Exhibit C

Fixed Antenna Specifications

1 Parabolic Antenna Beamwidth

This application for an experimental license includes the use of a 13.56 m (44.31 feet) X/S antenna transmitting a continuous wave with no modulation at frequencies between 2025 and 2120 MHz . Antenna beamwidth is a function of wavelength, or more practically, the transmit frequency. Below is the formula used to determine the peak gain as a function of efficiency (η), diameter (D) and wavelength (λ).

$$
\begin{equation*}
G_{\text {peak }}=10 \log \left[\eta\left(\frac{D \Pi}{\lambda}\right)^{2}\right] \tag{1}
\end{equation*}
$$

The peak gain of a parabolic antenna can also be calculated as a function of efficiency (η) and the half power beamwidth $\left(\theta_{3 d B}\right)$.

$$
\begin{equation*}
G_{p e a k}=10 \log \left[\eta\left(\frac{70 \Pi}{\Theta_{3 d B}}\right)^{2}\right] \tag{2}
\end{equation*}
$$

Equating 1 and 2:

$$
\begin{align*}
10 \log \left[\eta\left(\frac{D \Pi}{\lambda}\right)^{2}\right] & =10 \log \left[\eta\left(\frac{70 \Pi}{\Theta_{3 d B}}\right)^{2}\right] \\
\eta\left(\frac{D \Pi}{\lambda}\right)^{2} & =\eta\left(\frac{70 \Pi}{\Theta_{3 d B}}\right)^{2} \tag{3}\\
\left(\frac{D \Pi}{\lambda}\right)^{2} & =\left(\frac{70 \Pi}{\Theta_{3 d B}}\right)^{2} \\
\theta_{3 d B} & =\left(\frac{70 c}{D f}\right) \\
\theta_{3 d B} & =\left(\frac{20985472060}{D f}\right) \tag{4}
\end{align*}
$$

Figure 1: Beamwidth as a function of frequency $[\mathrm{MHz}]$

At $2,120 \mathrm{MHz}$, the newly requested frequency, the beamwidth for the 13.56 meter conical antenna is 0.73°.

2 Orientation of Beam

The transmit antenna is oriented towards the zenith in this experiment. Thus, no elevation profile is provided.

3 Antenna Patterns

Figure 2: Gain Pattern for the 13.56 meter antenna transmitting at $2,025 \mathrm{MHz}$

Figure 3: Gain Pattern for the 13.56 meter antenna transmitting at $2,120 \mathrm{MHz}$

