

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TECT	ГОС	:DA	DT
	IRE	:ru	ואי

Report No. CTC20240056E02

FCC ID-----: 2A22Z-C224

IC-----: 27673-C224

Applicant----- Botslab, Inc.

Delaware, USA

Manufacturer Botslab, Inc.

Delaware, USA

Product Name Botslab Indoor Cam 3C Pro

Trade Mark·····: Botslab

Model/Type reference····: C224

Listed Model(s) · · · · · /

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-247 Issue 3

Date of receipt of test sample...: Jan. 11, 2024

Date of testing...... Jan. 12, 2024 ~ Jan. 27, 2024

Date of issue...... Jan. 29, 2024

Result..... PASS

Compiled by:

(Printed name+signature) Terry Su

Supervised by:

(Printed name+signature) Eric Zhang

Approved by:

(Printed name+signature) Totti Zhao

Testing Laboratory Name.....: CTC Laboratories, Inc.

Address...... 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park,

Shenzhen, Guangdong, China

Tenny Su Ziczhang Lednas

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

	Table of Contents	Page
1. TE	ST SUMMARY	3
1.1.	Test Standards	3
1.2.	REPORT VERSION	
1.3.	TEST DESCRIPTION	4
1.4.	TEST FACILITY	5
1.5.	MEASUREMENT UNCERTAINTY	5
1.6.	Environmental conditions	6
2. GE	ENERAL INFORMATION	7
2.1.	CLIENT INFORMATION	7
2.2.	GENERAL DESCRIPTION OF EUT	
2.3.	ACCESSORY EQUIPMENT INFORMATION	8
2.4.	OPERATION STATE	9
2.5.	MEASUREMENT INSTRUMENTS LIST	10
3. TE	ST ITEM AND RESULTS	12
3.1.	CONDUCTED EMISSION	12
3.2.	Radiated Emission	
3.3.	BAND EDGE EMISSIONS (RADIATED)	25
3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	30
3.5.	DTS BANDWIDTH	36
3.6.	PEAK OUTPUT POWER	39
3.7.	Power Spectral Density	41
3.8.	DUTY CYCLE	43
3.9.	Antenna requirement	45

Accreditation Administration of the People's Republic of China: yz.cnca.cn

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz. RSS-247 Issue 3: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices. RSS-Gen Issue 5: General Requirements for Compliance of Radio Apparatus.

1.2. Report version

Revised No.	Date of issue	Description
01	Jan. 29, 2024	Original

Tel.: (86)755-27521059 日 中国国家认证认可监督管理委员会

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS-247 Issue 3					
Test Item	Standard Section		Result	T	
rest item	FCC	IC	Result	Test Engineer	
Antenna Requirement	15.203	/	Pass	Alicia Liu	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Eva Feng	
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS 247 5.5	Pass	Alicia Liu	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Alicia Liu	
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Alicia Liu	
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Alicia Liu	
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Alicia Liu	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Alicia Liu	

Note: The measurement uncertainty is not included in the test result.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C ~ 27°C
Relative Humidity:	40% ~ 60%
Air Pressure:	101kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Botslab, Inc.	
Address:	919 North Market Street, Suite 950, Wilmington, New Castle, Delaware, USA	
Manufacturer:	Botslab, Inc.	
Address:	919 North Market Street, Suite 950, Wilmington, New Castle, Delaware, USA	
Factory:	Anhui Sharetronic Data Technology Co., Ltd.	
Address:	Sharetronic IOT Industrial Park, Intersection of Innovation Avenue and Changan Avenue, Hefei High-tech Zone, Hefei City, Anhui Province, P.R.China	

2.2. General Description of EUT

Product Name:	Botslab Indoor Cam 3C Pro	
Trade Mark:	Botslab	
Model/Type reference:	C224	
Listed Model(s):	/	
Power supply:	5Vdc/1.5A from AC/DC Adapter	
Adapter Model:	RD0501500-228MG Input: 100-240V~ 50/60Hz 0.3A Output: 5Vdc/1.5A	
Hardware version: DVT		
Software version:	P9PRO_v1.0.1.1940_20231125	
BT 4.2/ BLE		
Modulation:	GFSK	
Data rate:	1Mbps	
Operation frequency:	2402MHz~2480MHz	
Channel number:	40	
Channel separation:	aration: 2MHz	
Antenna type:	PCB Antenna	
Antenna gain:	1.8dBi Max	

2.3. Accessory Equipment information

Equipment Information				
Name	Model	S/N	Manufacturer	
Notebook	ThinkBook 14G3 ACL	MP246QDR	Lenovo	
/	/	/	/	
Cable Information				
Name	Length			
/	/	/	/	
Test Software Information				
Name	Versions	/	/	
SecureCRTPortable	7.0.0.326	/	/	

2.4. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing. Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2404
i	÷
18	2438
19	2440
20	2442
i:	:
38	2478
39	2480

Note: The display in grey were the channel selected for testing.

Test mode

ĺ	For	RF	tact	items:	
ı	ГОΙ	Γ	เธอเ	HEILIS.	

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

2.5. Measurement Instruments List

RF Tes	RF Test System				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 12, 2024
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2024
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 12, 2024
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 12, 2024
10	Wideband Radio Communication Tester	R&S	CMW500	102257	May. 25, 2024
11	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2024
12	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 24, 2024
13	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024
14 Test Software		Tonscend	JS1120-3	V3.3.38	/

Radiate	ed Emission (3m chamber 2)				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Dec. 07, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-648	Dec. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 12, 2024
4	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024
5	Pre-Amplifier	SONOMA	310	186194	Dec. 12, 2024
6	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 12, 2024
7	Test Receiver	R&S	ESCI7	100967	Dec. 12, 2024
8	3m chamber 2	Frankonia	EE025	/	Oct. 23, 2024
9	Test Software	FARA	EZ-EMC	FA-03A2	/

Radiate	ed Emission (3m chamber 3))				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024	
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024	
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024	
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024	
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024	

Page 11 of 45

Report No.: CTC20240056E02

6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

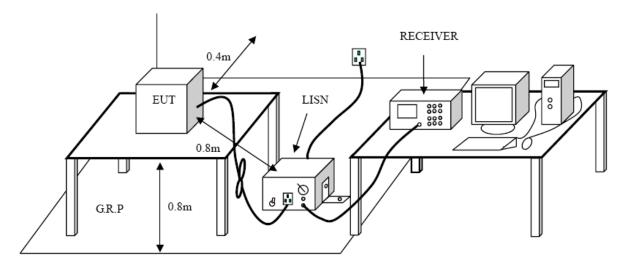
Conduc	eted Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 12, 2024
2	LISN	R&S	ENV216	101113	Dec. 12, 2024
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024
6	Test Software	R&S	EMC32	6.10.10	/

Note: 1. The Cal. Interval was one year.

- 2. The Cal. Interval was three year of the chamber
- 3. The cable loss has calculated in test result which connection between each test instruments.

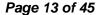
3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8

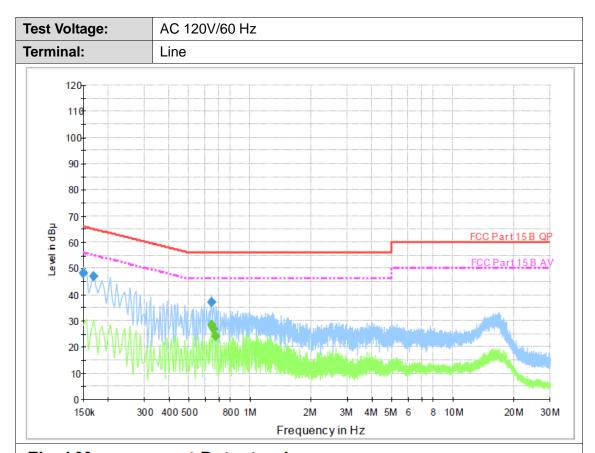
Frequency range (MHz)	Limit (dBuV)				
Frequency range (MH2)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			


^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

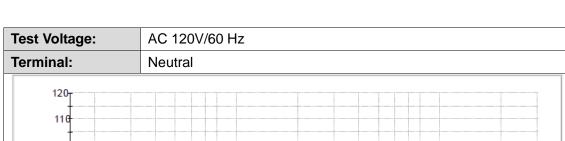
- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, Raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

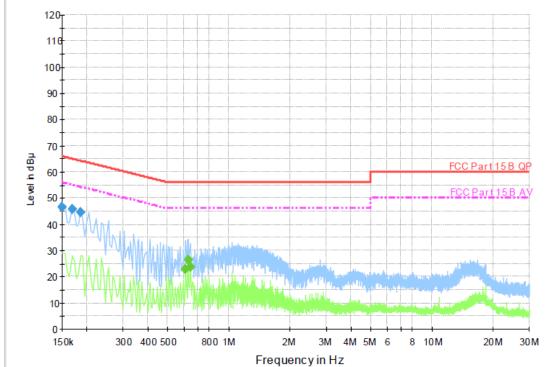


Test Mode:

Please refer to the clause 2.4.

Test Results


Final Measurement Detector 1


Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.150000	48.1	1000.00	9.000	On	L1	9.4	17.9	66.0	
0.168000	47.1	1000.00	9.000	On	L1	9.4	18.0	65.1	
0.640500	37.2	1000.00	9.000	On	L1	9.5	18.8	56.0	

Final Measurement Detector 2

F	requency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ	Comment
	0.640500	28.3	1000.00	9.000	On	L1	9.5	17.7	46.0	
	0.658500	26.7	1000.00	9.000	On	L1	9.5	19.3	46.0	
	0.676500	24.3	1000.00	9.000	On	L1	9.5	21.7	46.0	

Emission Level= Read Level+ Correct Factor

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.150000	46.6	1000.00	9.000	On	N	9.3	19.4	66.0	
0.168000	45.7	1000.00	9.000	On	N	9.3	19.4	65.1	
0.186000	44.5	1000.00	9.000	On	N	9.3	19.7	64.2	

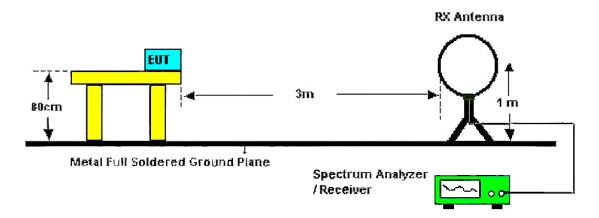
Final Measurement Detector 2

Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ V)	Time (ms)	(kHz)			(dB)	(dB)	(dBµ	
		· /						v)	
0.609000	22.7	1000.00	9.000	On	N	9.4	23.3	46.0	
0.627000	26.6	1000.00	9.000	On	N	9.4	19.4	46.0	
0.640500	23.7	1000.00	9.000	On	N	9.4	22.3	46.0	

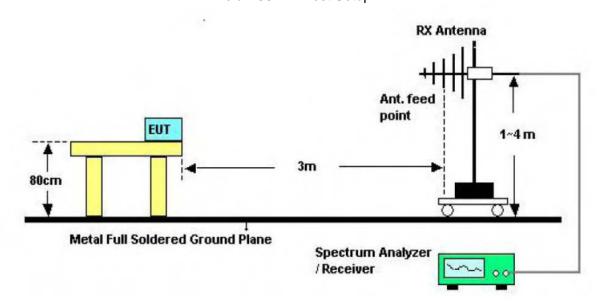
Emission Level= Read Level+ Correct Factor

3.2. Radiated Emission

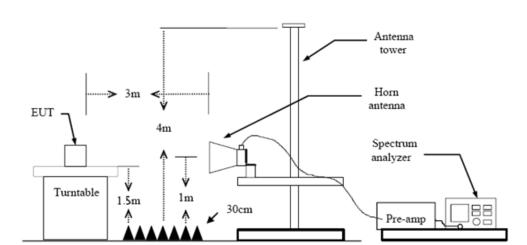
Limit


FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS - Gen 8.9

Frequency	Limit (dBuV/m @3m)	Value	
30 MHz ~ 88 MHz	40.00	Quasi-peak	
88 MHz ~ 216 MHz	43.50	Quasi-peak	
216 MHz ~ 960 MHz	46.00	Quasi-peak	
960 MHz ~ 1 GHz	54.00	Quasi-peak	
Above 1 GHz	54.00	Average	
Above I GHZ	74.00	Peak	


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration

Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Below 30 MHz:

9kHz – 150kHz, RBW=200Hz, VBW≥RBW, Sweep=auto, Detector function=peak, Trace=max hold; 150kHz - 30MHz, RBW=9kHz, VBW ≥ RBW, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) 30 MHz - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(4) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW≥1/T Peak detector for Average value.

Note 1: For the 1/T& Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

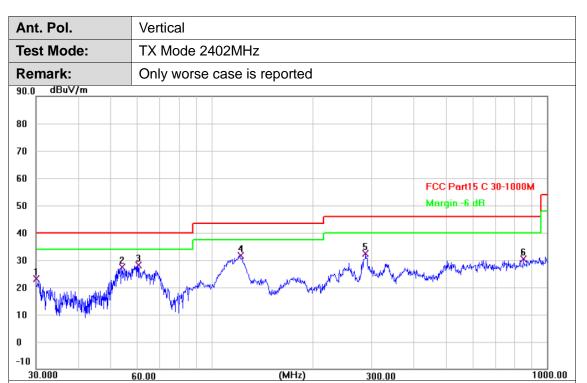
Ant. Pol. Horizontal

Test Mode: TX Mode 2402MHz

Remark: Only worse case is reported

90.0 dBuV/m

80
70



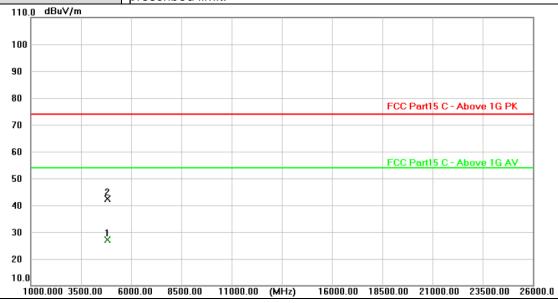
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	59.6493	34.99	-15.30	19.69	40.00	-20.31	QP
2	68.6310	36.81	-17.45	19.36	40.00	-20.64	QP
3	146.3734	45.67	-19.49	26.18	43.50	-17.32	QP
4	260.1444	43.81	-14.30	29.51	46.00	-16.49	QP
5	285.9777	43.60	-13.76	29.84	46.00	-16.16	QP
6 *	651.9417	38.03	-6.43	31.60	46.00	-14.40	QP

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	30.0000	38.74	-15.56	23.18	40.00	-16.82	QP
2	53.8818	41.48	-14.21	27.27	40.00	-12.73	QP
3	60.2801	43.56	-15.42	28.14	40.00	-11.86	QP
4 *	121.5486	49.60	-17.87	31.73	43.50	-11.77	QP
5	287.9904	46.05	-13.73	32.32	46.00	-13.68	QP
6	851.0353	34.02	-3.69	30.33	46.00	-15.67	QP

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. Pol. Horizontal

Test Mode: TX BLE Mode 2402MHz

Remark: No report for the emission which more than 10 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4803.615	25.07	2.08	27.15	54.00	-26.85	AVG
2	4804.133	40.23	2.08	42.31	74.00	-31.69	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16000.00 18500.00 21000.00 23500.00 26000.0

Ant. Pol. Vertical **Test Mode:** TX BLE Mode 2402MHz Remark: No report for the emission which more than 10 dB below the prescribed limit. 110.0 dBuV/m 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 ķ 40 30 X 20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	4803.910	24.73	2.08	26.81	54.00	-27.19	AVG
2	4804.373	41.17	2.08	43.25	74.00	-30.75	peak

11000.00 (MHz)

Remarks:

10.0

1000.000 3500.00

6000.00

8500.00

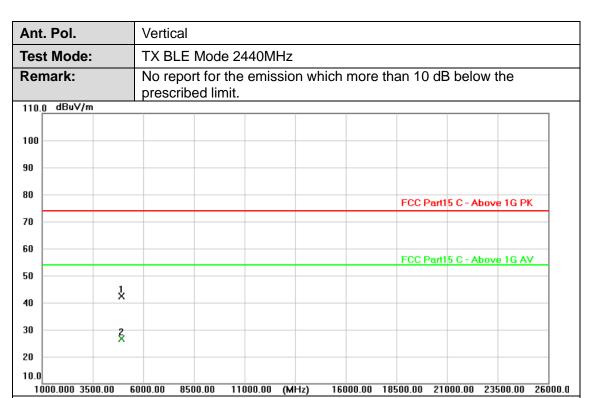
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16000.00 18500.00 21000.00 23500.00 26000.0

Ant. Pol. Horizontal **Test Mode:** TX BLE Mode 2440MHz Remark: No report for the emission which more than 10 dB below the prescribed limit. 110.<u>0</u> dBuV/m 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 Š 40 30 X

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4880.220	25.05	2.18	27.23	54.00	-26.77	AVG
2	4880.402	40.22	2.18	42.40	74.00	-31.60	peak

Remarks:


20 10.0

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

1000.000 3500.00 6000.00 8500.00 11000.00 (MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4879.819	40.25	2.18	42.43	74.00	-31.57	peak
2 *	4880.062	24.48	2.18	26.66	54.00	-27.34	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16000.00 18500.00 21000.00 23500.00 26000.0

Ant. Pol. Horizontal **Test Mode:** TX BLE Mode 2480MHz Remark: No report for the emission which more than 10 dB below the prescribed limit. 110.0 dBuV/m 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 X X 40 30 <u>2</u> 20 10.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4959.678	39.89	2.30	42.19	74.00	-31.81	peak
2 *	4960.084	24.26	2.30	26.56	54.00	-27.44	AVG

11000.00 (MHz)

Remarks:

1000.000 3500.00

6000.00 8500.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

16000.00 18500.00 21000.00 23500.00 26000.0

Ant. Pol. Vertical **Test Mode:** TX BLE Mode 2480MHz Remark: No report for the emission which more than 10 dB below the prescribed limit. 110.0 dBuV/m 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 X 40 30 Š 20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4959.620	40.24	2.30	42.54	74.00	-31.46	peak
2 *	4959.910	24.81	2.30	27.11	54.00	-26.89	AVG

11000.00 (MHz)

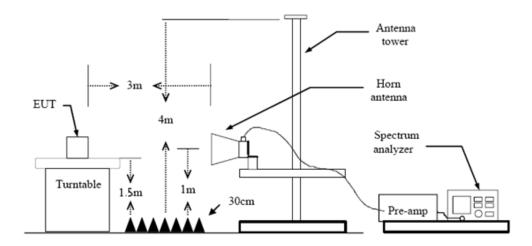
8500.00

Remarks:

10.0

1000.000 3500.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m)(at 3m)				
(MHz)	Peak	Average			
2310 ~ 2390	74	54			
2483.5 ~ 2500	74	54			

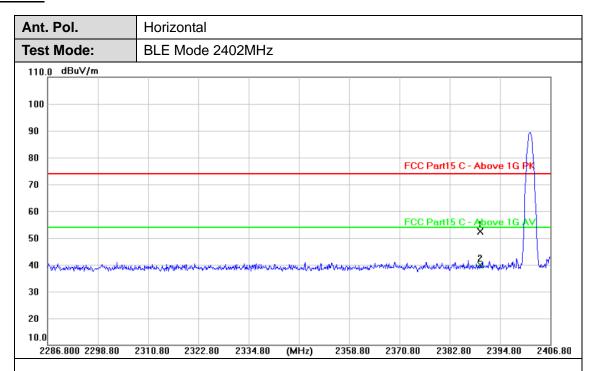
Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.


Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

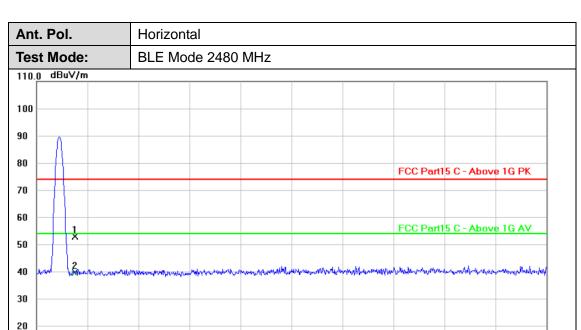
Test Results

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	21.01	31.31	52.32	74.00	-21.68	peak
2 *	2390.000	8.58	31.31	39.89	54.00	-14.11	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	22.40	31.31	53.71	74.00	-20.29	peak
2 *	2390.000	7.83	31.31	39.14	54.00	-14.86	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2582.60

2594.60

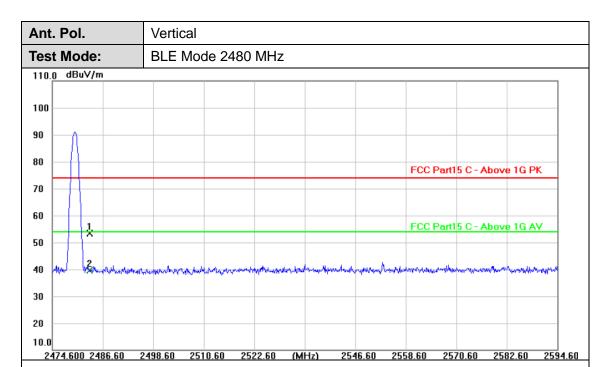
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	21.33	31.48	52.81	74.00	-21.19	peak
2 *	2483.500	8.17	31.48	39.65	54.00	-14.35	AVG

(MHz)

2558.60

Remarks:

10.0


2474.600 2486.60

2510.60

2522.60

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

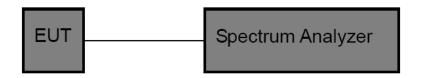
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	2483.500	21.80	31.48	53.28	74.00	-20.72	peak
2 *	2483.500	8.25	31.48	39.73	54.00	-14.27	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Page 30 of 45

Report No.: CTC20240056E02



3.4. Band edge and Spurious Emissions (Conducted)

Limit

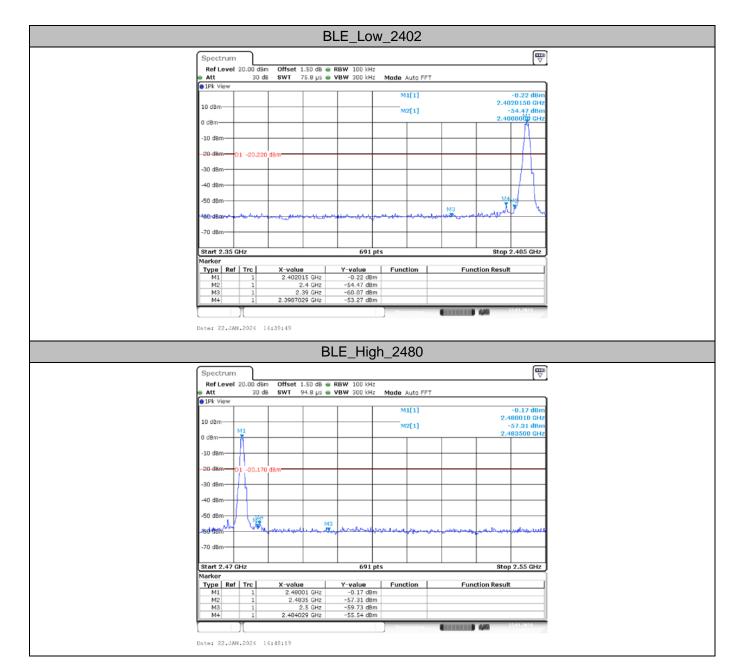
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

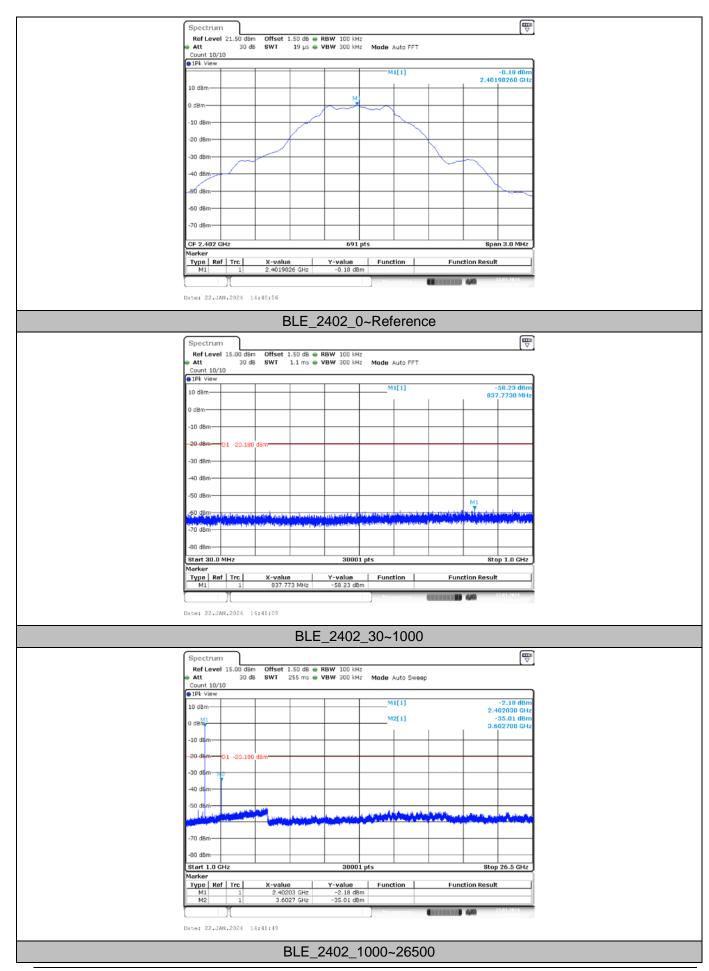
Test Mode


Please refer to the clause 2.4.

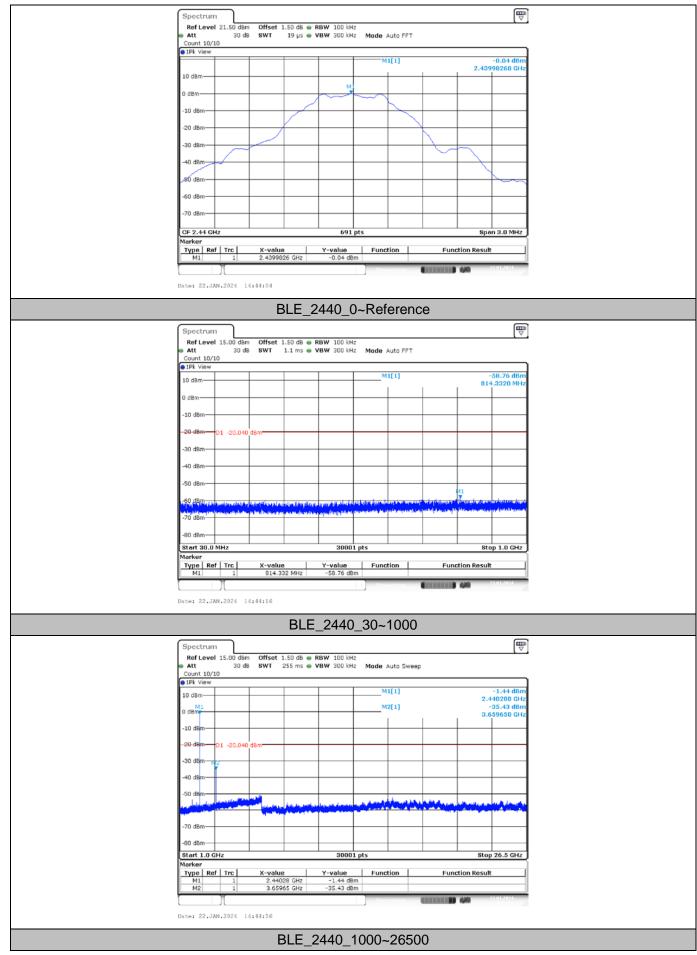
Test Results

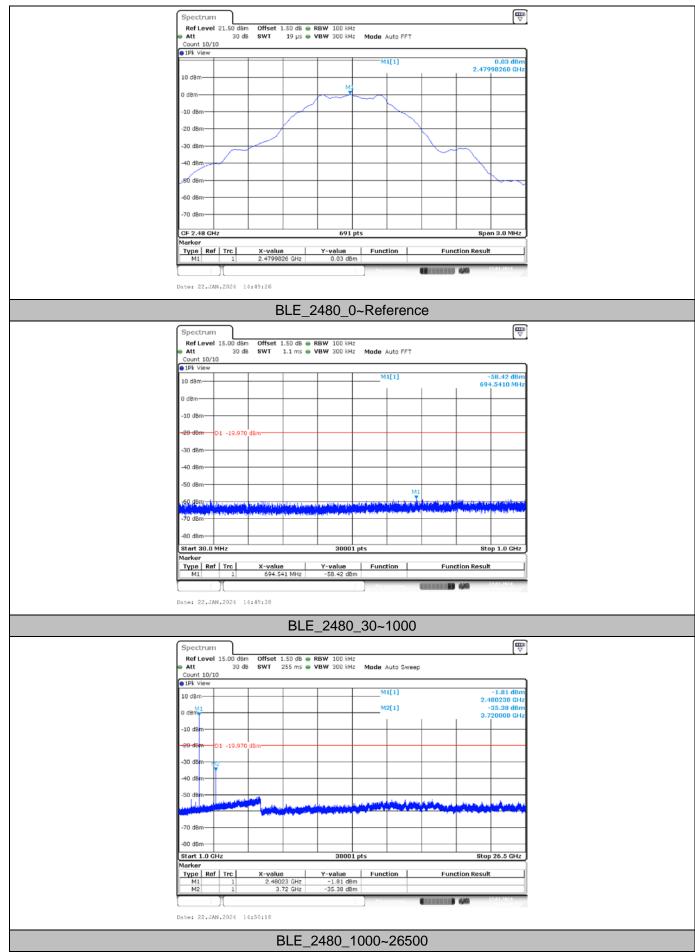
(1) Band edge Conducted Test

Test Mode	Mode Frequency[MHz] Ref Le		Result[dBm]	Limit[dBm]	Verdict
BLE	2402	-0.22	-53.27	≤-20.22	PASS
	2480	-0.17	-55.54	≤-20.17	PASS

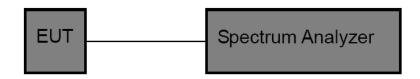


(2) Conducted Spurious Emissions Test


Test Mode	Frequency [MHz]	Freq Range [MHz]	Ref Level [dBm]	Result[dBm]	Limit[dBm]	Verdict
		Reference	-0.18	-0.18		PASS
	2402	30~1000	-0.18	-58.23	≤-20.18	PASS
		1000~26500	-0.18	-35.01	≤-20.18	PASS
	2440	Reference	-0.04	-0.04		PASS
BLE		30~1000	-0.04	-58.76	≤-20.04	PASS
		1000~26500	-0.04	-35.43	≤-20.04	PASS
		Reference	0.03	0.03		PASS
	2480	30~1000	0.03	-58.42	≤-19.97	PASS
		1000~26500	0.03	-35.38	≤-19.97	PASS



Tel.: (86)755-27521059


3.5. DTS Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

Test Item	Limit	Frequency Range(MHz)	
DTS Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5	

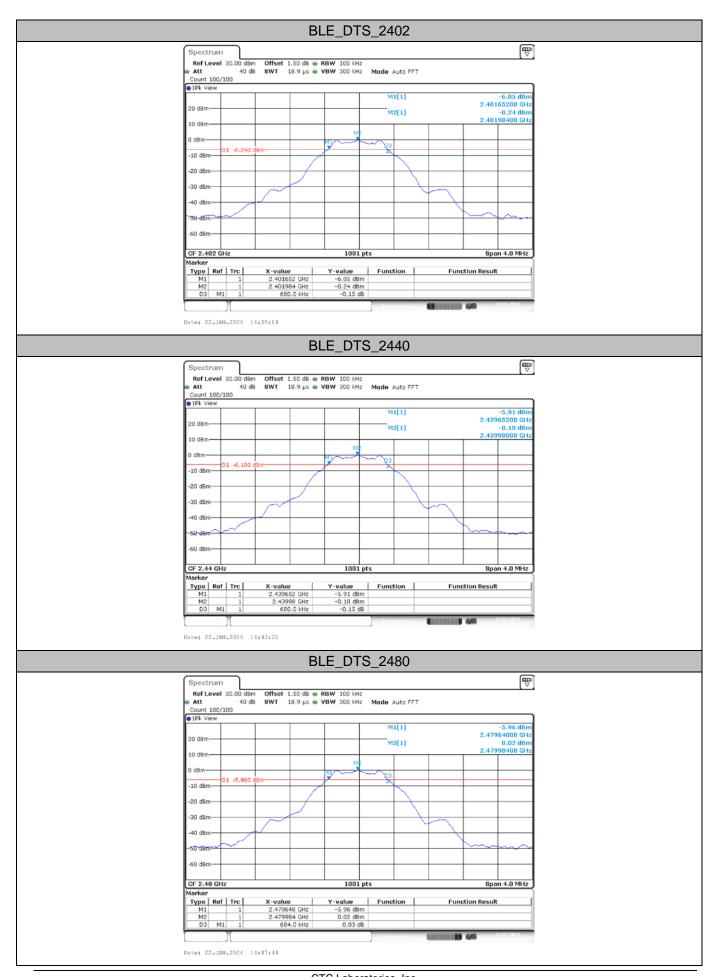
Test Configuration

Test Procedure

- 5. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 6. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - **OCB Spectrum Setting:**
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

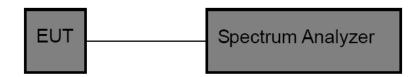
Test Mode

Please refer to the clause 2.4.


Test Results

Test Mode	Frequency[MHz]	OBW[MHz]	DTS BW[MHz]	Limit[MHz]	Verdict
	2402	1.031	0.68	>=0.5	PASS
BLE	2440	1.031	0.68	>=0.5	PASS
	2480	1.035	0.68	>=0.5	PASS

中国国家认证认可监督管理委员会


3.6. Peak Output Power

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)/ RSS-247 5.4 d:

Section	Test Item	Limit	Frequency Range(MHz)
CFR 47 FCC 15.247(b)(3)	Maximum conducted output power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- Spectrum Setting:

Peak Detector: RBW□DTS Bandwidth, VBW□3*RBW.

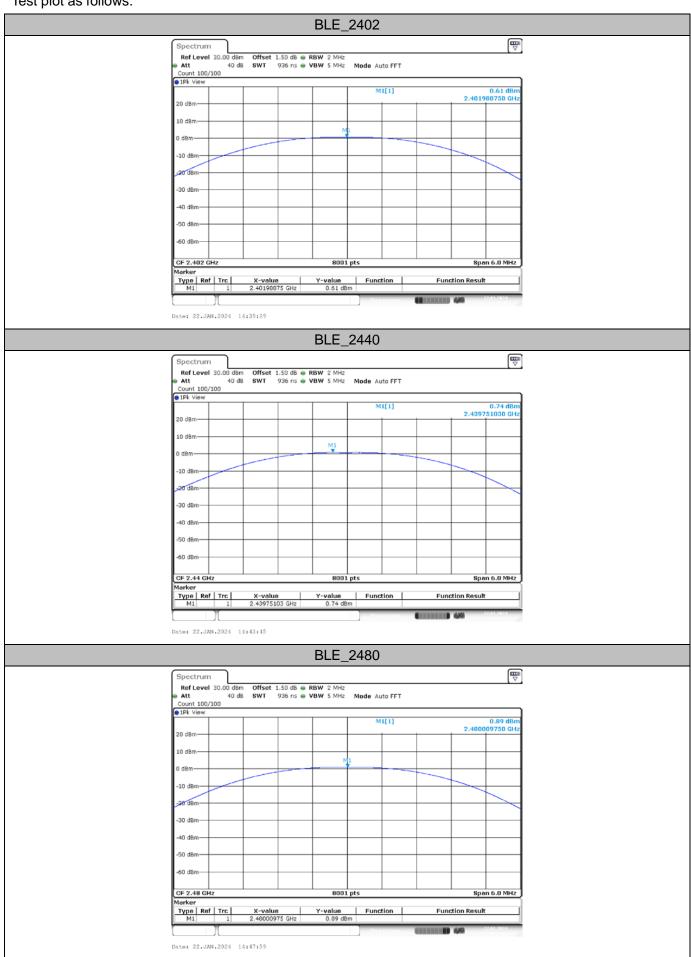
Sweep time=Auto.

Detector= Peak.

Trace mode= Maxhold.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

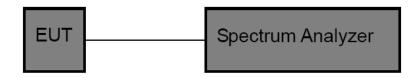
Test Mode


Please refer to the clause 2.4.

Test Result

Test Mode	Frequency[MHz]	Result [dBm]	Result EIRP [dBm]	FCC Limit [dBm]	IC Limit [dBm]	Verdict
BLE	2402	0.61	2.41	<=30	<=36	PASS
	2440	0.74	2.54	<=30	<=36	PASS
	2480	0.89	2.69	<=30	<=36	PASS

Test plot as follows:


3.7. Power Spectral Density

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)/ RSS-247 5.2 b:

Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

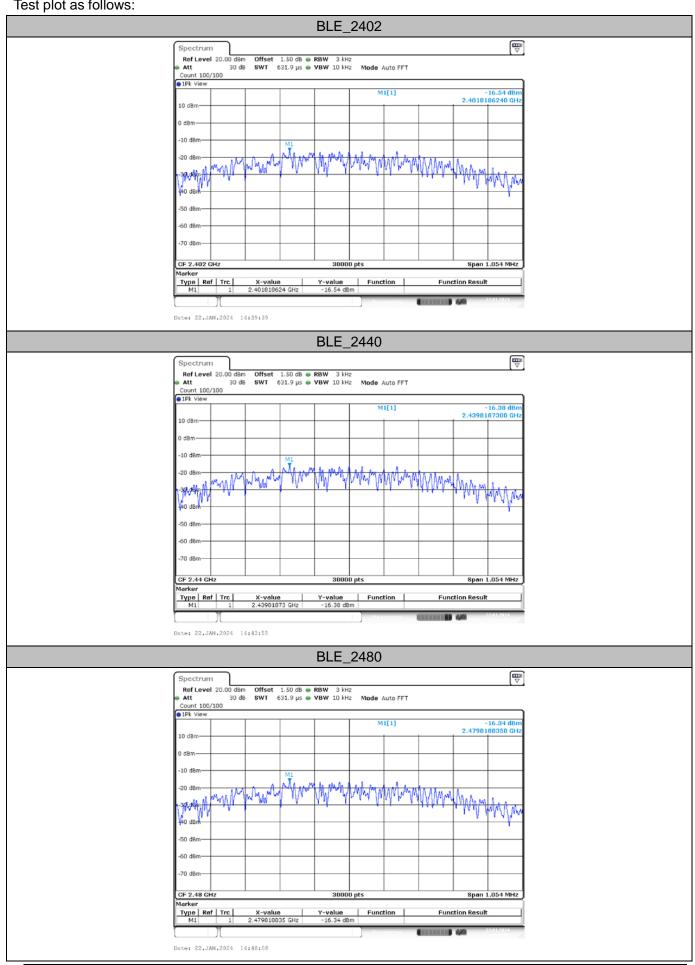
Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz Set the VBW to: 10 kHz

Detector: peak Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode


Please refer to the clause 2.4.

Test Result

Test Mode	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	2402	-16.54	<=8	PASS
	2440	-16.38	<=8	PASS
	2480	-16.34	<=8	PASS

Test plot as follows:

3.8. Duty Cycle

Limit

None, for report purposes only.

Test Configuration

Test Procedure

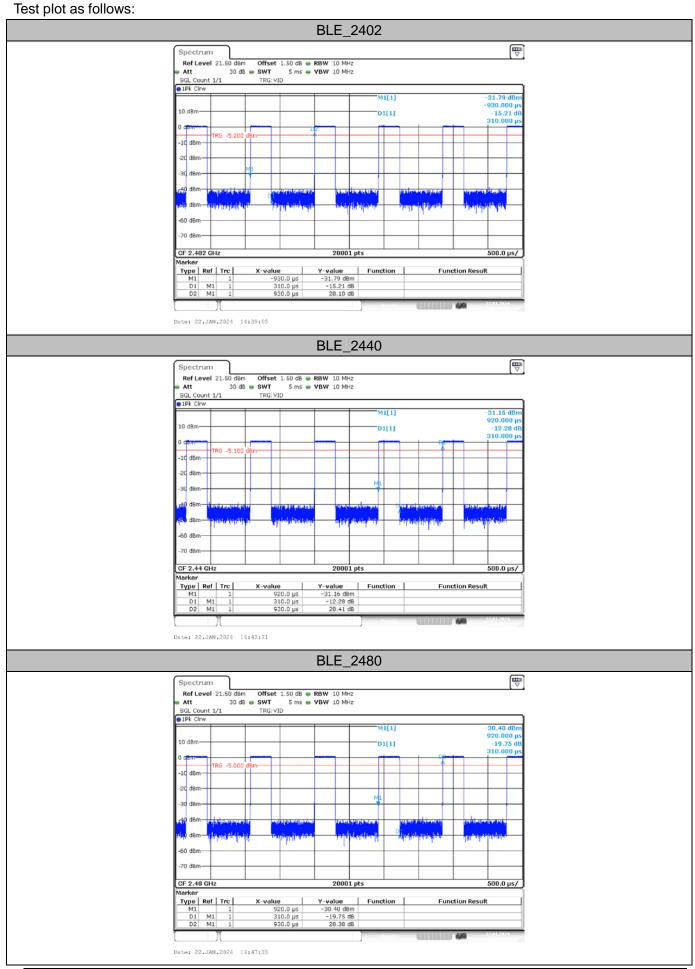
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.
- Spectrum Setting:

Set analyzer center frequency to test channel center frequency.

Set the span to 0Hz Set the RBW to 10MHz Set the VBW to 10MHz

Detector: Peak Sweep time: Auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.


Test Mode

Please refer to the clause 2.4.

Test Result

Test Mode	Frequency [MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
	2402	0.31	0.93	33.33	3.23	4
BLE	2440	0.31	0.93	33.33	3.23	4
	2480	0.31	0.93	33.33	3.23	4

3.9. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

