

8-DPSK High Channel

8. Maximum Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Limit:	30dBm(for GFSK), 20.97dBm(for EDR)

8.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

8.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

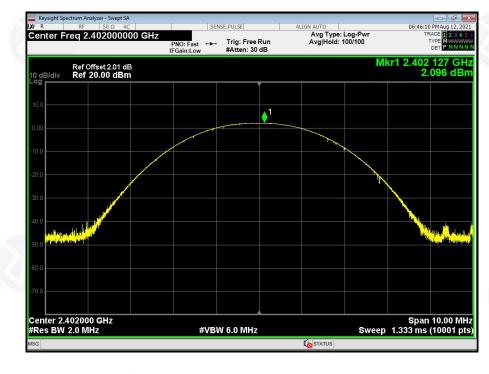
8.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

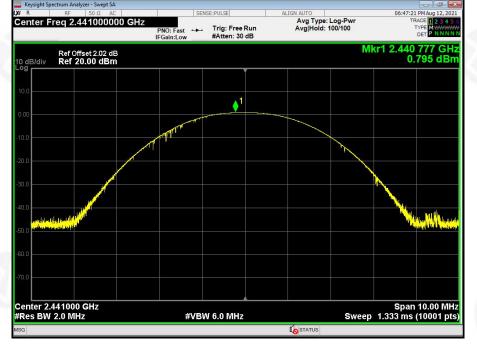
8.4 DEVIATION FROM STANDARD

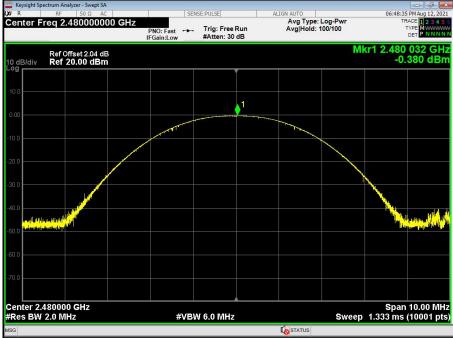
No deviation.

8.5 Test Result

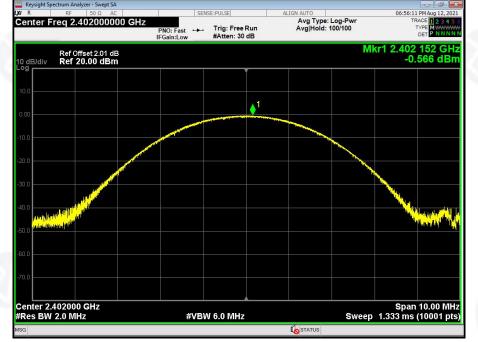

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	2.096		
GFSK	Middle	0.795	30.00	Pass
	Highest	-0.380		
	Lowest	-0.566		
π/4-DQPSK	Middle	-1.947	20.97	Pass
ST.	Highest	-2.971		
	Lowest	-1.544		
8-DPSK	Middle	-2.962	20.97	Pass
	Highest	-4.060		

Test plots GFSK Low Channel

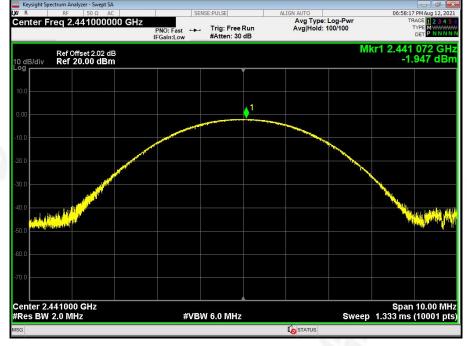




GFSK Middle Channel

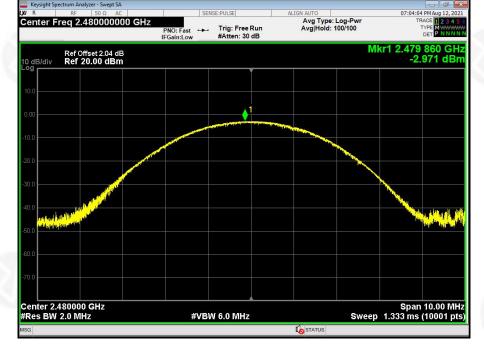


GFSK High Channel



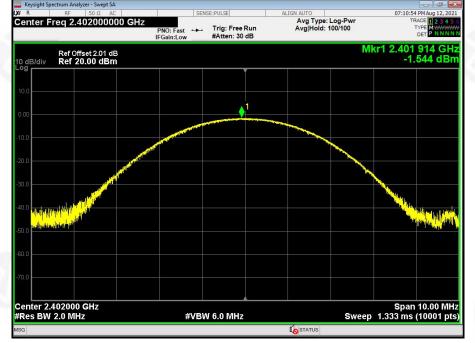
π/4-DQPSK Low Channel

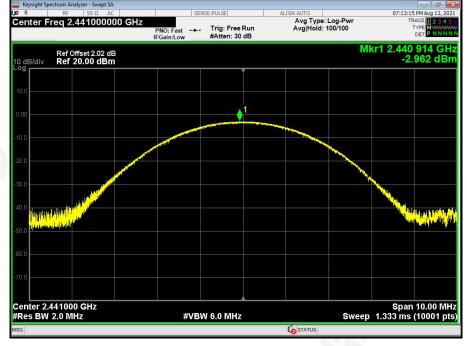
π/4-DQPSK Middle Channel


Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

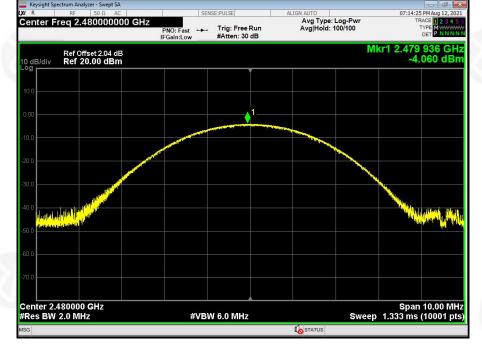
π/4-DQPSK High Channel





8-DPSK Low Channel

8-DPSK Middle Channel



1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

8-DPSK High Channel

9. HOPPING CHANNEL SEPARATION

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=30KHz, VBW=100KHz, detector=Peak
Limit:	GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)

9.1 Test Setup

UT	SPECTRUM
	ANALYZER

9.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port

to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 Test Result

Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	0.987	0.847	PASS
GFSK	Middle	0.894	0.874	PASS
GFSK	High	1.194	0.985	PASS
π/4-DQPSK	Low	0.984	0.927	PASS
π/4-DQPSK	Middle	0.996	0.943	PASS
π/4-DQPSK	High	0.996	0.945	PASS
8-DPSK	Low	0.999	0.964	PASS
8-DPSK	Middle	1.017	0.949	PASS
8-DPSK	High	1.185	0.961	PASS

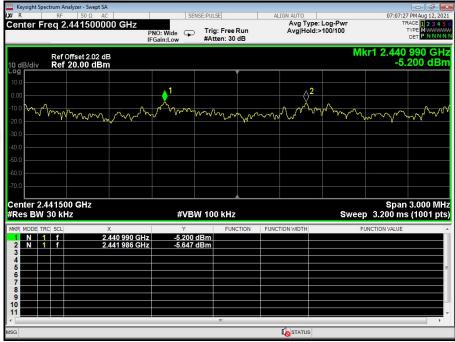
Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

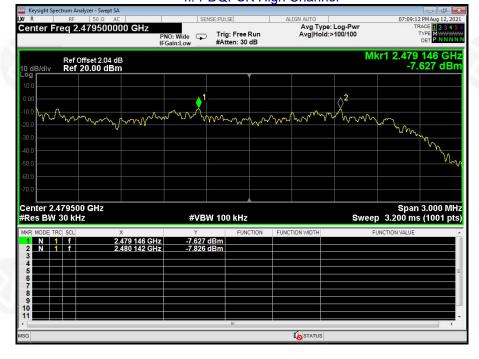
Test plots GFSK Low Channel

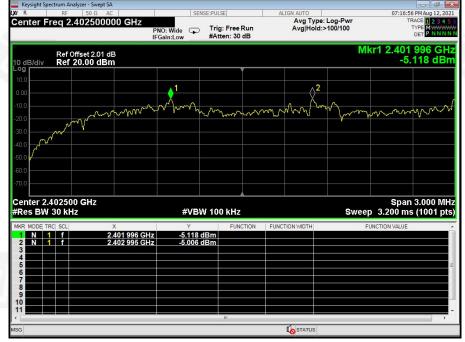
GFSK Middle Channel

GFSK High Channel

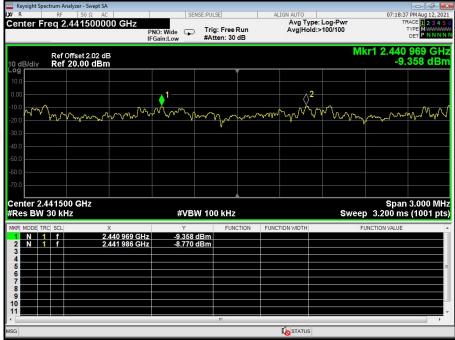


n Analyzer - Swept Sa 07:05:58 PM Aug 12 SENSE:PULSE q 2.402500000 GH Avg Type: Log-Pwr Avg|Hold:>100/100 Center F PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB DET Mkr1 2.402 143 GHz -5.128 dBm Ref Offset 2.01 dB Ref 20.00 dBm **∂**² Center 2.402500 GHz #Res BW 30 kHz Span 3.000 MHz Sweep 3.200 ms (1001 pts) #VBW 100 kHz 2.402 143 GHz 2.402 983 GHz -5.128 dBn -4.663 dBn N 1 f N 1 f

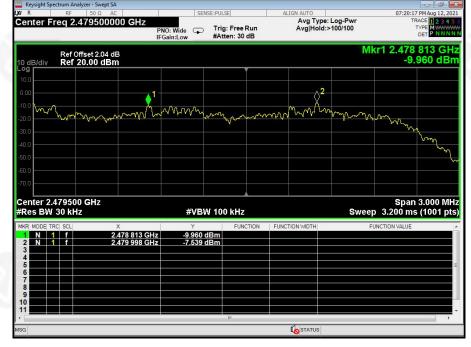

π/4-DQPSK Low Channel



π/4-DQPSK High Channel



8-DPSK Low Channel


8-DPSK Middle Channel

8-DPSK High Channel

10.NUMBER OF HOPPING FREQUENCY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels

10.1 Test Setup

EUT	SPECTRUM
	ANALYZER

10.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

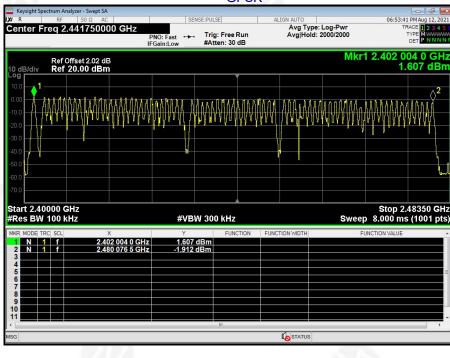
2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

10.3 DEVIATION FROM STANDARD

No deviation.


Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Nww.zkt-lab.com

+86-755-2233 6688

🔀 zkt@zkt-lab.com

π/4-DQPSK

					- d 🗙
RF 50 Ω AC		E:PULSE	ALIGN AUTO		07:07:58 PM Aug 12, 2021
nter Freq 2.441750000 GHz	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 30 dB		e: Log-Pwr : 2000/2000	TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N
Ref Offset 2.02 dB B/div Ref 20.00 dBm				Mkr1 2	.401 503 0 GHz -6.863 dBm
hipens with why her why here	MMMMMMM	MANAMAN	mallantern	LAND BRANCHAR	htter have a start a st
)					
rt 2.40000 GHz es BW 100 kHz	#VBW	300 kHz		Sweep 8	Stop 2.48350 GHz 3.000 ms (1001 pts)
rt 2.40000 GHz es BW 100 kHz MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH		
rt 2.40000 GHz es BW 100 kHz	۲ GHz -6.863 dE	FUNCTION	FUNCTION WIDTH		
rt 2.40000 GHz 25 BW 100 kHz MODE TRC SCL X N 1 f 2.401 503 0 0	Y GHz -6.863 dE	FUNCTION	FUNCTION WIDTH		3.000 ms (1001 pts)
rt 2.40000 GHz 25 BW 100 kHz MODE TRC SCL X N 1 f 2.401 503 0 0	Y GHz -6.863 dE	FUNCTION	FUNCTION WIDTH		3.000 ms (1001 pts)
rt 2.40000 GHz 25 BW 100 kHz MODE TRC SCL X N 1 f 2.401 503 0 0	Y GHz -6.863 dE	FUNCTION	FUNCTION WIDTH		3.000 ms (1001 pts)

8-DPSK

			-			
Keysight Spectrum Analyz	zer - Swept SA					
R RF	50 Ω AC	SENSE	:PULSE	ALIGN AUTO		07:19:12 PM Aug 12, 20
enter Freq 2.44	41750000 GHz		Trig: Free Run #Atten: 30 dB		e: Log-Pwr d: 2000/2000	TRACE 1 2 3 4 TYPE MWWW DET P NNN
dB/div Ref 20	set 2.02 dB 0.00 dBm				Mkr1	2.401 503 0 GH -8.297 dBi
	rallandanadari 	adeanyyyyyyyy	wayaharan Andraha	MALAAAAAA	WWWWW	
art 2.40000 GH		#\/B\A(300 kHz		Sween	Stop 2.48350 GH 8.000 ms (1001 pt
es BW 100 kH	Z	#VD9V			Oncep	
	z X	#VDW	FUNCTION	FUNCTION WIDTH		CTION VALUE
Res BW 100 kH; R MODE TCI SCI N 1 F F N 1 F F N 1 F F N 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1 F F S 1		Y -8.297 dB	FUNCTION	FUNCTION WIDTH		
	× 2.401 503 0 GH	Y -8.297 dB	FUNCTION	FUNCTION WIDTH		

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

111

11. DWELL TIME

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second

11.1 Test Setup

EUT	SPECTRUM
	ANALYZER

11.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0Hz;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

11.3 DEVIATION FROM STANDARD

No deviation.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Nww.zkt-lab.com

11.4 Test Result

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	124.48	400	Pass
2441MHz	DH3	261.76	400	Pass
2441MHz	DH5	307.52	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: 2441MHz as blow

DH1 time slot=0.389(ms)*(1600/ (2*79))*31.6=124.48ms DH3 time slot=1.636(ms)*(1600/ (4*79))*31.6=261.76ms

DH5 time slot=2.883(ms)*(1600/ (6*79))*31.6=307.52ms

π/4-DQPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	124.48	400	Pass
2441MHz	2DH3	262.56	400	Pass
2441MHz	2DH5	308.16	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: 2441MHz as blow DH1 time slot=0.389(ms)*(1600/ (2*79))*31.6=124.48ms DH3 time slot=1.641(ms)*(1600/ (4*79))*31.6=262.56ms DH5 time slot=2.889(ms)*(1600/ (6*79))*31.6=308.16ms

8-DPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	124.16	400	Pass
2441MHz	3DH3	262.40	400	Pass
2441MHz	3DH5	308.37	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: 2441MHz as blow DH1 time slot=0.388(ms)*(1600/ (2*79))*31.6=124.16ms DH3 time slot=1.640(ms)*(1600/ (4*79))*31.6=262.40ms DH5 time slot=2.891(ms)*(1600/ (6*79))*31.6=308.37ms

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

Test Plots

GFSK DH1

R	RF	50 Ω AC		S	ENSE:PULSE			IGN AUTO			7 PM Aug 13, 2
enter Fr	req 2.₄	14100000	P	NO:Fast ↔ Gain:Low	Total M		ms	Avg Type:	Log-Pwr	1	TYPE WWWW DET PNNN
) dB/div		fset 2.02 dB 2 0.00 dBm								ΔMkr1	389.0 1.33 c
0.0											
.00		▲1∆2								0	
0.0	X	N									
0.0										0	
										and the second	
o <mark>Andraha</mark>	.)I I I		an di di patrakatan <mark>Kapatrakatan di sakatan di sakatan Mangang di sakatan di s</mark>								
enter 2.4	41000	0000 GHz		<mark>1</mark> 1200010110101					n sindan menababah		Span 0
enter 2.4 es BW 1.	41000 .0 MHz	0000 GHz		<mark>1</mark> 1200010110101	8W 3.0 M		<mark>n finlad</mark> e		Sweep	<mark>lline blefenner</mark> u	Span 0
enter 2.4 es BW 1. R MODE TRO 1 A2 1 2 F 1	141000 .0 MHz	0000 GHz		(Δ) 1	8W 3.0 M	Hz	<mark>n finlad</mark> e	<mark>things and the p</mark> articles of the particular states of the particular s	Sweep	10.00 ms	Span 0
and the second	141000 .0 MHz c scl t (2	0000 GHz	389.0 µs	(Δ) 1	33 dB	Hz	<mark>n finlad</mark> e	<mark>things and the p</mark> articles of the particular states of the particular s	Sweep	10.00 ms	Span 0
enter 2.4 es BW 1. cs	141000 .0 MHz c scl t (2	0000 GHz	389.0 µs	(Δ) 1	33 dB	Hz	<mark>n finlad</mark> e	<mark>things and the p</mark> articles of the particular states of the particular s	Sweep	10.00 ms	Span 0
R Model File R Model File <td>141000 .0 MHz c scl t (2</td> <td>0000 GHz</td> <td>389.0 µs</td> <td>(Δ) 1</td> <td>33 dB</td> <td>Hz</td> <td><mark>n finlad</mark>e</td> <td><mark>thing to said the party of the</mark></td> <td>Sweep</td> <td>10.00 ms</td> <td>Span 0</td>	141000 .0 MHz c scl t (2	0000 GHz	389.0 µs	(Δ) 1	33 dB	Hz	<mark>n finlad</mark> e	<mark>thing to said the party of the</mark>	Sweep	10.00 ms	Span 0
2.0 444 μm 2.0 enter 2.4 es BW 1. R MODE TRO	141000 .0 MHz c scl t (2	0000 GHz	389.0 µs	(Δ) 1	33 dB	Hz	<mark>n finlad</mark> e	<mark>thing to said the party of the</mark>	Sweep	10.00 ms	Span 0

GFSK DH3

CILCIT	RF 50 Ω Treq 2.44100	00000 GHz	NO: Fast +++ T	^{ULSE} rig Delay-1.000 m rig: Video Atten: 30 dB	ALIGN AUTO s Avg Type	Log-Pwr	TR	PM Aug 12, 202 ACE 1 2 3 4 5 YPE WWWWWW DET P NNNN
0 dB/div og ∢	Ref Offset 2. Ref 20.00							1.636 m -5.68 dl
10.0	X ₂	∳1∆2						TRIG LV
10.0 20.0 30.0 								
0.0 0.0 0.0 ⁴⁴ 4444		instale. Nartifi	andra rataji zaji jazi ja Nati i zaji ji zaji jazi je		A CONTRACTOR OF	II. and distant	alatan basalan Ng ng ng ng ng ng ng	<mark>dan kada</mark> ta tanggar
	441000000 (1.0 MHz	GHz	#VBW 3	.0 MHz		Sweep	10.00 ms (Span 0 H 10001 pt
		× <u>1.636 ms</u> 998.0 us	Υ (Δ) -5.68 dE -1.59 dBn	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 Δ2 1 2 F 1 3	1 t							

GFSK DH5

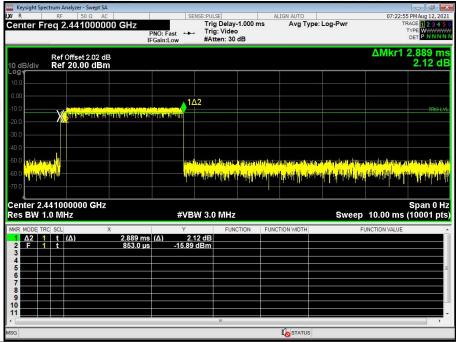
Center Freq 2.441000000 GHz	PNO: Fast ++ Tri	g Delay-1.000 m g: Video tten: 30 dB	ns Avg Ty	pe: Log-Pwr	TF	5 PM Aug 12, 2021 RACE 1 2 3 4 5 TYPE WWWWWW DET P N N N N
Ref Offset 2.02 dB 0 dB/div Ref 20.00 dBm					∆Mkr1	2.883 ms -2.26 dB
	1Δ2					TRIG LVL
			a de san e provinsione. Nationalise provinsione	patietanas de tratado	anter de color de la terre Selete de color de la terre	
a state of the sta	A. III . III.	manan at abilini sa	diff. of the second particular		In the self of Ad	MUNICE MAD
enter 2.441000000 GHz es BW 1.0 MHz	#VBW 3.0		and a second condense		10.00 ms	Span 0 Hz (10001 pts)
enter 2.441000000 GHz es BW 1.0 MHz KR MODE TRC SCL X A2 1 t (Δ) 2.883 1 2 F 1 t 907.0	#VBW 3.0 ms (Δ) -2.26 dB		FUNCTION WIDTH	Sweep	10.00 ms	Span 0 Hz (10001 pts
enter 2.441000000 GHz es BWD 1.0 MHz KR MODE TRC SCL X 1 Δ2 1 t (Δ) 2.883 1 2 F 1 t 907.0	#VBW 3.0 γ ms (Δ) -2.26 dB) MHz		Sweep		Span 0 Hz (10001 pts)

π/4-DQPSK DH1

Keysight Spectrum Analyzer - Swept SA Ø R RF 50 Ω AC	SENSE:PUL	uerl I	ALIGN AUTO		05:20:24 PM Aug 13, 202
Center Freq 2.441000000 GHz	PNO: Fast ↔ Tri	g Delay-1.000 ms g: Video tten: 30 dB	Avg Type: L	.og-Pwr	TRACE 2 3 4 TYPE WWWW DET P N N N
Ref Offset 2.02 dB 10 dB/div Ref 20.00 dBm -og ∳					ΔMkr1 389.0 μ 0.22 d
10.0 0.00					
-20.0					TRIGLY
					n Marakatan Aliperta Marakatan Karana (Marakatan Marakatan Marakatan Marakatan Marakatan Marakatan Marakatan Mar
20.0 Print P	<mark>. Alih uli kukanya na na</mark>	an a sa s	winder, difference	, hiden	
Res BW 1.0 MHz	#VBW 3.0	0 MHz		Sweep	Span 0 F 10.00 ms (10001 pt
MKR MODE TRC SCL X 1 Δ2 1 t (Δ) 389.0 μs	γ (Δ) 0.22 dB	FUNCTION FU	UNCTION WIDTH	FUI	ICTION VALUE
2 F 1 t 853.0 µs					
4 5					
6					
8					
10					
		m.			٢
SG			STATUS		

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🔊 www.zkt-lab.com



π/4-DQPSK DH3

Keysight Spectrum Analyzer - Swept SA		1				-		
Center Freq 2.441000000	Р	NO: Fast ↔ Gain:Low	NSE:PULSE Trig Delay Trig: Vide #Atten: 30	-1.000 ms o	ALIGN AUTO Avg Type	: Log-Pwr	TF	7 PM Aug 12, 202 RACE 1 2 3 4 5 TYPE WWWW DET P N N N
Ref Offset 2.02 dB 0 dB/div Ref 20.00 dBm							ΔMkr1	1.641 m -0.98 di
•99 10.0 0.00 10.0	∳1∆2	2						
20.0								TRIGLY
0.0							s Second state	
so.o <mark>J_{Up}litylatation I</mark>		<mark>alan aranga</mark>	the second prior		<mark>thailt the branch</mark>		<mark>urilius buyilius</mark> paga piganga	1.0
enter 2.441000000 GHz			the second prior	apprending to the second se		the option of the state of the	<mark>nahanahan</mark> hatha	Span 0 H
RE NOOE TRC SCL X		жыларана #VВ Ү	W 3.0 MHz	od na pod fillopolo o		Sweep	<mark>neiferen l</mark> eifert	Span 0 H
1 Δ2 1 t (Δ) 2 F 1 t		#VΒ #VΒ	W 3.0 MHz	od na pod fillopolo o	anan da an	Sweep	10.00 ms	Span 0 H
0.0 Individual for the second se	1.641 ms	#VΒ #VΒ	W 3.0 MHz	od na pod fillopolo o	anan da an	Sweep	10.00 ms	Span 0 H (10001 pt
50.0 Initial plant ro.0 Initial plant center 2.441000000 GHz Res tes BW 1.0 MHz Initial plant INR MODE TRC SCL X 2 F 1 4 4 5 6	1.641 ms	#VΒ #VΒ	W 3.0 MHz	od na pod fillopolo o	anan da an	Sweep	10.00 ms	Span 0 H
50.0 Initial plant 70.0 Initial plant Center 2.441000000 GHz Initial plant Res BW 1.0 MHz Initial plant RR MODE TRC SCL X 1 A2 1 2 F 1 3 Initial plant 4 Initial plant 5 Initial plant 6 Initial plant 7 8	1.641 ms	#VΒ #VΒ	W 3.0 MHz	od na pod fillopolo o	anan da an	Sweep	10.00 ms	Span 0 H (10001 pt
50.0 Initiality of the second s	1.641 ms	#VΒ #VΒ	W 3.0 MHz	od na pod fillopolo o	anan da an	Sweep	10.00 ms	Span 0 H
5000 Initial product of the second seco	1.641 ms	#VΒ #VΒ	W 3.0 MHz	od na pod fillopolo o	anan da an	Sweep	10.00 ms	Span 0 H (10001 pt

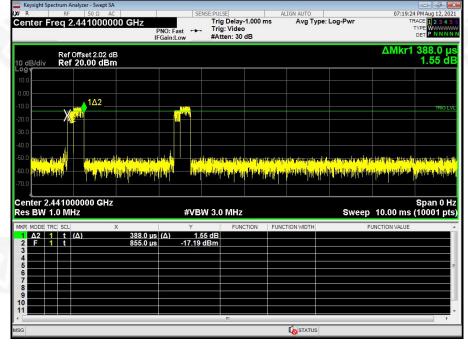
π/4-DQPSK DH5

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

1

+86-755-2233 6688

Zkt@zkt-lab.com


+86-400-000-9970

8-DPSK DH1

8-DPSK DH3

Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC	1	L CENCE-DUIL CE				07-00-0	
center Freq 2.441000000 G	Hz PNO: Fas IFGain:Lo	Trig:	Delay-1.000 ms	ALIGN AUTO Avg Type:	Log-Pwr	TI	4 PM Aug 12, 202 RACE 1 2 3 4 5 TYPE WWWWW DET P NNNN
Ref Offset 2.02 dB 0 dB/div Ref 20.00 dBm ⊙g						ΔMkr1	1.640 ms 2.13 dE
	1∆2					6	TRIG LVI
20.0							
40.0	al Massia la India in Angela	up company and a second	an dan ling a sa karata ka	a destained of the loca		No hiteda theory	dedige per la <mark>la la proprio</mark>
	den ilarut filme	an finge an gest fighter	lan, a ^{da} l fad pepadanaa	1. FATTLE HALFELL	n an	nar product points and	here a free for the state of th
enter 2.441000000 GHz es BW 1.0 MHz		#VBW 3.0 M	ИНz		Sweep	10.00 ms	Span 0 Hz (10001 pts
	640 ms (Δ)	Y 2.13 dB	FUNCTION FUI	NCTION WIDTH	FI	JNCTION VALUE	
3	54.0 µs	17.88 dBm					
4 5 6							
8							
9							
		,	1.				

8-DPSK DH5

Keysight Spectrum Analyzer - Swept SA	0 D1				
R RF 50 Ω AC	SENSE:PU		ALIGN AUTO		07:23:42 PM Aug 12, 20
enter Freq 2.441000000 GHz	PNO: East +++ Tr	ig Delay-1.000 ms ig: Video Atten: 30 dB	s Avg Type	e: Log-Pwr	TRACE 1 2 3 4 TYPE WWWW DET P N N N
Ref Offset 2.02 dB					ΔMkr1 2.891 m
0 dB/div Ref 20.00 dBm					-2.22 d
0.0					
.00					
	1Δ2 —				TRIG L
	Alla to Blan and				
).0					2
J.U					
	. In a stand of the	ust replication of the test	and the old bit to buy the	والأراب المتعادي	and the children of the state
					energine energine en et et politike en et Nyer-bern fre organ politike en et Nyer-bern fre organ politike en et
					dene beter foresting of the back of a source
20 10 10 10 10 10 10 10 10 10 1				ppppole light place	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	المعادمة (المعادمة المعادمة المعادمة المعادمة المعادمة المعادمة المعادمة (معادمة المعادمة المعادمة المعادمة الم ¥VBW 3.	0 MHz		Sweep	Span 0 I
α 1	վանկեր #VBW 3.	0 MHz	ur (berelight) page (fjort	Sweep	Span 0 H 10.00 ms (10001 pi
Image: Second	#VBW 3.	0 MHz	ur (berelight) page (fjort	Sweep	Span 0 H 10.00 ms (10001 pi
Image: strategy of the	#VBW 3.	0 MHz	ur (berelight) page (fjort	Sweep	Span 0 H 10.00 ms (10001 pi
0 0	#VBW 3.	0 MHz	ur (berelight) page (fjort	Sweep	Span 0 H 10.00 ms (10001 pi
0 0	#VBW 3.	0 MHz	ur (berelight) page (fjort	Sweep	Span 0 H 10.00 ms (10001 pi
$ \begin{array}{c} \text{min} \\ mi$	#VBW 3.	0 MHz	ur (berelight) page (fjort	Sweep	Span 0 H 10.00 ms (10001 pi
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	#VBW 3.	0 MHz	ur (berelight) page (fjort	Sweep	Span 0 H 10.00 ms (10001 pi

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

8

12. Antenna Requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antennas is 0dBi, reference to the appendix II for details

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

📢 www.zkt-lab.com

Reference to the appendix I for details.

14. EUT Constructional Details

Reference to the appendix II for details.

***** END OF REPORT ****