

FCC ID: 2A22E-WWYLT18 Page 1 of 22

FCC Test Report

Client Name	: Micronet Union Technology(Chengdu) Co., Ltd
Address	Room 502, Building 5, N.O. 528, Yuefei Road, Shibantan Street, Xindu District, Chengdu, Sichuan, China

Product Name

AC1200 Gigabit Dual Band Wi-Fi Router

Date

Dec. 14, 2021

Compliance

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Code:AB-RF-05-a

FCC ID: 2A22E-WWYLT18 Page 2 of 22

Contents

	10							
1. General Information	ek pupor	Pare		nhoter	Anu		otek	4
1.1. Client Information		Ant		- nuotek	Aupor	Par	hotek.	. 4
1.2. Description of Device	(EUT)	otek	nbo.	P. Notek	^{to} ot _{na}		.n	.4
1.3. Auxiliary Equipment U	Jsed During Tes	t	Labote	Ann		otek	Anbo.	. 6
1.4. Description of Test Fa	acility			anbo			ئمم	. 6
1.5. Channel List:		Anbur		pe ^{lt} pé	bole	Ann		. 7
1.6. Antenna Specification	1:	pobote			Anthoten	Anbo		.7
1.7. Table for Antenna Co	nfiguration:		Nen N	20	- Notek		·····	. 8
1.8. Maximum Output Pov	ver and E.I.R.P			phone	P.1	,×	thoter	. 8
1.9. Transmit Power Cont	rol (TPC)			boten	Anos			.9
2. U-NII DFS Rule Requirement	nts	hoten	Anba		¹ /24			10
2.1. Working Modes and F	Required Test Ite	ems	bupo.		and the second	Anboten	Anu	10
2.2. Test Limits and Rada	r Signal Parame	ters		N. 10		notek		11
3. Test Equipment List	K	Pur		pot ^{ek}	pupo.		,e ³⁴	15
4. Dynamic Frequency Selection	on (DFS)	pupo Pupo			Robote	Anu		16
4.1. DFS Measurement S	ystem	<u>م</u>	ipole .	Ann		×	100 100	16
4.2. Calibration of DFS De	etection Thresho	old Level				^{×6} 4	popore	17
4.3. Deviation from Test S	tandard	10°						17
5. Test Results		+abole v			oter l	no		18
5.1. Summary of Test Res	ults	Allpoter	NUD					18
5.2. DFS Detection Thres	hold		e ^k	2 ⁰¹		^f odr <u>ia</u>		19
5.3. Channel Availability C	Check Time		water and the second	All bole	Anv		ootek :	19
5.4. Channel Move Time A	And Channel Clo	osing Tran	smission 7	Гіте	bypo.		botek	19
5.5. Statistical Performance	ce Check	otel	Anbo.		k		Ann	19
5.6. NON-Occupancy Per	iod		Pupole .			nuoter	Aupo	19
5.7. U-NII Detection Band	width	An				Natorek.		19
APPENDIX I TEST SETUP I	PHOTOGRAPH			ove ^k	abore y	Pur	y	20
APPENDIX II EXTERNAL P	HOTOGRAPH	Wipon			Antooter	Anbe		21
APPENDIX III INTERNAL PI	HOTOGRAPH	××	oter I	inp.	hovek		,o,	21
APPENDIX IV – Appendix Tes	t Data						upoter?	22

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Code:AB-RF-05-a

FCC ID: 2A22E-WWYLT18

Page 3 of 22

TEST REPORT

Applicant	: Micronet Union Technology(Chengdu) Co., Ltd
Manufacturer	: Micronet Union Technology(Chengdu) Co., Ltd
Product Name	: AC1200 Gigabit Dual Band Wi-Fi Router
	T18-21X (X=A-Z or a-z), T18-PQX (X=A-Z or a-z), T18-BXX (X=A-Z or a-z)
Model No.	: (the last X=A-Z or a-z, which indicates for different appearance, dimension and color.)
Trade Mark	ex: N.A. Dolek Anboliek Anbolek Anbolek Anbolek Anbolek Anbolek
Rating(s)	: Input: DC 12V, 1A
Test Standard(s)	ECC Part15 Subnart F. Paragraph 15 407

Test Method(s) : FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart E requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt Date of Test Oct. 22, 2021 Oct. 25~Dec. 01, 2021

Jane Flla

Prepared By

(Ella Liang)

(Kingkong Jin)

Shenzhen Anbotek Compliance Laboratory Limited

Approved & Authorized Signer

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

FCC ID: 2A22E-WWYLT18 Page 4 of 22

1. General Information

1.1. Client Information

Applicant	:	Micronet Union Technology(Chengdu) Co., Ltd
Address	:	Room 502, Building 5, N.O. 528, Yuefei Road, Shibantan Street, Xindu District, Chengdu, Sichuan, China
Manufacturer	:	Micronet Union Technology(Chengdu) Co., Ltd
Address	:	Room 502, Building 5, N.O. 528, Yuefei Road, Shibantan Street, Xindu District, Chengdu, Sichuan, China
Factory	:	Micronet Union Technology(Chengdu) Co., Ltd
Address	:	Room 502, Building 5, N.O. 528, Yuefei Road, Shibantan Street, Xindu District, Chengdu, Sichuan, China

1.2. Description of Device (EUT)

Product Name	:	AC1200 Gigabit Dual Band Wi-Fi Router				
Model No.	:	T18-21X (X=A-Z or a-z), T18-PQX (X=A-Z or a-z), T18-BXX (X=A-Z or a-z) (the last X=A-Z or a-z, which indicates for different appearance, dimension and color.) (Note: All samples are the same except the antenna of each series model different, the antenna structure is different, and the color, shape, size are different, so we prepare T18-21A & T18-PQA & T18-BXA model for above 1GHz radiated emission test. Other items are test for T18-21A only.)				
Trade Mark	:	N.A. Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek				
Test Power Supply	:	AC 120V, 60Hz for Adapter/ AC 240V, 60Hz for Adapter				
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)				
Product Description	:	Number of Channel: 802.11b/ g/ n(HT20): 2412-2462MHz 802.11b/ g/ n(HT20): 2422-2452MHz 802.11n (HT40): 2422-2452MHz WiFi 5.2G: 5180MHz~5240MHz WiFi 5.3G: 5260MHz~5320MHz WiFi 5.6G: 5500MHz~5380MHz, 5660MHz~5700MHz WiFi 5.8G: 5745MHz~5825MHz 802.11b/ g/ n(HT20): 11 Channels 802.11b/ g/ n(HT20): 11 Channels 802.11n (HT40): 7 Channels WiFi 5.2G: 4 Channels for 802.11a/n(HT20)/ac(HT20) 2 Channels for 802.11n(HT40)/ac(HT40) 1 Channels for 802.11ac(HT80) 1 Channels for 802.11ac(HT80)				

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Report No.: 18220WC10233903

Report No.: 18220WC 10233903	FUCID: ZAZZE-WWYLLING Page 5 01 22
Provent in the second of the s	WiFi 5.3G: 4 Channels for 802.11a/n(HT20)/ac(HT20) 2 Channels for 802.11n(HT40)/ac(HT40) 1 Channels for 802.11ac(HT80) WiFi 5.6G: 8 Channels for 802.11a/n(HT20)/ac(HT20) 3 Channels for 802.11a/n(HT40)/ac(HT40) 1 Channels for 802.11a/n(HT40)/ac(HT40) 3 Channels for 802.11a(HT40)/ac(HT40) 1 Channels for 802.11a(HT40)/ac(HT40) 2 Channels for 802.11a/n(HT20)/ac(HT40) 2 Channels for 802.11a/n(HT20)/ac(HT40) 2 Channels for 802.11a/n(HT20)/ac(HT20) 2 Channels for 802.11a/n(HT20)/ac(HT20)
And ak abo	1 Channels for 802 11ac(HT80)
Modulation Type:	WiFi 2.4G: CCK, DQPSK, DBPSK for DSSS; 64QAM, 16QAM, QPSK, BPSK for OFDM WiFi 5G: OFDM with BPSK, QPSK, 16QAM, 64QAM, 256QAM
Antenna Type:	For T18-21A: WiFi 2.4G: External Antenna WiFi 5G: External Antenna For T18-PQA & T18-BXA: WiFi 2.4G: PCB Antenna WiFi 5G: PCB Antenna
Antenna Gain(Peak):	For T18-21A: WiFi 2.4G ANT1/ ANT2: 5dBi (Provided by customer) WiFi 5G ANT1/ ANT2: 5dBi (Provided by customer) For T18-PQA & T18-BXA: WiFi 2.4G ANT1/ ANT2: 4dBi (Provided by customer) WiFi 5G ANT1/ ANT2: 4dBi (Provided by customer)
Directional Gain:	WiFi 5.2G: 8.01dBi WiFi 5.3G: 8.01dBi WiFi 5.6G: 8.01dBi WiFi 5.8G: 8.01dBi
Adapter: pose	Model No: MAUS-1201101202 Input: 100-240V~50/ 60Hz 0.35A Output: 12V=1.0A PN: MAUS-120100200026
Operating Mode(s):	Master Client device without radar detection Client device with radar detection
Remark: 1) For a more detailed features des	cription, please reter to the manufacturer's specifications

or the User's Manual.

2) This report is for DFS module.

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

FCC ID: 2A22E-WWYLT18

Page 6 of 22

1.3. Auxiliary Equipment Used During Test

N/A

1.4. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited. 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

Report No.: 18220WC10233903

FCC ID: 2A22E-WWYLT18

Page 7 of 22

1.5. Channel List:

Frequency Band	Mode	Test channel	Frequency (MHz)
botek Anbor	All otek unboten And	CH 52	5260
Ant stek subpt	OFDM	CH 56	5280
Ando	802.11a/n(HT20)/ac(HT20)	CH 60	5300
5.3GHz	abotek Anbote Ant sotek	CH 64	5320
tek Anbo	OFDM	CH 54	5270
botek Anboto	802.11n(HT40)/ac(HT40)	CH 62	5310
Anbotek Anboten	OFDM 802.11ac(HT80)	CH 58	5290
Anboten Anbo	stek protek Anbore An	CH 100	5500
Anbotek Ar	both Antonek Anbore A	CH 104	5200
ek nabotek	Anbore An abotek Anboter	CH 108	5540
botek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Anbore Ann hotek Anbotek	CH 112	5560
	OFDM 802 11a/n(HT20)/ac(HT20)	CH 116	5580
		CH 120	5600
		CH 124	5620
	wotek Anbotek Anbo, Ak	CH 128	5640
	Anborotek Anborek Anboro	CH 132	5660
5.6GHz	Anbo tek nbotek Anbore	CH 136	5680
Lotek Anbotek	Anbor tek sobotek Anbore	CH 140	5700
Anbo ntek unbot	ak Anboi An botek Anboi	CH 102	5510
Anbo tek ont	otek Anbore Ann hotek An	CH 110	5550
Anbo, Lek	OFDM 802 11n(HT40)/ac(HT40)	CH 118	5590
Anborrak		CH 126	5630
otek Anbote	Ann hotek Anbotek Anbo	CH 134	5670
abotek Anboten	OFDM	CH 106	5530
Anbotek Anbote	802.11ac(HT80)	CH 122	5610

1.6. Antenna Specification:

	Ant.	Antenna Type	Connector	Gain (dBi)
,0 	1 hotek P	Cylindrical	N/A	botek ASIOT AT
Auport	2	Cylindrical	N/A ^{oov}	otek 5 hoboten

Note: 1) This EUT supports CDD, and all antennas have the same gain, Directional gain = GANT+Array Gain.

For power measurements, Array Gain=0dB (NANT≤4), so the Directional gain=8.01.

For power spectral density measurements, N_{ANT} =2, N_{SS} = 1.

So the Directional gain= G_{ANT} +Array Gain= G_{ANT} +10log(N_{ANT} / N_{SS})dBi=5+10log(2/1)dBi=8.01.

2) The antenna gain is provided by the manufacturer

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

FCC ID: 2A22E-WWYLT18 Page 8 of 22

1.7. Table for Antenna Configuration:

Operating Mode	TX Mode	2TX	
802.11a	botek	V (Ant. 1/ Ant. 2)	P.m.
802.11n(HT20)	Arr.	V (Ant. 1 + Ant. 2)	Anbort
802.11ac(HT20)	Anbo	V (Ant. 1 + Ant. 2)	hotek
802.11n(HT40)	K botek	V (Ant. 1 + Ant. 2)	Ann
802.11ac(HT40)	Pur	V (Ant. 1 + Ant. 2)	sk anbor
802.11ac(HT80)	otek Anbo	V (Ant. 1 + Ant. 2)	× ~

1.8. Maximum Output Power and E.I.R.P.

	Mc	ode: TX (802.11a 20M	Hz)	
Frequency Band	Max Average	Gain	Max. e.i.r.p.	Max. e.i.r.p.
(MHz)	Output	(dBi)	(dBm)	(mW)
	Power (dBm)			
5250~5350	12.640	5.00	17.640	58.076
5470~5725	12.480	5.00	17.480	55.976
+64	N.	NOTO AN	194	N.

Mode: TX (802.11n(HT20))						
Frequency Band	Max Average	Directional Gain	Max. e.i.r.p.	Max. e.i.r.p.		
(MHz)	Output	(dBi)	(dBm)	(mW)		
	Power (dBm)					
5250~5350	15.390	8.01	23.400	218.776		
5470~5725	15.511	8.01	23.521	224.957		
AND	k poin bi	Y LOYET	and	ek soor		

Mode: TX (802.11ac(HT20))					
Frequency Band	Max Average	Directional Gain	Max. e.i.r.p.	Max. e.i.r.p.	
(MHz)	Output	(dBi)	(dBm)	(mW)	
	Power (dBm)				
5250~5350	15.734	8.01	23.744	236.810	
5470~5725	15.041	8.01	23.051	201.883	
. of to.	Pro La	offer Ann	10 Mar	50. Pr. U	

			(C.) *					
Mode: TX (802.11n(HT40))								
Frequency Band	Max Average	Directional Gain	Max. e.i.r.p.	Max. e.i.r.p.				
(MHz)	Output	(dBi)	(dBm)	(mW)				
	Power (dBm)							
5250~5350	15.790	8.01	23.800	239.883				
5470~5725	15.707	8.01	23.717	235.342				
- 10V	V NOT	+6K		V. NOT				

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

Report No.: 18220WC10233903

FCC ID: 2A22E-WWYLT18

Page 9 of 22

Mode: TX (802.11ac(HT40))						
Frequency Band	Max Average	Directional Gain	Max. e.i.r.p.	Max. e.i.r.p.		
(MHz)	Output	(dBi)	(dBm)	(mW)		
	Power (dBm)					
5250~5350	15.973	8.01	23.983	250.207		
5470~5725	15.471	8.01	23.481	222.895		
e open pa	N NO	Dun	HOK MOD	nor hor		

Мо	de: TX (802.11ac(HT	80))		
Max Average	Directional Gain	Max. e.i.r.p.	Max. e.i.r.p.	
Output	(dBi)	(dBm)	(mW)	
Power (dBm)				
15.397	8.01	23.407	219.129	
15.130	8.01	23.140	206.063	
	Mo Max Average Output Power (dBm) 15.397 15.130	Mode: TX (802.11ac(HT)Max AverageDirectional GainOutput(dBi)Power (dBm)15.39715.1308.01	Mote: TX (802.11ac(HT80))Max AverageDirectional GainMax. e.i.r.p.Output(dBi)(dBm)Power (dBm)	

1.9. Transmit Power Control (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

Applicable	EIRP	FCC 15.407 (h)(1)
Anbotek Anbotek	>500mW	The TPC mechanism is required for system with an EIRP of above 500mW
	<500mW	The TPC mechanism is not required for system with an EIRP of less 500mW

The UUT can adjust a transmitter's output power based on the signal level present at the receiver.TPC is auto controlled by software.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

2. U-NII DFS Rule Requirements

2.1. Working Modes and Required Test Items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 6 and 7 for the applicability of DFS requirements for each of the operational modes.

DI DI		V GO' P				
	Operational Mode					
Requirement	Maatar	Client without radar	Client with radar			
	Master	detection	detection			
Non-Occupancy Period	botek V Anboit	√note	And V spote			
DFS Detection Threshold	Lotek V Anbot	Not required	ex Auport A			
Channel Availability Check Time	N	Not required	Not required			
U-NII Detection Bandwidth	Anborv	Not required	stek Vobotek P			

Applicability of DFS Requirements Prior to Use a Channel

Note: Per KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02 section (b)(5/6), If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear. An analyzer plot that contains a single 30-minute sweep on the original channel.

Applicability of DFS Requirements during Normal Operation

	Operational Mode					
Requirement	Maatar	Client without radar	Client with radar detection			
	waster	detection				
DFS Detection Threshold	RV ^C stek	Not required	hotek V Anbote.			
Channel Closing Transmission	potek VAnbo	hotely Anbote	And stell unbotek			
Time Man	botek Anboto	Ant stek unbote	k Aupor h			
Channel Move Time	and when	sten Anov sek	otek Antor An			
U-NII Detection Bandwidth	And VX	Not required	hotek allooter Ar			

	Additional requirements for devices	Master Device or Client	Client Without Radar
	with multiple bandwidth modes	with Radar Detection	Detection
	U-NII Detection Bandwidth and	All BW modes must be tested	Not required
	Statistical Performance Check	An- wotek Anbotek	Anbot tek abotek Anbot
319	Channel Move Time and Channel	Test using widest BW mode	Test using the widest BW
	Closing Transmission Time	available	mode available for the link
6	All other tests	Any single BW mode	Not required
	140°		

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

FCC ID: 2A2

2.2. Test Limits and Radar Signal Parameters

Detection Threshold Values:

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value			
EIRP ≥ 200 milliwatt	(See Notes 1, 2, and 3) -64 dBm			
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm			
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm			

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Test Limit:

DFS Response Requirement Values

Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds See Note 1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Code:AB-RF-05

FCC ID: 2A22E-WWYLT18 Page 12 of 22

Parameters of DFS Test Signals And Minimum Percentage of Successful Detections: Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup}\left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}, \\ \begin{pmatrix} \frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}} \end{pmatrix} \right\}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types 1-	4)		80%	120
00 0					

Short Pulse Radar Test Waveforms

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses

$$\left\{ \left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) \right\} = \text{Round up } \{17.2\} = 18.$$

would be Roundup

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

Anbotek

Product Safety

FCC ID: 2A22E-WWYLT18

Page 13 of 22

Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)	
1	1930.5	518	
2	1858.7	538	
3	1792.1	558	
4	1730.1	578	
5	1672.2	598	
6	1618.1	618	
7	1567.4	638	
8	1519.8	658	
9	1474.9	678	
10	1432.7	698	
11	1392.8	718	
12	1355	738	
13	1319.3	758	
14	1285.3	778	
15	1253.1	798	
16	1222.5	818	
17	1193.3	838	
18	1165.6	858	
19	1139	878	
20	1113.6	898	
21	1089.3	918	
22	1066.1	938	
23	326.2	3066	

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

K bote	Ano	Lor	ng Pulse Rada	ar Test Wavef	form	PULP	v sote
Radar	Pulse	Chirp	PRI	Number of	Number of	Minimum	Minimum
Туре	Width	Width	(µsec)	Pulses per	Bursts	Percentage	Number of
	(µsec)	(MHz)		Burst		of	Trials
						Successful	
						Detection	
Anber 5. Sotek	5-100	5-20	1000-2000	1-3	8-20	80%	30

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

FCC ID: 2A22E-WWYLT18

Page 14 of 22

Frequency Hopping Radar Test Waveform							
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
Anbotek 6 Anbotek	1nbotek	333	4 9 _{Anbotek}	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are µsed for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: If a segment does not contain at least 1 frequency within the U-NII Detection Bandwidth of the UUT, then that segment is not µsed.

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Report No.: 18220WC10233903

FCC ID: 2A22E-WWYLT18 Page 15 of 22

3. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Ant 1.	Three Phase V-type Artificial Power Network	CYBERTEK	EM5040DT	E215040DT001	Jul 05, 2021	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Oct. 22, 2021	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	Oct. 22, 2021	1 Year
4.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Oct. 22, 2021	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Oct. 22, 2021	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Oct. 22, 2021	1 Year
Anboter 7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Oct. 22, 2021	2 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Oct. 22, 2021	2 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Oct. 22, 2021	2 Year
10.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Oct. 22, 2021	2 Year
11.0	Pre-amplifier	SONOMA	310N	186860	Oct. 22, 2021	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A offer	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Oct. 22, 2021	1 Year
14.	Power Sensor	DAER	RPR3006W	15100041SN045	Oct. 22, 2021	1 Year
15.	Power Sensor	DAER	RPR3006W	15100041SN046	Oct. 22, 2021	1 Year
16.	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY53280032	Oct. 22, 2021	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Oct. 22, 2021	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Oct. 22, 2021	1 Year
19.	DC Power Supply	IVYTECH	IV3605	1804D360510	Oct. 22, 2021	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80 B	N/A	Oct. 22, 2021	1 Year

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

4. Dynamic Frequency Selection (DFS)

4.1. DFS Measurement System

Test Procedure:

- 1. Master device and client device are set up by conduction method as the following configuration.
- 2. The client device is connected to notebook and to access a IP address on wireless connection with the master device.
- 3. Then the master device is connected to another notebook to access a IP address.
- 4. Finally, let the two IP addresses run traffic with each other through the Run flow software "iPerf.exe" to reach 17% channel loading as below.

Setup for Master with injection at the Master

Radar Test Waveforms are injected into the Master.

Channel Loading Please refer to Appendix B: Channel Loading of the Appendix Test Data.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

Page 17 of 22

4.2. Calibration of DFS Detection Threshold Level

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -64dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from -64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak

level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

4.3. Deviation from Test Standard

No deviation.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

Report No.: 18220WC10233903

FCC ID: 2A22E-WWYLT18 Page 18 of 22

5. Test Results

5.1. Summary of Test Results

Standard	Test Type	Remarks	Result
FCC 15.407	DFS Detection Threshold	Applicable	PASS
FCC 15.407	Channel Availability Check Time	Applicable	PASS
FCC 15.407	Channel Move Time	Applicable	PASS
FCC 15.407	Channel Closing Transmission Time	Applicable	PASS
FCC 15.407	Non- Occupancy Period	Applicable	PASS
FCC 15.407	U-NII Detection Bandwidth and Statistical Performance Check	Applicable	PASS

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community,Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.Tel:(86) 755-26066440Fax: (86) 755-26014772Email: service@anbotek.com

Code:AB-RF-05-a

FCC ID: 2A22E-WWYLT18 Page 19 of 2

5.2. DFS Detection Threshold

Calibration:

DFS Threshold Level

DFS Threshold Level(5dBi antenna):-56dBm

At the antenna connector

DFS Threshold Level(4dBi antenna):-57dBm

In front of the antenna

Note: For SISO mode, the maximum EIRP is less than 200 milliwatt, the antenna gain is 5dBi. For MIMO mode, the maximum EIRP is more than 200 milliwatt, the directional gain is 8.01dBi, According to clause 2.2 of this report. The detection threshold level is -56dBm. The same method for 4dBi antenna gain.

Please refer to Appendix A of the Appendix Test Data.

5.3. Channel Availability Check Time

If the UUT successfully detected the radar burst, it should be observed as the UUT has no transmissions occurred until the UUT starts transmitting on another channel.

Please refer to Appendix C of the Appendix Test Data.

5.4. Channel Move Time And Channel Closing Transmission Time

Please refer to Appendix D of the Appendix Test Data.

5.5. Statistical Performance Check

Please refer to Appendix G of the Appendix Test Data.

5.6. NON-Occupancy Period

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

Please refer to Appendix E of the Appendix Test Data.

5.7. U-NII Detection Bandwidth

Please refer to Appendix F of the Appendix Test Data.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Code:AB-RF-05-a

APPENDIX I -- TEST SETUP PHOTOGRAPH

Report No.: 18220WC10233903

FCC ID: 2A22E-WWYLT18 Page 20 of 22

APPENDIX II -- EXTERNAL PHOTOGRAPH

Reference to the test report 18220WC10233901.

APPENDIX III -- INTERNAL PHOTOGRAPH

Reference to the test report 18220WC10233901.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

 Report No.: 18220WC10233903
 FCC ID: 2A22E-WWYLT18
 Page 22 of 22

APPENDIX IV – Appendix Test Data

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755-26066440 Fax: (86) 755-26014772 Email: service@anbotek.com

Code:AB-RF-05-a