

FCC TEST REPORT FCC ID:2A27V-S32 Report Number.....: ZKT-241101L14461E-1 Date of Test.....: Sept. 30, 2024 to Oct. 30, 2024 Date of issue.....: Oct. 30, 2024 Test Result: PASS Testing Laboratory......: Shenzhen ZKT Technology Co., Ltd. Avenue, Fuhai Street, Bao'an District, Shenzhen, China Applicant's name : Dongguan Genai Technology Co., LTD Address Room 101, 1st Building, No. 3, Kuiqiao Road, Puxin lake, Tangxia town, Dongguan city, Guangdong Province, China Manufacturer's name: Dongguan Genai Technology Co., LTD Address Room 101, 1st Building, No. 3, Kuiqiao Road, Puxin lake, Tangxia town, Dongguan city, Guangdong Province, China Test specification: Standard...... FCC CFR Title 47 Part 15 Subpart C Section 15.247 Test procedure...... : KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013 Non-standard test method: N/A Test Report Form No..... TRF-EL-112 V0 Test Report Form(s) Originator.....: ZKT Testing Master TRF: Dated: 2021-04-22 This device described above has been tested by ZKT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of ZKT, this document may be altered or revised by ZKT, personal only, and shall be noted in the revision of the document. Product name.....: Wireless Speaker Trademark: GENAI Model/Type reference.....: S32 Model difference.....: / Ratings...... 1 A or DC 3.7V power by battery

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Testing procedure and testing location: Shenzhen ZKT Technology Co., Ltd. Testing Laboratory.....: Address.....: 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China imliu Tested by (name + signature).....: Jim Liu Tom Zou Reviewer (name + signature)..... Tom Zou Nke Xie Approved (name + signature)..... Lake Xie Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China www.zkt-lab.com

Project No.: ZKT-241101L14461E-1 Page 3 of 53

Table of Contents

|--|

1. VERSION	5
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 TEST SETUP CONFIGURATION	3
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE))
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	
4.1 CONDUCTED EMISSION MEASUREMENT	
4.1.1 POWER LINE CONDUCTED EMISSION Limits	
4.1.2 TEST PROCEDURE	3
4.1.3 DEVIATION FROM TEST STANDARD1	3
4.1.4 TEST SETUP	
4.1.5 EUT OPERATING CONDITIONS14	4
4.2 RADIATED EMISSION MEASUREMENT	
4.2.1 RADIATED EMISSION LIMITS	
4.2.2 TEST PROCEDURE	
4.2.3 DEVIATION FROM TEST STANDARD	
4.2.4 TEST SETUP	
5.1 TEST REQUIREMENT:	
5.2 TEST PROCEDURE	
5.3 DEVIATION FROM TEST STANDARD	
5.4 TEST SETUP	4
5.5 EUT OPERATING CONDITIONS	4
5.6 TEST RESULT	5
6.POWER SPECTRAL DENSITY TEST	ô
6.1 APPLIED PROCEDURES / LIMIT	5
6.2 TEST PROCEDURE	6
6.3 DEVIATION FROM STANDARD	
6.4 TEST SETUP	
6.5 EUT OPERATION CONDITIONS	
6.6 TEST RESULTS	7

Shenzhen ZKT Technology Co., Ltd.

🔊 www.zkt-lab.com

Table of Contents

Page

7. CHANNEL BANDWIDTH	
7.1 APPLIED PROCEDURES / LIMIT	31
7.2 TEST PROCEDURE	-
7.3 DEVIATION FROM STANDARD	-
7.4 TEST SETUP	31
7.5 EUT OPERATION CONDITIONS	-
7.6 TEST RESULTS	
8. OUTPUT POWER TEST	36
8.1 APPLIED PROCEDURES / LIMIT	
8.2 TEST PROCEDURE	
8.3 DEVIATION FROM STANDARD	
8.4 TEST SETUP	
8.5 EUT OPERATION CONDITIONS	
8.6 TEST RESULTS	
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	
9.1 APPLICABLE STANDARD	
9.2 TEST PROCEDURE	
9.3 DEVIATION FROM STANDARD	
9.4 TEST SETUP	41
9.5 EUT OPERATION CONDITIONS	41
10.ANTENNA REQUIREMENT	52
11. TEST SETUP PHOTOS	53
12. EUT CONSTRUCTIONAL DETAILS	53

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔊 www.zkt-lab.com

1. VERSION

Report No.	Version	Description	Approved
ZKT-241101L14461E-1	Rev.01	Initial issue of report	Oct. 30, 2024

Test procedures according to the technical standards:

	FCC Part15 (15.247) , Subpart C		
Standard Section	Judgment	Remark	
FCC part 15.203/15.247 (b)(4)	Antenna requirement	PASS	
FCC part 15.207	AC Power Line Conducted Emission	PASS	
FCC part 15.247 (b)(3)	Conducted Output Power	PASS	
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS	∇D
FCC part 15.247 (e)	Power Spectral Density	PASS	
FCC part 15.247(d)	Band Edge	PASS	
FCC part 15.205/15.209	Spurious Emission	PASS	

NOTE:

- (1) " N/A" denotes test is not applicable in this Test Report
- (2) The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033 Designation Number: CN0110

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(9k-30MHz)	±4.68dB
5	All emissions radiated(<1G)	±4.68dB
6	All emissions radiated(>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96%

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPT		
Product Name:	Wireless Speaker	9
Test Model No.:	S32	
Hardware Version:	V1.0	
Software Version:	V1.0	
Sample(s) Status:	Engineer sample	
Channel numbers:	40	
Channel separation:	2MHz	
Modulation technology:	GFSK	1
Antenna Type:	PCB Antenna	
Antenna gain:	-0.58dBi	
Power supply:	Input: DC 5V or DC 3.7V power by battery	

2478 MHz

2480 MHz

Operation	n Frequency	each of ch	aiiiiei		1		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
		1			1	1	1

2438 MHz

2440 MHz

Note:

9

10

2418 MHz

2420 MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

29

30

2458 MHz

2460 MHz

39

40

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

19

20

3.2 DESCRIPTION OF TEST MODES

	roltage, and found that the worst case w rt just shows that condition's data.	
.3 TEST SETUP CONFIGUI	RATION	
Conducted Emission		
AE E	UT	
adiated Emission		
EUT		
EOT		

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

I	Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	E-1	AC Adapter	HUAWEI	HW-050450C00	/	AE
			N N			

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

www.zkt-lab.com

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	A.17.05	Nov. 02, 2023	Nov. 01, 2024
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Nov. 02, 2023	Nov. 01, 2024
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	100969	4.32	Nov. 02, 2023	Nov. 01, 2024
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	N/A	N/A	Nov. 13, 2023	Nov. 12, 2024
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	N/A	Nov. 13, 2023	Nov. 12, 2024
6	Horn Antenna (15GHz-40GHz)	A.H.System	SAS-574	588	N/A	Nov. 13, 2023	Nov. 12, 2024
7	Loop Antenna	TESEQ	HLA6121	58357	N/A	Nov. 16, 2023	Nov. 15, 2024
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	60747	N/A	Nov. 02, 2023	Nov. 01, 2024
9	Amplifier (1GHz-26.5GHz)	HuiPu	8449B	3008A00315	N/A	Nov. 02, 2023	Nov. 01, 2024
10	Amplifier (500MHz-40GHz)	QuanJuDa	DLE-161	097	N/A	Nov. 02, 2023	Nov. 01, 2024
11	Test Cable	N/A	R-01	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
12	Test Cable	N/A	R-02	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
13	Test Cable	N/A	R-03	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
14	Test Cable	N/A	RF-01	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
15	Test Cable	N/A	RF-02	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
16	Test Cable	N/A	RF-03	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
17	ESG Signal Generator	Agilent	E4421B	N/A	B.03.84	Nov. 02, 2023	Nov. 01, 2024
18	Signal Generator	Agilent	N5182A	N/A	A.01.87	Nov. 02, 2023	Nov. 01, 2024
19	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	N/A	Nov. 16, 2023	Nov. 15, 2024
20	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Nov. 02, 2023	Nov. 01, 2024
21	MWRF Power Meter Test system	MW	MW100-RF CB	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
22	D.C. Power Supply	LongWei	TPR-6405D	N/A	N/A		\
23	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	N	١
24	RF Software	MW	MTS8310	V2.0.0.0	N/A		١
25	Turntable	MF	MF-7802BS	N/A	N/A	1	\
26	Antenna tower	MF	MF-7802BS	N/A	N/A	/	\

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔊 www.zkt-lab.com

Project No.: ZKT-241101L14461E-1 Page 11 of 53

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Nov. 14, 2023	Nov. 13, 2024
2	LISN	CYBERTEK	EM5040A	E1850400149	N/A	Nov. 02, 2023	Nov. 01, 2024
3	Test Cable	N/A	C-01	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
4	Test Cable	N/A	C-02	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
5	Test Cable	N/A	C-03	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
6	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Nov. 02, 2023	Nov. 01, 2024
7	Triple-Loop Antenna	N/A	RF300	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
8	Absorbing Clamp	DZ	ZN23201	15034	N/A	Nov. 07, 2023	Nov. 06, 2024
9	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	N/A	١	\

RF conducted Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	ESG Signal Generator	Agilent	E4421B	N/A	B.03.84	Nov. 02, 2023	Nov. 01, 2024
2	Signal Generator	Agilent	N5182A	N/A	A.01.87	Nov. 02, 2023	Nov. 01, 2024
3	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	N/A	Nov. 16, 2023	Nov. 15, 2024
4	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Nov. 02, 2023	Nov. 01, 2024
5	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	A.17.05	Nov. 02, 2023	Nov. 01, 2024
6	MWRF Power Meter Test system	MW	MW100-RFC B	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
7	RF Software	MW	MTS8310	V2.0.0.0	N/A	١	١

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

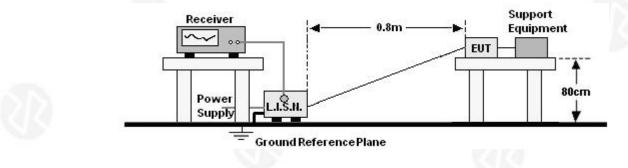
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Limit (d	Standard	
FREQUENCY (MHz)	QP	AVG	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.


4.1.2 TEST PROCEDURE

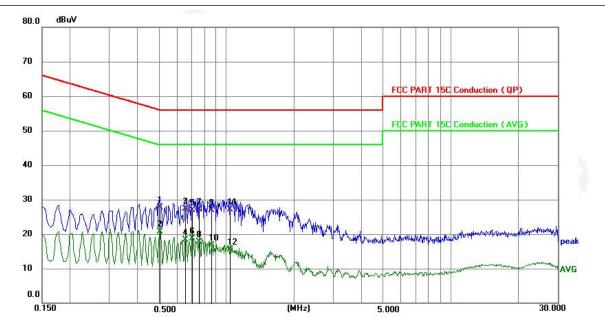
- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



Nww.zkt-lab.com

4.1.6 TEST RESULTS

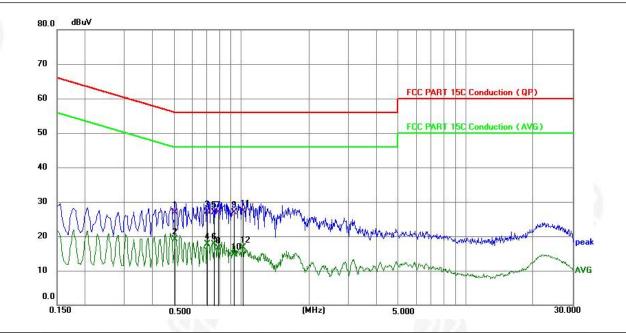
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.5010	17.71	10.02	27.73	56.00	-28.27	QP
2 *	0.5010	10.75	10.02	20.77	46.00	-25.23	AVG
3	0.6540	17.24	10.03	27.27	56.00	-28.73	QP
4	0.6540	8.24	10.03	18.27	46.00	-27.73	AVG
5	0.7035	16.78	10.04	26.82	56.00	-29.18	QP
6	0.7035	8.71	10.04	18.75	46.00	-27.25	AVG
7	0.7574	17.16	10.04	27.20	56.00	-28.80	QP
8	0.7574	7.69	10.04	17.73	46.00	-28.27	AVG
9	0.8610	16.84	10.05	26.89	56.00	-29.11	QP
10	0.8610	6.57	10.05	16.62	46.00	-29.38	AVG
11	1.0363	17.03	10.06	27.09	56.00	-28.91	QP
12	1.0363	5.52	10.06	15.58	46.00	-30.42	AVG

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

4.The test data shows only the worst case GFSK mode (Low Channel:2402MHz).


Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Nww.zkt-lab.com

Temperature:	24.3 ℃	Relative Humidity :	50%
Pressure:	101kPa	Phase :	Ν
Test Voltage:	AC 120V/60Hz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.5055	16.96	10.02	26.98	56.00	-29.02	QP
2 *	0.5055	9.09	10.02	19.11	46.00	-26.89	AVG
3	0.7035	17.07	10.04	27.11	56.00	-28.89	QP
4	0.7035	7.67	10.04	17.71	46.00	-28.29	AVG
5	0.7575	16.87	10.04	26.91	56.00	-29.09	QP
6	0.7575	7.65	10.04	17.69	46.00	-28.31	AVG
7	0.7890	16.91	10.04	26.95	56.00	-29.05	QP
8	0.7890	6.54	10.04	16.58	46.00	-29.42	AVG
9	0.9240	16.77	10.05	26.82	56.00	-29.18	QP
10	0.9240	4.73	10.05	14.78	46.00	-31.22	AVG
11	1.0184	17.20	10.06	27.26	56.00	-28.74	QP
12	1.0184	6.56	10.06	16.62	46.00	-29.38	AVG

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

4. The test data shows only the worst case GFSK mode (Low Channel:2402MHz).

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Nww.zkt-lab.com

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak		
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak		
		Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)				
FREQUENCY (MHz)	PEAK	AVERAGE			
Above 1000	74	54			

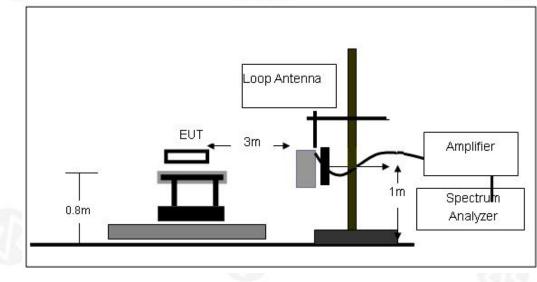
Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

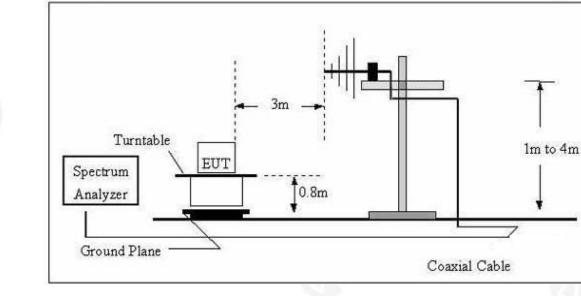

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

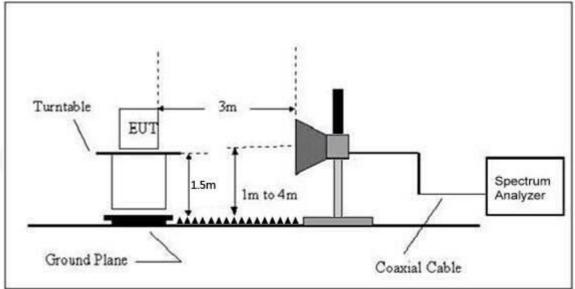
4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China


www.zkt-lab.com

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

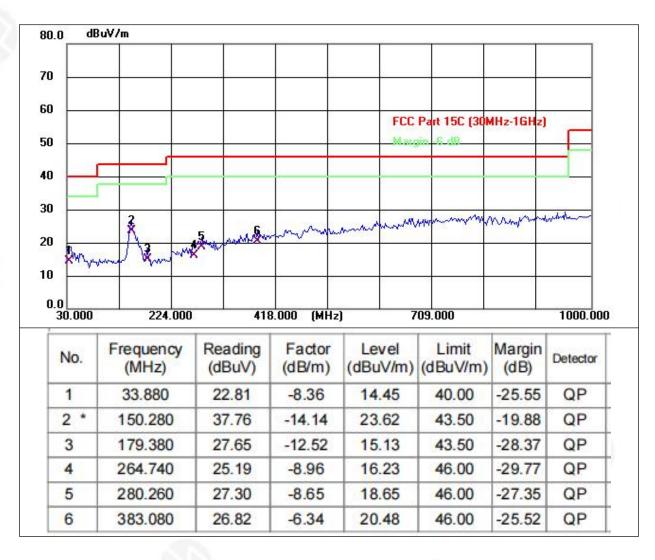
4.2.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

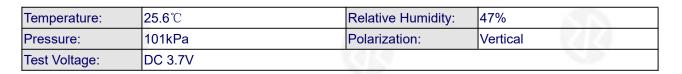
4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

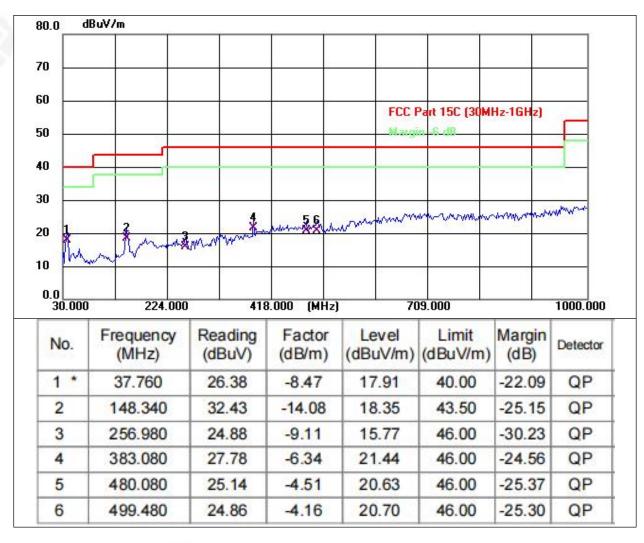
The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Shenzhen ZKT Technology Co., Ltd.


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Between 30MHz - 1GHz


Temperature:	25.6℃	Relative Humidity:	47%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 3.7V		



1

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case GFSK mode (Low Channel:2402MHz).

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

1GHz~25GHz

	- 127	p_{λ}			GFSK			- 12122	
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	•			Low Cha	nnel:2402M	Hz			•
V	4804	59.83	30.55	5.77	24.66	59.71	74	-14.29	Pk
V	4804	41.76	30.55	5.77	24.66	41.64	54	-12.36	AV
V	7206	56.53	30.33	6.32	24.55	57.07	74	-16.93	Pk
V	7206	43.28	30.33	6.32	24.55	43.82	54	-10.18	AV
Н	4804	58.97	30.55	5.77	24.66	58.85	74	-15.15	Pk
Н	4804	43.45	30.55	5.77	24.66	43.33	54	-10.67	AV
Н	7206	58.82	30.33	6.32	24.55	59.36	74	-14.64	Pk
Н	7206	44.13	30.33	6.32	24.55	44.67	54	-9.33	AV
	- 196		N	liddle Ch	annel:2440I	MHz		-	
V	4880	55.36	30.55	5.77	24.66	55.24	74	-18.76	Pk
V	4880	41.39	30.55	5.77	24.66	41.27	54	-12.73	AV
V	7320	58.88	30.33	6.32	24.55	59.42	74	-14.58	Pk
V	7320	43.81	30.33	6.32	24.55	44.35	54	-9.65	AV
Н	4880	57.36	30.55	5.77	24.66	57.24	74	-16.76	Pk
Н	4880	41.73	30.55	5.77	24.66	41.61	54	-12.39	AV
Н	7320	55.59	30.33	6.32	24.55	56.13	74	-17.87	Pk
Н	7320	41.67	30.33	6.32	24.55	42.21	54	-11.79	AV
				High Cha	nnel:2480N	IHz	10		
V	4960	57.4	30.55	5.77	24.66	57.28	74	-16.72	Pk
V	4960	41.98	30.55	5.77	24.66	41.86	54	-12.14	AV
V	7440	59.78	30.33	6.32	24.55	60.32	74	-13.68	Pk
V	7440	44.77	30.33	6.32	24.55	45.31	54	-8.69	AV
Н	4960	59.61	30.55	5.77	24.66	59.49	74	-14.51	Pk
Н	4960	44.68	30.55	5.77	24.66	44.56	54	-9.44	AV
Н	7440	57.43	30.33	6.32	24.55	57.97	74	-16.03	Pk
Н	7440	41.46	30.33	6.32	24.55	42	54	-12	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.RADIATED Band EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:	ANSI C63.10: 2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above	Peak	1MHz	3MHz	Peak		
	1GHz	Average	1MHz	3MHz	Average		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/m) (at 3M)				
FREQUENCY (MHz)	PEAK	AVERAGE			
Above 1000	74	54			

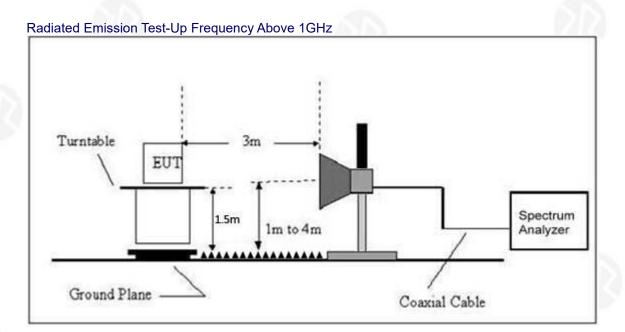
Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

Www.zkt-lab.com

Project No.: ZKT-241101L14461E-1 Page 25 of 53

5.6 TEST RESULT

	Polar	Frequenc	Meter	Pre-	Cable	Antenna	Emission	Limit	Margi	Detec	_
	(H/V)	У	Reading	amplifier	Loss	Factor	level	(dBuV	n	tor	Resu
	(11/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	/m)	(dB)	Туре	
				Low	Channe	l: 2402MHz	7				
	Н	2390.00	61.73	30.22	4.85	23.98	60.34	74.00	-13.66	PK	PASS
	Н	2390.00	48.77	30.22	4.85	23.98	47.38	54.00	-6.62	AV	PAS
	Н	2400.00	59.83	30.22	4.85	23.98	58.44	74.00	-15.56	PK	PAS
	Н	2400.00	46.15	30.22	4.85	23.98	44.76	54.00	-9.24	AV	PAS
	V	2390.00	62.80	30.22	4.85	23.98	61.41	74.00	-12.59	PK	PAS
	V	2390.00	46.11	30.22	4.85	23.98	44.72	54.00	-9.28	AV	PAS
	V	2400.00	62.06	30.22	4.85	23.98	60.67	74.00	-13.33	PK	PAS
OFOK	V	2400.00	48.99	30.22	4.85	23.98	47.60	54.00	-6.40	AV	PAS
GFSK		High Channel: 2480MHz									
	Н	2483.50	62.70	30.22	4.85	23.98	61.31	74.00	-12.69	PK	PAS
	Н	2483.50	47.15	30.22	4.85	23.98	45.76	54.00	-8.24	AV	PAS
	Н	2500.00	59.60	30.22	4.85	23.98	58.21	74.00	-15.79	PK	PAS
	Н	2500.00	48.37	30.22	4.85	23.98	46.98	54.00	-7.02	AV	PAS
	V	2483.50	59.98	30.22	4.85	23.98	58.59	74.00	-15.41	PK	PAS
	V	2483.50	46.78	30.22	4.85	23.98	45.39	54.00	-8.61	AV	PAS
	V	2500.00	62.10	30.22	4.85	23.98	60.71	74.00	-13.29	PK	PAS
	V	2500.00	48.00	30.22	4.85	23.98	46.61	54.00	-7.39	AV	PAS

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS				

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT

SPECTRUM ANALYZER

www.zkt-lab.com

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

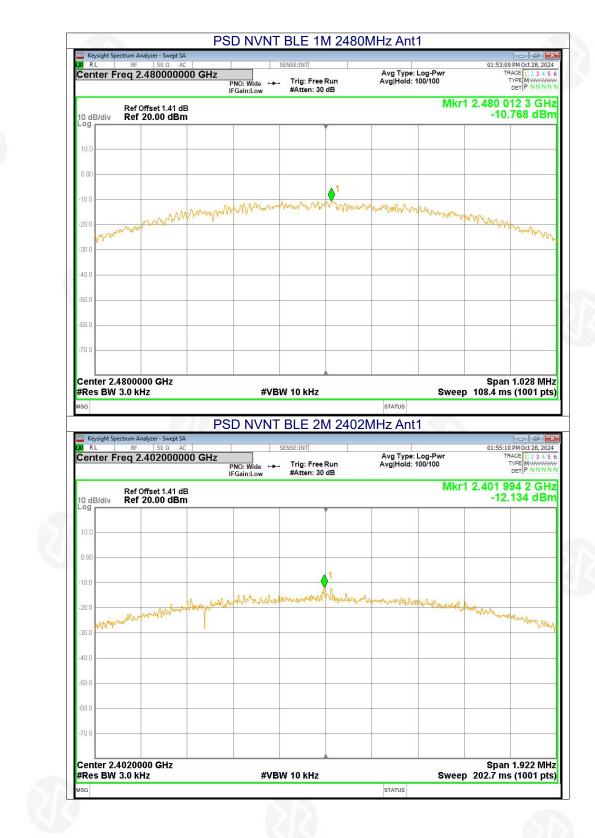
Shenzhen ZKT Technology Co., Ltd.

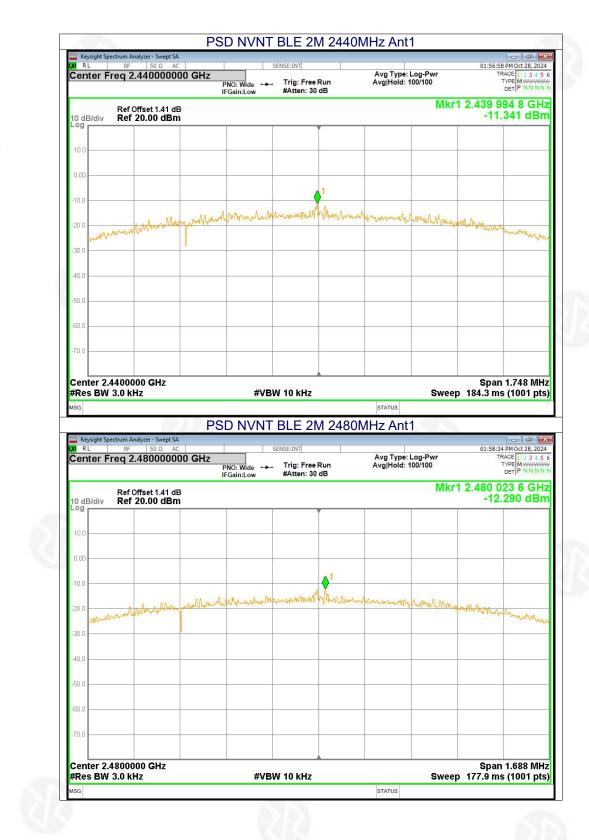
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

6.6 TEST RESULTS

		21 A.A.	V A V A
Temperature :	25.6 ℃	Relative Humidity :	51%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

Mode	Frequency (MHz)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
BLE 1M	2402	-9.38	8	Pass
BLE 1M	2440	-9.82	8	Pass
BLE 1M	2480	-10.77	8	Pass
BLE 2M	2402	-12.13	8	Pass
BLE 2M	2440	-11.34	8	Pass
BLE 2M	2480	-12.29	8	Pass





🔊 www.zkt-lab.com

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

1. Set RBW = 100 kHz.

- Ð
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

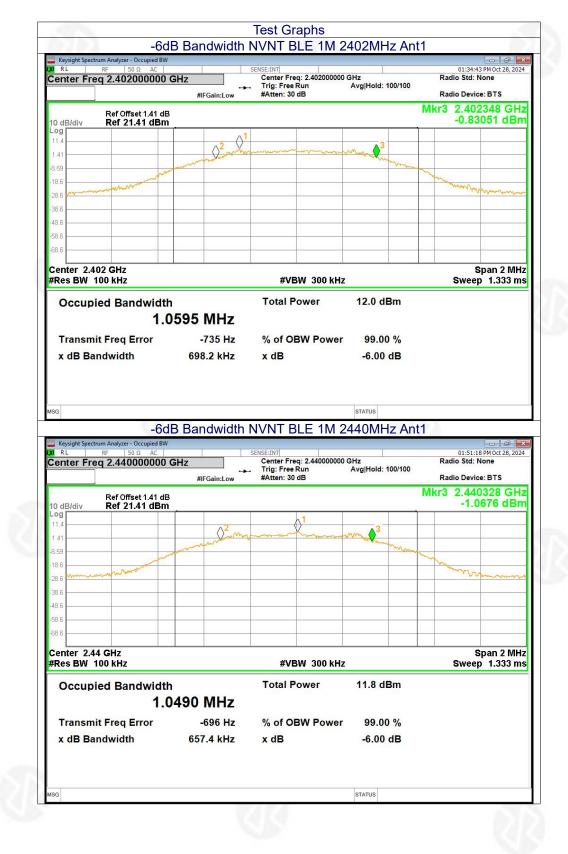
www.zkt-lab.com

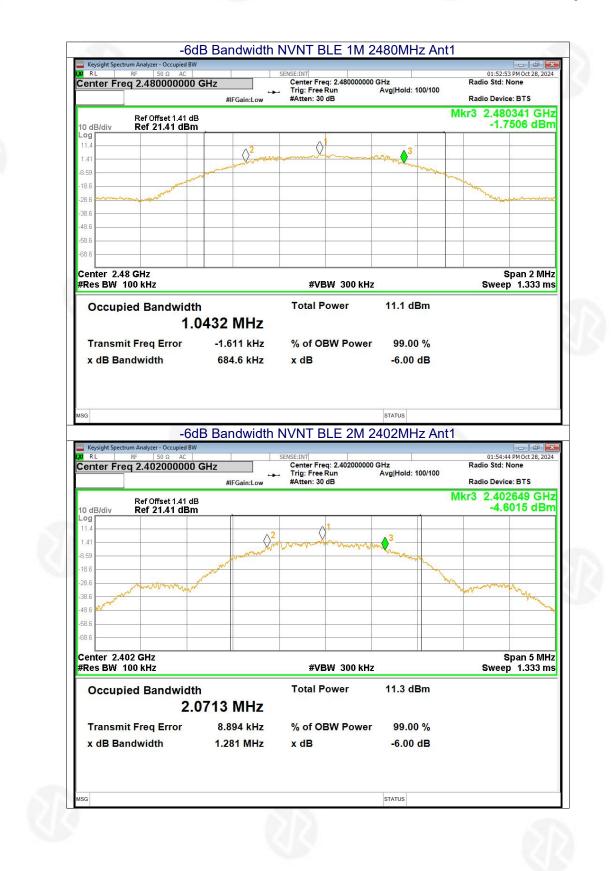
7.6 TEST RESULTS

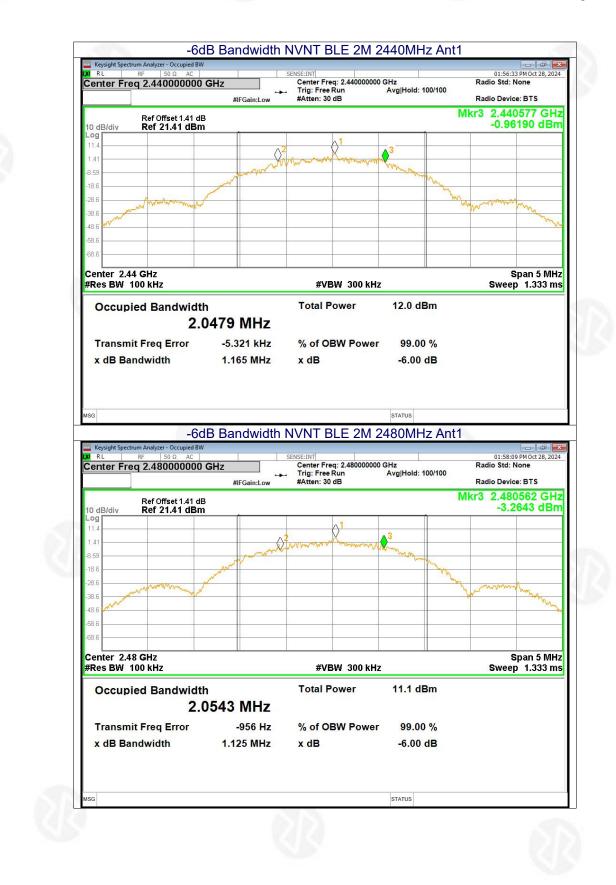
Temperature :	25.6 ℃	Relative Humidity :	51%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

Г

	Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
BLE 1M	Lowest	0.698	>= 500		
	Middle	0.657		Pass	
	Highest	0.685			
BLE 2M	Lowest	1.281			
	Middle	1.165			
	Highest	1.125			







🕄 www.zkt-lab.com

8. OUTPUT POWER TEST

Test Dequirement:	ECC Dort15 C Spotton 15.247 (b)(2)
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS	

8.2 TEST PROCEDURE

- a. 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
 - Set the spectrum analyzer: RBW = 2MHz. VBW =6MHz. Sweep = auto; Detector Function = Peak.
 Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

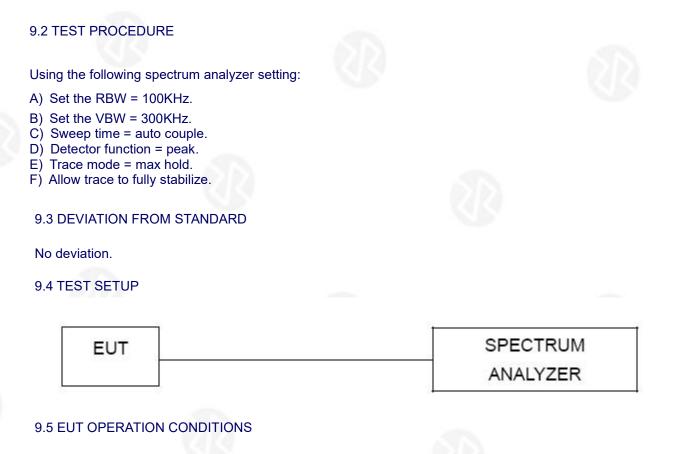
8.6 TEST RESULTS

			V & V &
Temperature :	25.6 ℃	Relative Humidity :	51%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

	Test channel	Peak Output Power (dBm)	Limit(dBm)	Result	
BLE 1M	Lowest	6.21	1		
	Middle	5.99			
	Highest	5.37	20.00	Pass	
BLE 2M	Lowest	5.6	5.6 30.00		
	Middle	6.08			
	Highest	5.51			

🔊 www.zkt-lab.com

🔊 www.zkt-lab.com



9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

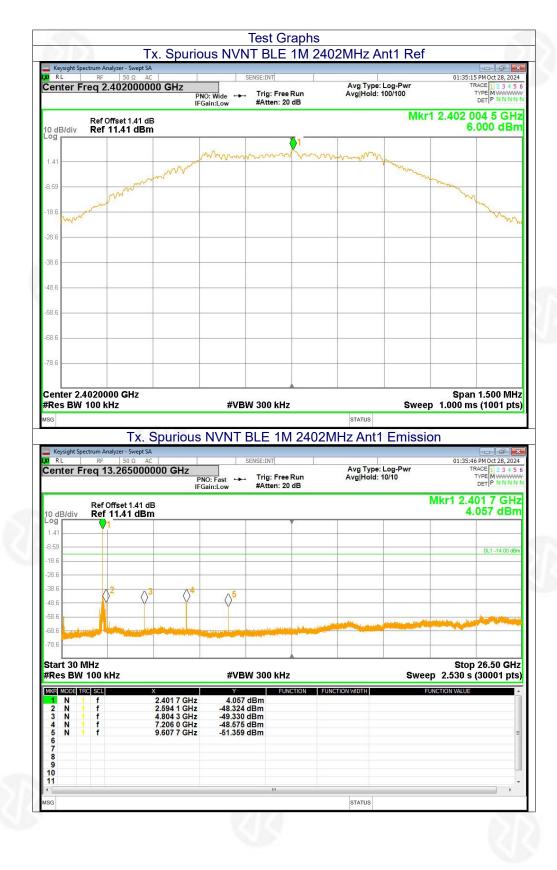
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

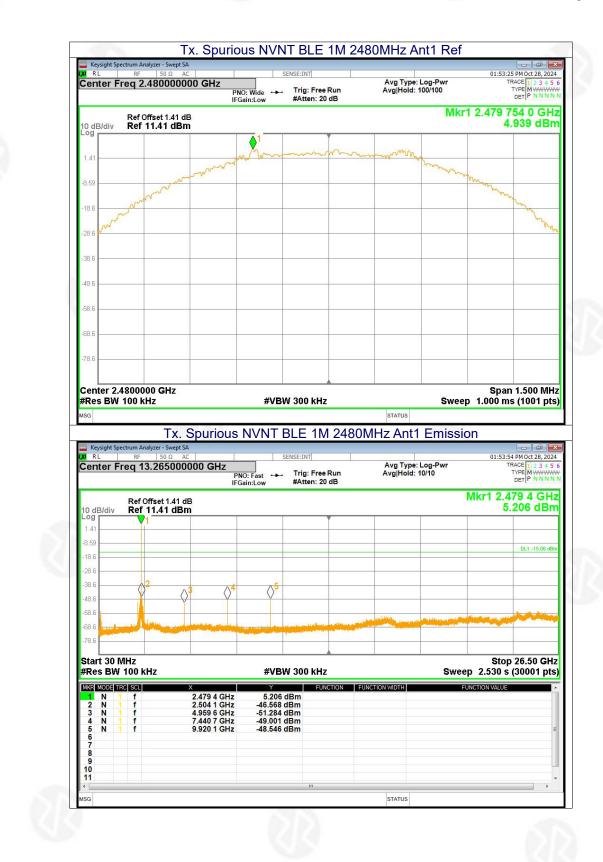
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.




1

昌



www.zkt-lab.com

+86-400-000-9970

+86-400-000-9970

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

+86-400-000-9970

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

+86-400-000-9970

+86-400-000-9970

10.ANTENNA REQUIREMENT

use of a standard anter 15.247(b) (4) requirem (4) The conducted outp directional gains that d directional gain greater	nna jack or electrical o ent: out power limit specific o not exceed 6 dBi. E: r than 6 dBi are used, s in paragraphs (b)(1)	ed in paragraph (b) of th xcept as shown in parag the conducted output po , (b)(2), and (b)(3) of this	s section is based on th raph (c) of this section, wer from the intentiona	eplaced by the user, but the e use of antennas with if transmitting antennas of I radiator shall be reduced b, by the amount in dB that th
EUT Antenna: The antenna is PCB ar	ntenna, the best case	gain of the antennas is ·	0.58dBi, reference to th	e appendix II for details
		W		22

11. TEST SETUP PHOTOS

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔊 www.zkt-lab.com