANT1 GESK -10 -20 -30 -4(Level (dBm) 2440.514 -25.13dB 2441.464 -25.13dB 2441.176 -5.13dB -50 -70 -80 -90 -100 2442.0 Frequency (MHz) Middle channel NTNV_GFSK_SISO_DH5_2480MHz_ANT1 -10 -20 -30 -4(Level (dBm) -50 -6 -70 -80 -90 2481.0 Frequency (MHz)

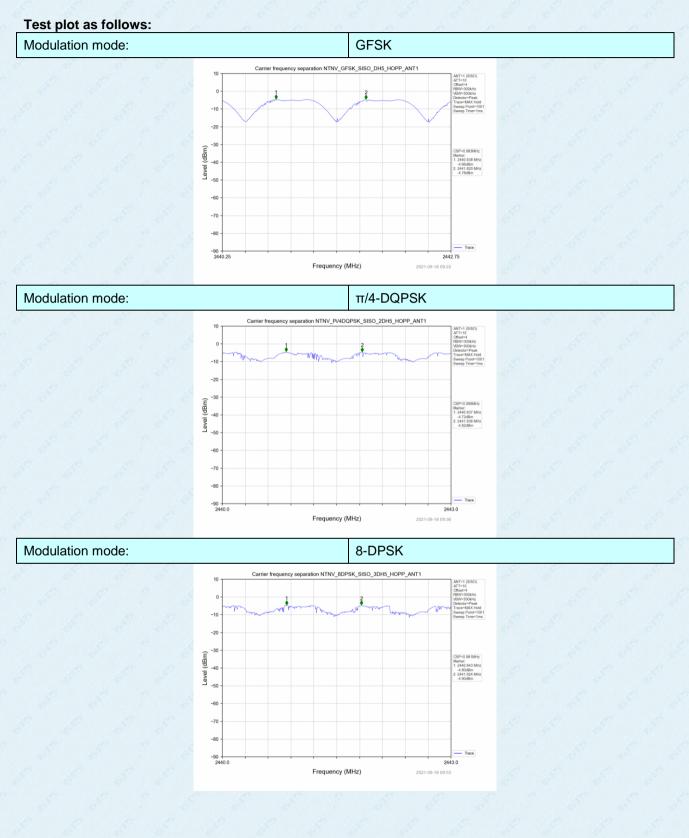

Highest channel

Report No.: GTSL202109000169F01

Highest channel

Report No.: GTSL202109000169F01

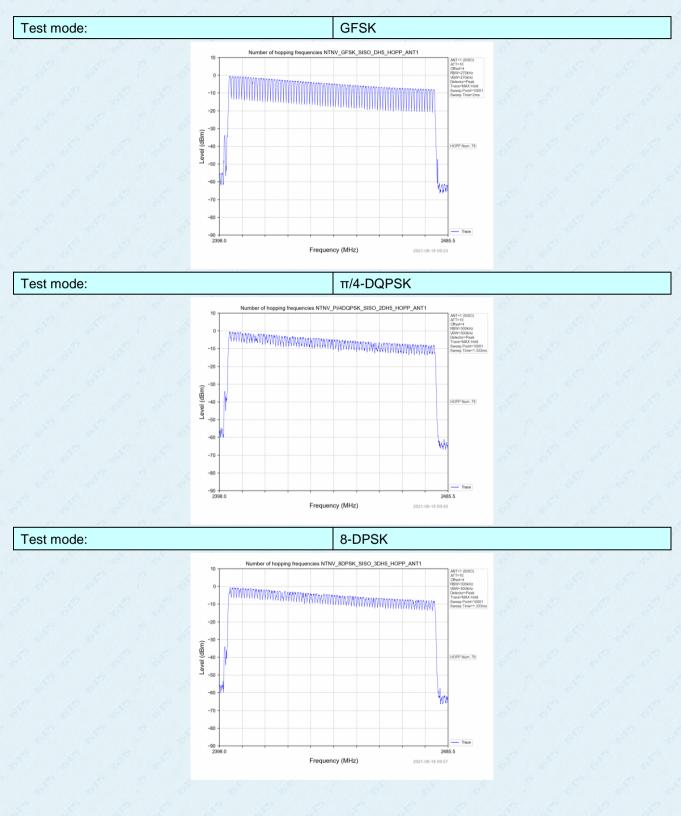
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer Image: Construction of the sector of		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


7.5 Carrier Frequencies Separation

Measurement Data

Mode	Carrier Frequencies Separation (MHz)	20dB bandwidth (MHz) (worse case)	Limit (MHz)	Result
GFSK	0.983	0.976	≥0.976	
π/4-DQPSK	0.999	1.325	≥0.883	Pass
8-DPSK	0.981	1.302	≥0.868	

Note: According to section 7.4


7.6 Hopping Channel Nun	nber
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass Annual Pass

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	≥15	Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79	≥15	Pass

Test plot as follows:

Report No.: GTSL202109000169F01

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Report No.: GTSL202109000169F01

Measurement Data

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	119.634	400	Pass
2441MHz	DH3	284.412	400	Pass
2441MHz	DH5	306.552	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.381(ms)*(1600/ (2*79))*31.6=119.634ms

DH3 time slot=1.644(ms)*(1600/ (4*79))*31.6=284.412ms

DH5 time slot=2.892(ms)*(1600/ (6*79))*31.6=306.552ms

π /4-DQPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	122.146	400	Pass
2441MHz	2DH3	285.534	400	Pass
2441MHz	2DH5	303.345	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test channel: 2441MHz as blow

DH1 time slot=0.389(ms)*(1600/ (2*79))*31.6=122.146ms

DH3 time slot=1.641(ms)*(1600/ (4*79))*31.6=285.534ms

DH5 time slot=2.889(ms)*(1600/ (6*79))*31.6=303.345ms

8-DPSK mode:

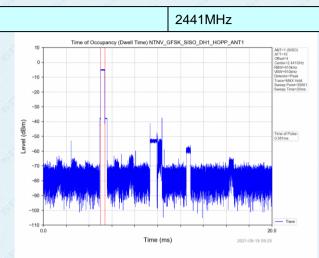
Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	122.535	400	Pass
2441MHz	3DH3	285.012	400	Pass
2441MHz	3DH5	395.793	400	Pass

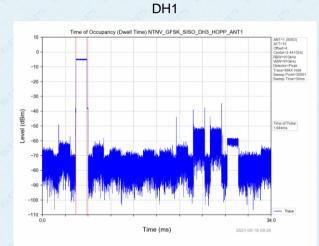
Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

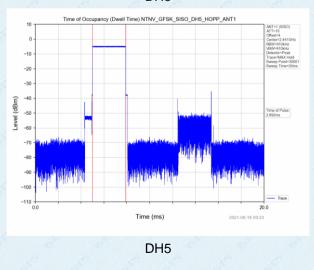
Test channel: 2441MHz as blow

DH1 time slot=0.389(ms)*(1600/ (2*79))*31.6=122.535ms


DH3 time slot=1.638(ms)*(1600/ (4*79))*31.6=285.012ms

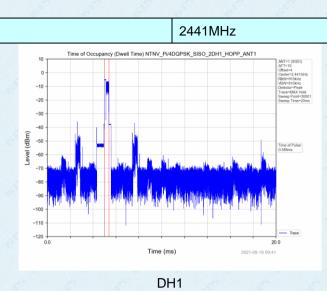

DH5 time slot=2.889(ms)*(1600/ (6*79))*31.6=395.793ms

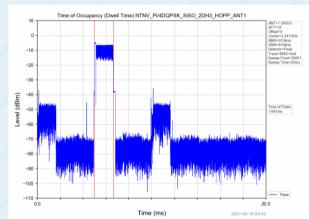
Test plot as follows:


GFSK mode:

Test channel:

DH3


Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


Report No.: GTSL202109000169F01

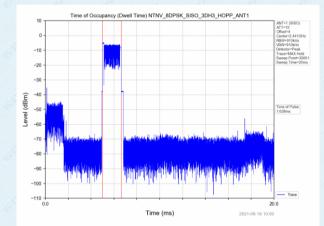
π/4-DQPSK mode:

Test channel:

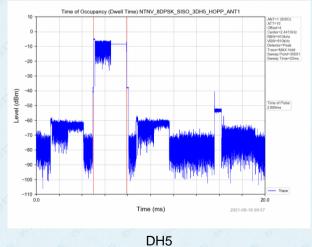
Report No.: GTSL202109000169F01

DH3) NTNV Pi/4DQPSK SISO 2DH5 HOPP ANT Time of Occupa -10 -20 -30 -40 Level (dBm) -50 ime -60 -70 -80 -90 -110 Time (ms)

DH5


8-DPSK mode:

Test channel:


2441MHz

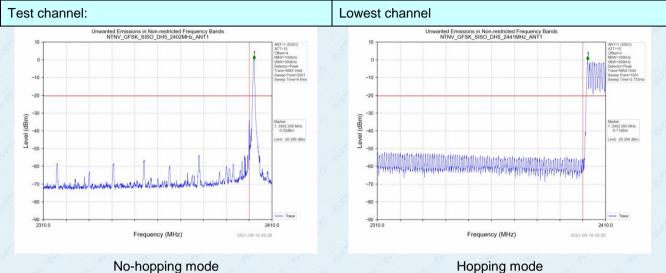
upancy (Dwell Time) NTNV_8DPSK_SISO_3DH1_HOPP_ANT1 Time of Oc -10 -20 -30 -40 Level (dBm) ime of F 389ms -50 -60 -70 -80 -90 -10 -110 20.0 Time (ms)

DH3

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Report No.: GTSL202109000169F01

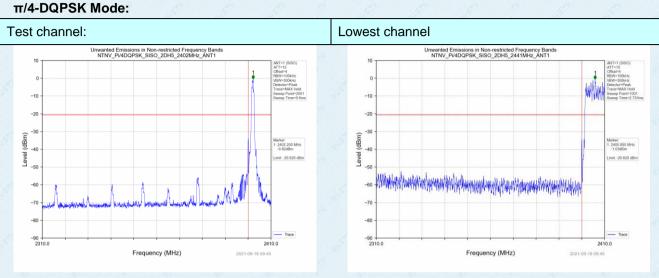
7.8 Band Edge


7.8.1 Conducted Emission Method

Tio.1 Oonadetea Emission					
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

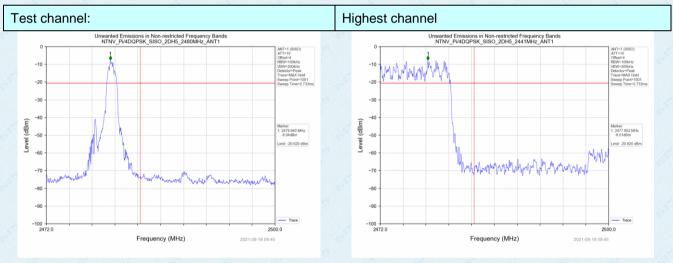
Test plot as follows:

GFSK Mode:

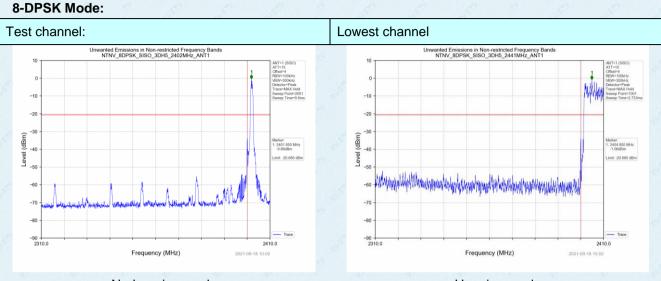


Test channel: Highest channel Unwanted Emissions in Non-restricted Frequency Bands NTNV_GFSK_SISO_DH5_2480MHz_ANT1 Unwanted Emissions in Non-restricted Frequency Bands NTNV_GFSK_SISO_DH5_2441MHz_ANT1 -1(-1(1846 -30 -30 evel (dBm) Level (dBm) Marker: 2472.168 MHz -7.66dBm farker: : 2480.176 MH; -7.93dBm -50 -50 nit: -20.290 nit: -20.290 -60 -60 MAGAMANAMANA -70 -70 -80 -80 2500.0 2500.0 Frequency (MHz) Frequency (MHz) 2021-09-18 09:21

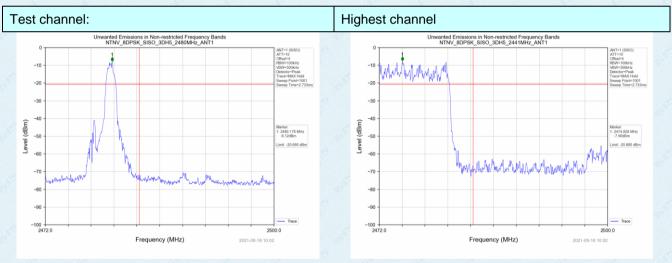
No-hopping mode


Hopping mode

No-hopping mode


Hopping mode

No-hopping mode



No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205	19 1	9 19 19
Test Method:	ANSI C63.10:20	13	C.		
Test Frequency Range:	All of the restric 2500MHz) data		tested, only	the worst	band's (2310MHz
Test site:	Measurement D	istance: 3m	e in	6 6	
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above IGHZ	Peak	1MHz	10Hz	Average Value
Limit:	Freque	ncy	Limit (dBuV/	′m @3m)	Remark
	Above 1	GHz –	<u>54.0</u> 74.0	0.1	Average Value Peak Value
	Tum Tables' - constant		Test Antenna- < 1m 4m >-/ Receiver- Pres	amplifier.	
	determine the 2. The EUT was antenna, whic tower.	e position of th s set 3 meters	e highest rac away from th	liation. ne interferer	360 degrees to nce-receiving le-height antenna
	 ground to det horizontal and measurement 4. For each sus and then the and the rota to maximum reat 5. The test-rece Bandwidth with 6. If the emission limit specified EUT would bo margin would 	ermine the ma d vertical polar t. pected emission antenna was t able was turne ading. viver system was th Maximum H on level of the f d, then testing e reported. Oth l be re-tested of	aximum value rizations of th on, the EUT uned to heigl ed from 0 deg as set to Pea lold Mode. EUT in peak could be stop herwise the e one by one us	e of the field e antenna a was arrange nts from 1 n grees to 360 k Detect Fu mode was 2 oped and the missions the sing peak, o	I strength. Both are set to make the ed to its worst case neter to 4 meters) degrees to find th unction and Specifi 10dB lower than the e peak values of th at did not have 100 quasi-peak or
Test Instrumente:	ground to det horizontal and measurement 4. For each sus and then the and the rota to maximum rea 5. The test-rece Bandwidth wit 6. If the emission limit specified EUT would bo margin would average meth	ermine the ma d vertical polar t. pected emission antenna was t able was turne ading. viver system was th Maximum H on level of the f d, then testing e reported. Oth l be re-tested of mod as specifie	aximum value rizations of th on, the EUT uned to heigh ed from 0 deg as set to Pea lold Mode. EUT in peak could be stop herwise the e one by one us ed and then re	e of the field e antenna a was arrange nts from 1 n grees to 360 k Detect Fu mode was 2 oped and the missions the sing peak, o	are set to make the ed to its worst case neter to 4 meters degrees to find th unction and Specifie 10dB lower than the e peak values of th at did not have 100 quasi-peak or
Test Instruments: Test mode:	 ground to det horizontal and measurement 4. For each sus and then the and the rota to maximum reat 5. The test-rece Bandwidth with 6. If the emission limit specified EUT would bo margin would 	ermine the ma d vertical polar t. pected emission antenna was t able was turne ading. siver system was th Maximum H on level of the R d, then testing e reported. Oth be re-tested on nod as specifie 6.0 for details	aximum value rizations of th on, the EUT uned to heigh ed from 0 deg as set to Pea fold Mode. EUT in peak could be stop herwise the e one by one us ed and then re	e of the field e antenna a was arrange nts from 1 n grees to 360 k Detect Fu mode was 2 oped and the missions the sing peak, o	I strength. Both are set to make the ed to its worst case neter to 4 meters 0 degrees to find th unction and Specifie 10dB lower than the e peak values of th at did not have 100 quasi-peak or

7.8.2 Radiated Emission Method

Measurement Data

		6		Report No	o.: GTSL202'	109000169F0	
Test channel:	st channel: Lowest channel						
Peak value:	2 8	19 A	9 - 2 - 8	8 8	1	S.	
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2390	59.86	-5.68	54.18	74	-19.82	Horizontal	
2390	60.20	-5.68	54.52	74	-19.48	Vertical	
Remark: Facto	r = Antenna Fac	tor + Cable Los	ss – Pre-amplifier.	8 8	8 8	8 8	
Average value:	2 8	8 6		E E	1 6	e e e e e e e e e e e e e e e e e e e	
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
	No. No.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		S7	N		

2390	43.89	-5.68	38.21	54	-15.79	Horizontal
2390	44.10	-5.68	38.42	54	-15.58	Vertical
Remark: Fact	tor = Antenna Fa	ctor + Cable Los	ss – Pre-amplifier.	E E	E &	de de

Test channel:			Highe	Highest channel			
Peak value:	2 - B	L. C. S.	2 2 8	2 2	2	e g	
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2483.5	59.93	-5.85	54.08	74	-19.92	Horizontal	
2483.5	60.11	-5.85	54.26	74	-19.74	Vertical	

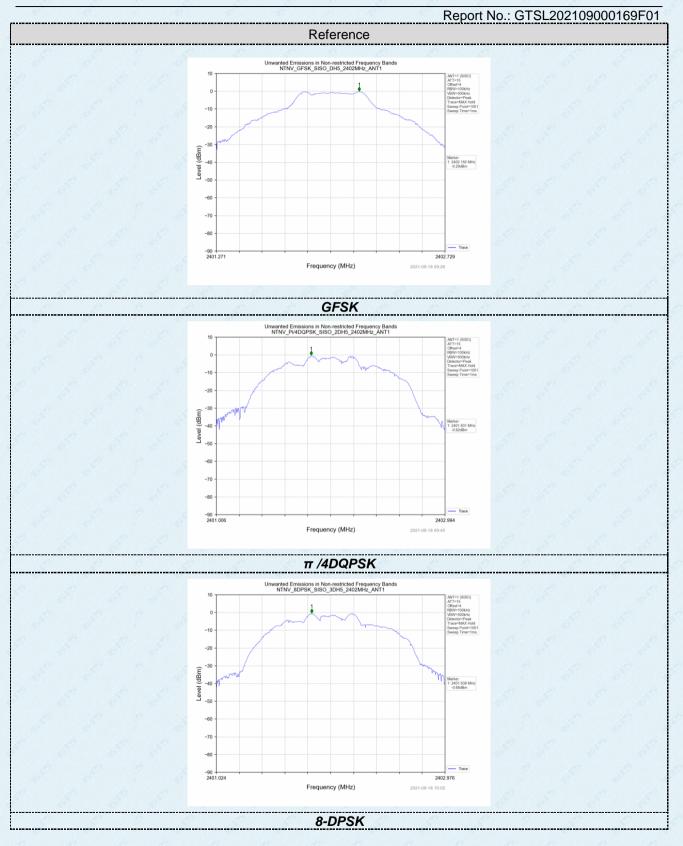
Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.5	44.02	-5.85	38.17	54	-15.83	Horizontal
2483.5	43.97	-5.85	38.12	54	-15.88	Vertical

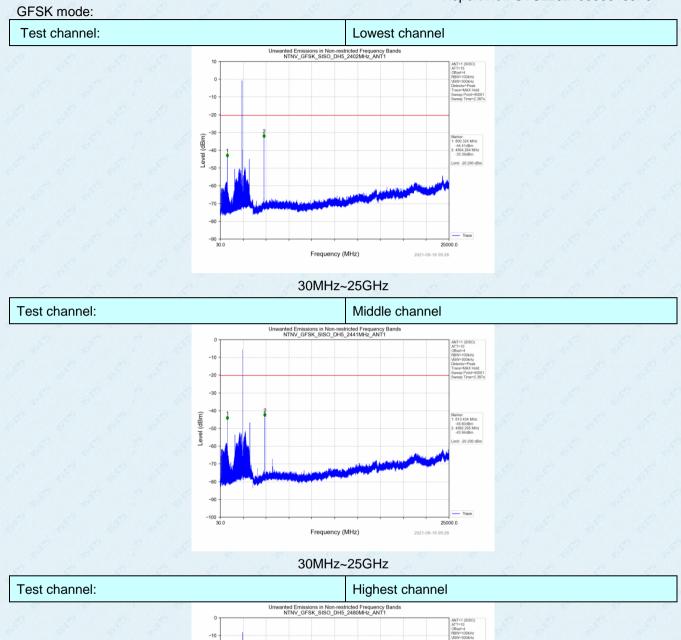
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

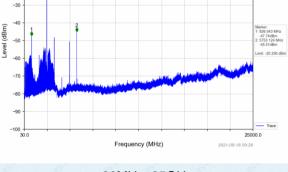
Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

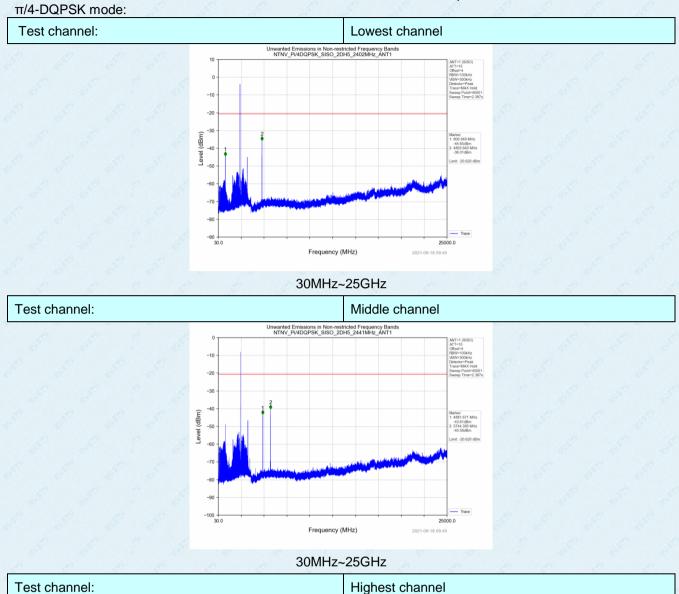

The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

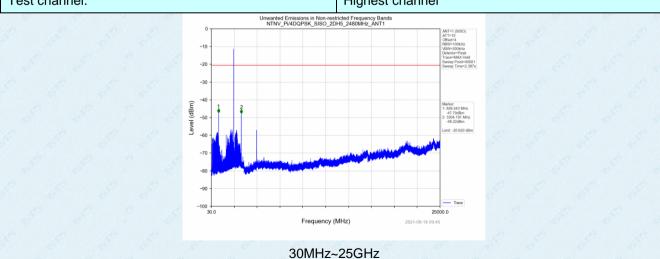
- The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest 3. frequencies) data was showed.
- During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is 4. worse case.

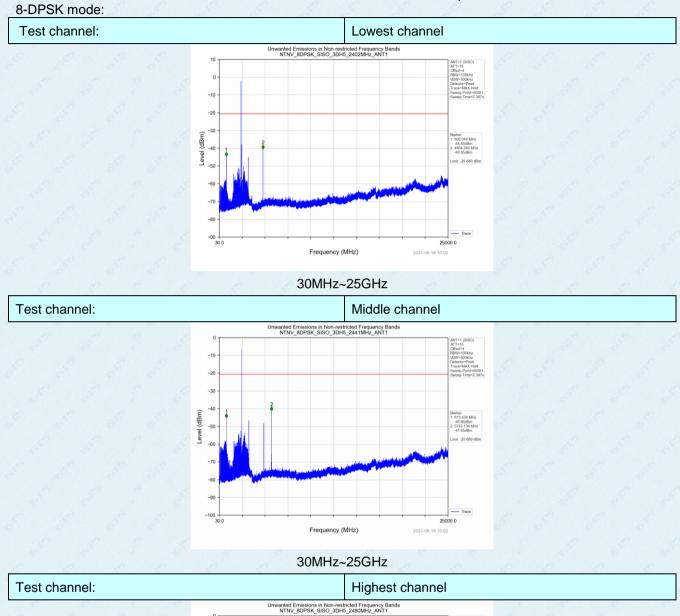

7.9 Spurious Emission

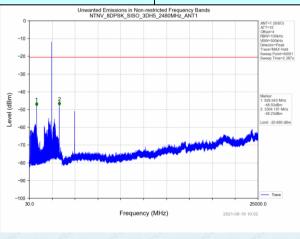

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass








Report No.: GTSL202109000169F01

Report No.: GTSL202109000169F01

Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.209						0 0
Test Method:	ANSI C63.10:2013		8 9 - 10	8	0		47	0 0 10
Test Frequency Range:	9kHz to 25GHz			6			62	
Test site:	Measurement Distar	nce: 3	3m	10	6	64		en en
Receiver setup:	Frequency		Detector	RBV	N	VBW	a	Value
	9KHz-150KHz		lasi-peak	200	Ηz	600Hz	2	Quasi-peak
	150KHz-30MHz	Qu	asi-peak	9K⊢	łz	30KHz	z	Quasi-peak
	30MHz-1GHz	Qu	lasi-peak	120K	Hz	300KH	z	Quasi-peak
			Peak	1MF	Ηz	3MHz		Peak
	Above 1GHz		Peak	1MF	Ηz	10Hz	4	Average
Limit:	Frequency	£	Limit (u\	//m)	V	alue		easurement Distance
	0.009MHz-0.490MHz		2400/F(ł	(Hz)	(QP 300m		300m
	0.490MHz-1.705M	24000/F(KHz)	(QP	10	30m	
	1.705MHz-30MH	lz 🦷	30	1	(QP	5	30m
	30MHz-88MHz	100	Contra la contra	(QP		de de	
	88MHz-216MHz	150		(QP			
	216MHz-960MH	200	2	(QP		3m	
	960MHz-1GHz	500		(QP		JIII	
	Above 1GHz	GHz 50		500 Av		erage	age	
	Above TOTIZ		5000		Peak			8 - A
Test setup:	For radiated emiss	sions	from 9kH	z to 30	OMHz	z		
	< 80 cm >	Tu	< 3m > Test Ai m Table='	ntenna Im			111111111111111111111111111111111111111	

. - - -

GTS	
	Report No.: GTSL202109000169F01
	For radiated emissions from 30MHz to1GHz
	For radiated emissions above 1GHz
Test Procedure:	 The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case
	and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB
	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	margin would be re-tested one by one using peak, quasi-peak or

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

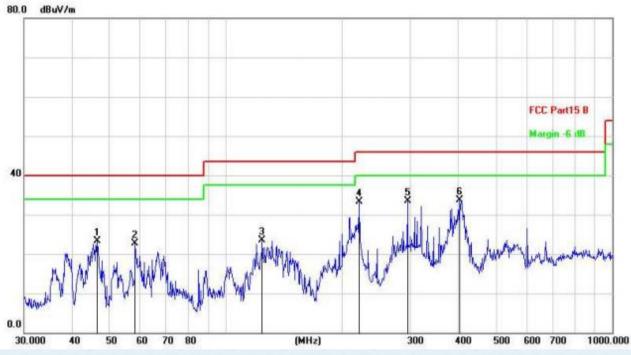
	8		6	Report No.: 0	GTSL202109	000169F01
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	60Hz	8 8	S.	2 8	2
Test results:	Pass	8 8	ß	g g	S I	0 0

Measurement data:

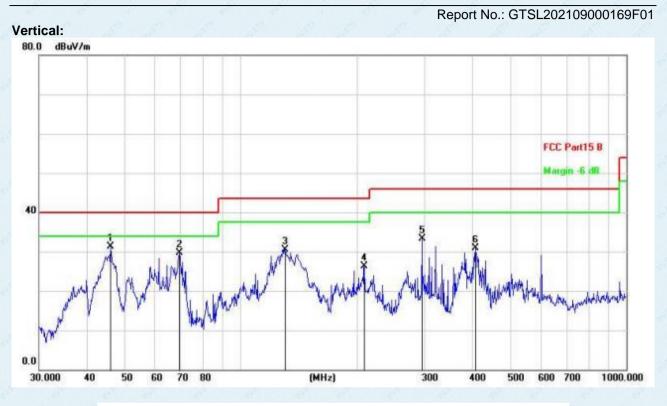
Remarks:

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz


Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of GFSK 2402MHz

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		46.3402	41.41	-18.03	23.38	40.00	-16.62	QP
2		58.2030	41.49	-18.70	22.79	40.00	-17.21	QP
3		124.1330	43.12	-19.66	23.46	43.50	-20.04	QP
4		221.3921	52.67	-19.38	33.29	46.00	-12.71	QP
5		295.1469	51.88	-18.45	33.43	46.00	-12.57	QP
6	*	401.8385	49.85	-16.19	33.66	46.00	-12.34	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	46.0164	49.68	-18.31	31.37	40.00	-8.63	QP
2		69.3568	49.52	-19.85	29.67	40.00	-10.33	QP
3		130.3789	49.82	-19.27	30.55	43.50	-12.95	QP
4		209.3129	46.11	-19.82	26.29	43.50	-17.21	QP
5		295.1469	51.91	-18.57	33.34	46.00	-12.66	QP
6		406.0880	47.91	-17.01	30.90	46.00	-15.10	QP

Final Level =Receiver Read level + Correct Factor

Report No.: GTSL202109000169F01

Above 1GHz

est channel:			Low	Lowest channel				
Peak value:	2 8	8 6	9 9	8 8 8	2	° 8		
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/	m) Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4804	61.25	-3.61	57.64	74	-16.36	Vertical		
7206	61.33	-0.85	60.48	74	-13.52	Vertical		
4804	62.01	-3.61	58.40	74	-15.60	Horizontal		
7206	61.86	-0.85	61.01	74	-12.99	Horizontal		
8-8	2	4	e <u>e-</u>	8 8- 8	2 8			
	8 _	8 8	8	l	8 - 9	8 8		

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804	45.26	-3.61	41.65	54	-12.35	Vertical
7206	45.82	-0.85	44.97	54	-9.03	Vertical
4804	45.65	-3.61	42.04	54	-11.96	Horizontal
7206	45.88	-0.85	45.03	54	-8.97	Horizontal
8 8	2 - <i>S</i>	S 8		S S	2 6	-
<u>_</u>	8 <u>4</u>	A	& <u></u> #	Ê <u>4</u>	8 _2	8 6

Test channel:			Middle	Middle channel					
Peak value:	2 12	8 8	8 8	8 8	8 13	12 15			
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
4882	61.75	-3.49	58.26	74	-15.74	Vertical			
7326	59.61	-0.80	58.81	74	-15.19	Vertical			
4882	61.36	-3.49	57.87	74	-16.13	Horizontal			
7326	58.97	-0.80	58.17	74	-15.83	Horizontal			
2	2	g g	10		g g	J 5			
§ \$	9 <u>-</u> 8	<u></u>	e 1 <u>-</u> 8	\$ \$	2 A				

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatior
4882	44.79	-3.49	41.30	54	-12.70	Vertical
7326	43.86	-0.80	43.06	54	-10.94	Vertical
4882	44.37	-3.49	40.88	54	-13.12	Horizontal
7326	43.80	-0.80	43.00	54	-11.00	Horizontal
1		g g	g g	2	0 -0	S 8
- 8	2 8	<u>8-</u> 8	° ? &	8	2 8	

est channel:			Highest	Highest channel					
eak value:	R R	8 8	12 19	8 8	8 8	12 1			
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
4960	60.22	-3.41	56.81	74	-17.19	Vertical			
7440	60.14	-0.72	59.42	74	-14.58	Vertical			
4960	60.13	-3.41	56.72	74	-17.28	Horizontal			
7440	60.32	-0.72	59.60	74	-14.40	Horizontal			
a M	2	g g	1 2 ¹⁹	8 8	8	g p			
2 - X	? <i>S</i>	<u>j</u>	2	§ Ø	2 5				

Average value:

Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	45.59	-3.41	42.18	54	-11.82	Vertical
7440	44.31	-0.80	43.51	54	-10.49	Vertical
4960	45.65	-3.41	42.24	54	-11.76	Horizonta
7440	44.30	-0.80	43.50	54	-10.50	Horizonta
		2 2	8	g		ß
8-		<u>s-</u>		8 8	2 8	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The test data shows only the worst case GFSK mode

Report No.: GTSL202109000169F01

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----